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Abstract

Characterizing population structure and dynamics is critical for the conserva-

tion of endangered species. Monitoring sperm whales Physeter macrocephalus is

especially difficult because it requires monitoring different latitudes to capture

the dynamics of most populations. Since their remarkable sexual dimorphism

in body size is reflected in their sounds, passive acoustic monitoring presents

an opportunity to capture contiguous patterns in time, space, and over large

scales. We show that the echolocation repetition rate (measured as inter-click

interval, ICI) as a proxy for body length is a suitable approach for large-scale

acoustic monitoring. Body length has previously been estimated from the time

interval between pulses (IPI) within sperm whale echolocation clicks. These

estimates can only be achieved when whales are oriented toward the recorder

or directly facing away, resulting in sparse data. A representative subsample of

data demonstrated that ICI and IPI are linearly correlated, allowing conversion

of ICI distributions into likely body length categories. This approach was

applied to three monitoring sites in the Gulf of Mexico (2010–2017), where
sperm whale population structure and male movements were poorly under-

stood. We identified three classes: large animals between 12–15 m (ICI between

0.72 and 1 sec), presumed to correspond to adult males, and small animals

below 12 m (ICI between 0.44 and 0.64 sec) likely pertaining to social groups

(mixed groups with adult females and their offspring), and the third class with

mid-sized animals (ICI between 0.64 and 0.83 sec) believed to contain adult

females or sub-adult males. Our results revealed spatial and seasonal variability

of the population structure including possible male presence throughout the

year and migratory patterns of the population. This approach provides a means

to efficiently characterize the putative population structure of sperm whales to

understand the population’s geographical dynamics and population status,

which is relevant under rapidly changing habitat conditions.

Introduction

Characterizing population structure and dynamics is criti-

cal for the conservation of endangered species. Many

marine mammal population estimates are data-limited

and lack temporal and spatial coverage. This is due in

part to elusive behaviors (e.g., long and deep foraging

dives or extensive migrations) which, combined with their

presence in remote areas, represent logistical and eco-

nomic challenges in monitoring. Studying sperm whales

Physeter macrocephalus is especially difficult in many areas

as it requires monitoring different latitudes to capture

their population dynamics (Whitehead & Weilgart, 2000).

Females and males have differences in social preferences

and ecological needs (Best, 1979; Gowans et al., 2007),

resulting in latitudinal segregation across most of their

range (Lyrholm et al., 1999). This excludes the latitudi-

nally restricted Mediterranean population, where sexes are

found in sympatry (Frantzis et al., 2014; Pirotta

et al., 2011), but males and females still use areas with

different characteristics resulting in fine spatial scale seg-

regation (Jones et al., 2016; Pirotta, Brotons, et al., 2020;

Pirotta, Vighi, et al., 2020). However, most populations

span large geographic ranges, including international
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borders (Rice, 1989), with different anthropogenic threats.

They may encounter threats from cumulative risks of

multiple stressors (e.g., anthropogenic noise, ship strikes,

fisheries interactions, oil spills, and pollution; National

Academic of Sciences Engineering and Medicine, 2017).

The strong sexual segregation of sperm whales is well

known but their large-scale movements are still unclear

(Whitehead, 2003). Females display social philopatry, and

in some regions can also display geographic philopatry

(Alexander et al., 2016; Engelhaupt et al., 2009), remain-

ing in tropical and subtropical waters in social groups for

cooperative care of their young (Best, 1979). They form

long-lasting social units consisting of adult females,

calves, and juveniles (Whitehead et al., 1991). Once male

juveniles reach puberty, they gradually move to higher

latitudes (Rice, 1989) forming small groups and become

increasingly solitary as they mature (Best, 1979; White-

head, 2003). Mature males travel to lower latitudes to

associate with social groups in mating periods (White-

head, 2003), resulting in large ranges for males at the

population level (Gaskin, 1970; Whitehead & Weil-

gart, 2000). The latitudinal movements of mature males

were believed to be seasonal (Best, 1979), but further

studies have shown them to be labile (Whitehead, 2003).

North–south migrations were observed in midlatitudes,

but the seasonal movement is less evident in tropical and

subtropical regions (Whitehead, 2003), where mature

males have been seen at low latitudes in small numbers

for a few months throughout the year (Silva et al., 2014;

Whitehead, 1993). Observations of large-scale movement

are limited in most regions and seasonal patterns are only

explored in well-studied populations (Steiner et al., 2012;

Whitehead et al., 2008). Gene distributions suggest the

movement of both sexes covering substantial parts of the

ocean basins, with some flux of males breeding in differ-

ent basins (Alexander et al., 2016; Lyrholm et al., 1999).

Monitoring females and males over long periods of time

requires cost-effective methods applicable to large-scale data.

Sexual dimorphism is key to tracking the structure of sperm

whale populations using acoustics. They have the widest

degree of sexual dimorphism in body size among cetaceans

(Rice, 1989) and it is reflected in their sounds (Goold &

Jones, 1995). Sperm whales use sound to navigate, commu-

nicate and find prey (Gordon, 1987; Mullins et al., 1988;

Norris & Harvey, 1972; Watkins & Schevill, 1977; Wor-

thington & Schevill, 1957). The most frequently detected

sounds are broadband echolocation clicks, with apparent

source levels measured up to 235 dBrms (Møhl et al., 2003)

and 229 dBpeak re: 1 lPa at 1 m (Zimmer, Tyack,

et al., 2005). These highly-directional clicks can be detected

acoustically over large distances (range of 10–20 km) and

may be produced regularly for over 80% of a dive cycle (Tel-

oni et al., 2008; Watwood et al., 2006; Weilgart &

Whitehead, 1990), although values as low as 60% have been

reported in other regions (Douglas et al., 2005; Fais

et al., 2016). The most supported theory is that regular clicks

(or usual clicks) are primarily used for long-range prey

detection (Jaquet et al., 2001; Madsen, Wahlberg, &

Møhl, 2002). There is a general relationship between the rep-

etition rate of echolocation clicks, measured as the inter-click

interval (ICI), and the size across odontocete species (Jensen

et al., 2018). This may be related to the maximum detection

range for prey (Jensen et al., 2018) since the interval between

clicks allows for an echo-return to be detected before emit-

ting another click, and the greater the time interval between

clicks the longer the range. The ability to scan large volumes

of water allows larger whales to find more calorific prey in

deeper layers (Goldbogen & Madsen, 2018); this can satisfy

the high calorific requirements to maintain such size (Teloni

et al., 2008). Males, with larger bodies, exploit a wider vari-

ety of prey than females by searching for bigger prey at larger

depths or smaller, more accessible prey in aggregations at

shallower depths (Isojunno & Miller, 2018; Teloni

et al., 2008). This exploitation of different-sized prey at vary-

ing depths has facilitated the evolution of larger sonar struc-

tures that can increase effective detection ranges (Goldbogen

et al., 2019).

The multi-pulse structure that characterizes sperm whale

echolocation clicks results from the sound transmission

pathways before exiting the rostrum (Cranford, 1999; Nor-

ris & Harvey, 1972). The time between the multiple pulses

(referred to as the inter-pulse interval, IPI) scales with the

body length of whales emitting the clicks (Gordon, 1991).

The empirical derived relationship relating IPI and total

length are supported by different measurements of the

spermaceti organ (i.e., sound speed, nasal complex length,

and photogrammetry; Flewellen & Morris, 1978;

Møhl, 2001; Rhinelander & Dawson, 2004) that has led to

estimates of body length (Growcott et al., 2011; Rhinelan-

der & Dawson, 2004). When clicks are received at the sen-

sor, the multi-pulse structure can be cluttered by

additional pulses and time delays that vary with the orien-

tation and proximity of the echolocating whale (Laplanche

et al., 2006; Zimmer, Madsen, et al., 2005).

Autonomous acoustic sensors are capable of recording

for months, generating large datasets of clicks detected

from all angles and distances (Miller & Miller, 2018; Sta-

nistreet et al., 2018). The algorithm presented by Beslin

et al. (2018) automates the estimation of IPI from on-

axis clicks but is limited by the high proportion of off-

axis clicks from autonomous sensors (i.e., over 99% of

recorded clicks; Beslin et al., 2018) that do not display a

clear multi-pulse structure. Methods that involve averag-

ing techniques over long click sequences have improved

the consistency of IPI estimates but require distinguished

clicks of the focal whales (Antunes et al., 2010; Teloni
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et al., 2007). The challenge is to overcome the sources of

variability for body length estimation and hence popula-

tion structure as the recorded clicks are received from

unknown whale orientations, on a variety of acoustic sen-

sors, and under a big data paradigm.

We describe a method to categorize acoustic encoun-

ters of sperm whales based on the distribution of distinct

ICI distributions as a proxy for body length. The instanta-

neous repetition rate of regular clicks varies considerably

during a dive. However, when averaged over several min-

utes or an entire dive, it is remarkably consistent (Dou-

glas et al., 2005). We use the distinct ICI distribution as

potential indicators of female and male presence and

investigate if population structure can be determined on

the basis of passive acoustic monitoring. We apply this

method to 7 years of acoustic data from three monitoring

sites in the Gulf of Mexico (GOM), where male move-

ments and timing of breeding are largely unknown.

Methods

Data collection

Underwater sounds of sperm whales were monitored at

three locations in the GOM between 2010 and 2017

(Fig. 1) using high-frequency acoustic recording packages

(HARPs). HARPs are autonomous bottom-mounted

instruments equipped with a hydrophone, data logger,

battery power supply, and acoustic release system

(Wiggins & Hildebrand, 2007). All HARPs were recorded

at a sampling frequency of 200 kHz with an effective

bandwidth from 10 Hz to 100 kHz. The sequential

deployments over multiple years provided nearly continu-

ous acoustic data (Appendix S1).

Echolocation click detection

We identified individual echolocation clicks of sperm

whales using a multi-stage approach consisting of auto-

mated and manual evaluation processes. We detected can-

didate clicks using an automated multi-step detection

algorithm (Solsona-Berga et al., 2020) developed in

MATLAB (version R2016b, The MathWorks, Natick,

MA), based on the proposed approach for odontocete

clicks (Roch et al., 2011; Soldevilla et al., 2008). The

detector applied a band-pass filter between 5 and 95 kHz

to minimize other sources of noise. Clicks with a received

level of at least 130 dBpp were retained to maintain a con-

sistent detection range, remaining well above background

noise. We removed other odontocete clicks based on

spectral characteristics (Solsona-Berga et al., 2020). Sperm

whale clicks can be easily distinguished from other odon-

tocete clicks because of their lower-frequency content and

long ICI. One of the difficulties is that their signals are

similar to impulse cavitation sounds produced by vessel

propellers. We detected ship passages using an automated

classifier based on average power spectral densities and an

adaptive received level threshold to detect passages above

Figure 1. Map of recording site locations in the Gulf of Mexico with green/brown representing land masses, and white/blue representing water

(Amante & Eakins, 2009). The three sites are named based on the federal lease block in which they are located: Green Canyon (GC, at 1100 m),

Mississippi Canyon (MC, location A at 980 m and location B at 800 m), and Dry Tortugas (DT, at 1300 m). Contours are at 500, 1000 and 1500 m.

Inset map showing two different locations for monitoring at the MC site with a color scale representing seafloor depth (Wessel et al., 2019).
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background noise (Solsona-Berga et al., 2020) and

excluded clicks within those periods of ship passages.

We manually removed the remaining false positive detec-

tions using the open-source software DetEdit (Solsona-Berga

et al., 2020) to ensure that retained clicks were attributable

to sperm whales. This software provides interactive displays

that show detections in relation to one another and com-

pares and contrasts different features. This assisted editing

facilitated the quality control of large numbers of detections.

Acoustic body length estimation

A subset of 176 encounters (a dive cycle of about 45 min)

with echolocating sperm whales from multiple years across

all sites was selected randomly and used to examine the

relationship between ICI distribution and whale body

length in the GOM. We manually measured the IPIs and

ICIs of click sequences in our data subset using the soft-

ware Triton (Wiggins & Hildebrand, 2007). Analysts

referred to the spectrogram and waveform to randomly

select click sequences during periods with consistent ICI

that had little variability in time from one click to another

(i.e., <200 msec), indicating they came from the same

whale and were clearly distinguishable from other inter-

leaved click sequences based on the variability of amplitude

between consecutive clicks. The displayed click trains were

band-pass filtered between 5 and 95 kHz to clarify the

clicks and their pulse structure from noise. A total of 402

clicks were manually measured from different days

(n = 127) and all sites. Manual measurements of ICI were

done by selecting the start time of each click. Clicks that

occurred with consistent intervals (variability below

200 msec) were considered suitable for measurement.

Clicks were measured when at least five consecutive clicks

were consistent. Manual measurements of IPI were done

by selecting the time of the highest amplitude of each pulse.

Clicks were considered suitable for measurement when at

least three pulses were clearly identified. The slope of a

linear-fit between mean ICI and IPI was used to predict

acoustic animal lengths corresponding to ICI distributions.

Following the methods of Giorli and Goetz (2020), we

determined the acoustic body length for animals with IPIs

less than 4 msec using the Gordon (1991) equation derived

from whales less than 11 m (females, juveniles, and calves)

and the Growcott et al. (2011) equation derived from lar-

ger whales with IPIs greater than 4 msec.

Inter-click interval classification

We calculated ICIs as the time difference between sequen-

tial clicks and developed a method to minimize the

instantaneous fluctuations and capture the consistency of

ICIs in time across encounters. We obtained ICI distribu-

tions over 5-min windows by computing a histogram

with a 25-msec bin width, restricted to values between 0.3

and 1.4 sec (Fig. 2A). The use of histograms allowed us

Figure 2. Method to classify ICI distributions: (A) ICI histograms, 25 msec bin width over 5-min time bins, (b) concatenated in time with the

count in color. (c) ICI distribution visualization (ICIgrams) for successive 5-min time bins. White points represent histogram mode (dominant ICI

band with 100 msec bin width).
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to graphically capture one or multiple mode distributions

in each window while still showing the wide range of

variation. We restricted the ICI range on the upper

boundary to minimize ICIs caused by some of the clicks

within the click train not being detected. Values below

the lower boundary of the ICI range were ignored to

minimize the influence of interleaved click sequences

from multiple animals clicking at the same time, resulting

in perceived short ICIs. We developed a custom graphical

user-interface tool (Fig. 2C) based on MATLAB (Math-

Works, Natick, MA) to display time series of ICI his-

tograms as a heatmap, similar to the agglomeration of

ICI histograms referred to as ICIgrams by Miller and

Miller (2018). Comparable to a spectrogram, the interface

displayed each 5-min window ICI distribution over time,

with warmer colors where ICI bins had higher counts

representing the mode. To enhance distributional differ-

ences in the display, for each 5-min window we com-

puted a histogram with 10 ICI bins of 100-msec bin

width, referred to as ICI-bands, where each 100-msec bin

was centered on the first decimal from 0.4 to 1.4 sec. The

ICI band with the highest count was displayed with a

cross mark to highlight the mode in each 5-min window

(Fig. 2C). If a 5-min window had a bimodal distribution

with equal counts, cross marks were displayed on both

modes. An interactive panel displayed the ICIgrams for

one day, providing the context needed to intuitively

annotate large batches of data by selecting single or multi-

ple 5-min windows and attributing each time window to

a heuristic group of modal ICIs. Heuristics were essen-

tially assumptions regarding the typical clicking rate

behavior of sexes and maturity levels and were based on

ICI ranges of dive cycles reported in the literature

(Appendix S2). Using this display, trained analysts (ASB,

NP) recognized repetitive clicking rate patterns across

time and subjectively ascribed them to one of the three

heuristic groups: (1) fast-clicking (modal ICI <0.6 sec),

(2) medium-clicking (0.6 > modal ICI <0.8), (3) slow-

clicking (modal ICI >0.7), 4) indecisive (less than 5 con-

secutive windows with a consistent ICI). Less than 3% of

categorized events were classified as indecisive. All deci-

sions were evaluated and agreed upon by both analysts.

Statistical analysis

We examined temporal patterns of each ICI class at each

site using generalized additive models (GAMs) with total

presence in minutes per day as the response variable and

Julian day and year as the predictor variables for seasonal

and multi-year trends. During 2010–2013 at site MC, the

HARP was deployed at a mean depth of 980 m southwest

of a seamount (location A, Fig. 1, Appendix S1). Beginning

in 2014, the hydrophone was deployed 15 km north of its

previous location, at a depth of 800 m north of the sea-

mount (location B). These locations were modeled as dif-

ferent sites (Appendix S3). GAM analysis was carried out

using the mgcv package (Wood, 2011) in R (R Core

Team, 2019). Due to the zero-inflated nature of the data,

we used a Tweedie distribution with a logistic link function.

The smoothing function for Julian day was estimated by a

cyclic cubic regression spline and limited up to six degrees

of freedom to help interpretability of the four seasons and

allow for unique conditions during season transitions. Year

was modeled with a thin-plate spline with no restrictions.

We employed the restricted maximum likelihood (REML)

to optimize the level of smoothing (Marra & Wood, 2011).

Results

A 7-year dataset of sperm whale detections

We collected a total of 16 years of acoustic data from

three sites in the GOM region (GC, MC, and DT). Sperm

whale clicks were automatically detected in large numbers

during all deployments at each site, with click counts

ranging from 8600 to over 11 million analyst-confirmed

detections per deployment (Appendix S1).

Acoustic body length estimation

To characterize the relationship between ICI distributions

and body length from our subset, we correlated the mean

ICI and IPI for 176 click trains and converted the mean

IPIs into acoustic body lengths. The subset was composed

of 44 click trains from GC, 43 from MC, and 88 from

DT. Between all three sites, mean ICIs ranged between

0.43 and 1.32 sec, and mean IPIs ranged between 1.73

and 7.30 msec. Although some scatter is observed, there

is a positive relationship between IPI and ICI (line of best

fit: IPI = 0.004*ICI + 0.9, R2 = 0.5; q = 0.7, p < 0.001:

Spearman’s correlation coefficient; Fig. 3). This corre-

sponded to acoustic body length estimates between 7.3

and 15.4 m (Fig. 3). The slope between ICI and body

length suggests that a 0.7 m increase of size is associated

with a 0.1 sec increase in ICI (line of best fit: body

length = 0.006*ICI + 6.3, R2 = 0.5; q = 0.7, p < 0.001:

Spearman’s correlation coefficient; 3).

ICI distributions

We inspected a total of 1081 days of ICIgram plots, with

306 days of detections from GC, 683 days from MC, and

92 days from DT. ICIs varied considerably within each

encounter but a dominant clicking rate was observed

across most encounters, regardless of the received levels

of the detected clicks (Fig. 4). Three different classes of
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dominant ICI distributions recurred across all sites with

similar received level distributions (Fig. S1), suggesting

the possible presence of whales with different body

lengths (Fig. 5). Class A was characterized by a dominant

ICI distribution with a mode at 0.46 sec (median

0.51 sec, IQR 0.20 sec, Fig. S1A), class B at 0.68 sec (me-

dian 0.72 sec, IQR 0.19 sec), and class C at 0.80 sec (me-

dian 0.83, IQR 0.27 sec). ICI variability within each

encounter was observed when multiple animals were

clicking simultaneously (i.e., class A Fig. 5A, Fig. S2),

when several clicks within a period of echolocation were

not detected (Fig. 5C, Fig. S2), and in periods where the

ICI variability was caused by the animal dive behavior

(i.e., descent phase, Fig. S3). Such variabilities were

reduced when displayed in time series of modal ICI dis-

tributions of 5-min windows. Despite the notable differ-

ence between the three classes, there may be short bouts

when dominant ICI distributions might be associated

with individual animal behavior (Fig. S4). However, these

exceptions become trivial with large datasets that mark-

edly display the three classes of ICI distributions.

The ICI-body length relationship was used to categorize

the three classes of consistent ICI distributions into approxi-

mate body length ranges. Class A with dominant ICIs

between 0.5 and 0.7 sec corresponded to small animals

between 9 to 11 m, equivalent to adults in social groups

(adult females and their offspring) reported by Jochens

et al. (2008) in the GOM region. Class C with dominant ICIs

between 0.7 and 1 sec which we hypothesized corresponds

to adult males between 12 to 15 m. Although class B was

easily distinguished in the ICIgrams, the length ranges for

class B overlapped with those of the other two classes.

Hence, a maturity class was not distinguishable based on the

relationship of ICI and acoustic length and was referred to as

mid-size animals (larger than A and smaller than C).

Population structure exhibit different
temporal and spatial patterns

All three classes of dominant ICI distribution were

detected across all sites with notable differences in tempo-

ral and spatial daily detection. Presumed social groups

(class A) were the most prevalent group in the GOM

region: they were commonly detected at MC and GC (64

and 42% of recording days, respectively) and were less

frequent at DT (14% recording days, Fig. 6). While high

rates of detection of social groups occurred during much

of the year at MC and GC, there was a significant

increase in detections during the fall (Fig. 7). GC also

had a peak in detection in early spring and a decrease in

late winter. At DT social groups were detected seasonally

from May to August persistently during all years (Figs. 6

and 7). There was a decrease in the daily detection of

social groups in the last 2 years at MC. There was an

Figure 3. Relationship between ICI and IPI/sperm whale estimated

body length. Each point represents a click train with mean values and

error bars indicate the standard error of the mean. Linear regression

(black line) with confidence intervals (shaded area).

Figure 4. Three sperm whale encounters with distinctive

echolocation repetition rates. (A) Received levels from each

echolocation click, (B) long-term spectral average (average 1000 non-

overlapped Hann-windowed spectra every 5 sec), and (C) ICIs from

echolocation click detections.
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overall increase in GC and DT, with a decrease from 2013

to 2015 in GC, and 2014 in DT.

Mid-size whales (class B) were detected in low numbers

across all sites (<10% of recording days, Fig. 6). At GC

and MC there was a slight peak in late summer (Fig. 7).

While our model shows an increase in detections in late

summer at both locations A and B at MC, only location

B had a significant peak in detections. Both locations

were modeled as different sites so location A had less

than 3 years of data. There was no interannual change in

the number of daily detections of mid-size animals at GC

and DT, while at MC there was an increase in 2016.

Presumed adult males (class C) were detected through-

out the year and in the lowest numbers at GC and DT

(3% of recording days, Fig. 6). At GC, there was a signifi-

cant peak in detections during late summer and an

increase in the number of daily detections over the moni-

toring years. Adult males were detected more regularly at

MC, although detection levels were also low (6% of

recording days). There was a decrease in the number of

daily detections from 2010 to mid-2011, followed by an

increase in the subsequent years.

Discussion

Inferring population structure through ICI
distributions

Our results suggest that ICI can be used as a proxy for

sperm whale body length, with increasing ICI scaling with

body size. Acoustic body lengths were estimated from the

measured IPIs within click sequences from a subset of

Figure 5. Concatenated ICIgrams of the three classes, A, B, and C (corresponding plots a, b, and c) over several encounters. Encounter

boundaries are indicated by a black line. ICI distributions for each 5 min time bin with the color scale representing histogram counts.
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Figure 6. The daily presence of the three classes is categorized as putative social groups (class A in green), mid-size (class B in orange), and adult male

(class C in purple) showing the variation in time at three sites of the Gulf of Mexico. Y axis is year and x axis is week. Bubble sizes indicate mean daily

presence in minutes per week (note variable scale and minimum circle size indicating no presence), and x marks indicate times of no recording effort.
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Figure 7. Generalized additive model plots for seasonal and multi-year variability of each class at three sites in the Gulf of Mexico. The solid line is

the estimated smooth function, with a 95% confidence interval (shaded area). Rug plots (at the bottom of each individual plot) denote distribution.

The zero in the y-axis indicates no effect of the predictive variable and quantifies the contribution made to the fitted values for that smooth function.

Star indicates p-value significance (*p < 0.05, **p < 0.01, ***p < 0.001) with plots in color having a significant p-value, others are shown in gray.
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encounters. We used the linearly correlated, well-

established allometric relationships between IPI and the

head length of the animal to estimate total body length.

Measured IPIs for an individual can vary on the order of

0.2 msec, related to the dynamics of the soft structure of

the sperm whale nose (Bøttcher et al., 2018). The net

result is a size error estimate of about 0.3 m (Bøttcher

et al., 2018). The whale’s distance to the sensor and ori-

entation also affect IPI measurements (Zimmer, Madsen,

et al., 2005). Such variation was a potential source of

observed scatter in our observations relating to IPI and

ICI. Even with this variability, estimated sizes in our

study were consistent with those reported for the GOM

(Collum & Fritts, 1985; Jaquet, 2006), although sizes

from mature males are rarely reported for this area. Large

animals were present in our study area, with similar sizes

(approximately 14–15 m) to those solitary animals seen

in the GOM from aerial surveys (Collum & Fritts, 1985),

thus providing more evidence for the presence of breed-

ing mature males in the GOM.

ICI may vary as a function of behavior during a dive.

This typically occurs during terminal buzzes (ICI

<0.1 sec; Teloni et al., 2008), at the descent phase of a

dive (<15 min of the dive cycle) with steadily decreasing

ICIs (Madsen, Wahlberg, & Møhl, 2002; Thode

et al., 2002; Zimmer et al., 2003), where whales tend to

target the seafloor and potential prey layers that were

located during previous dives (Fais et al., 2015) and the

ascent phase (Madsen, Payne, et al., 2002). Therefore,

ICIs of regular clicks can range considerably, however, a

fairly consistent rate of clicking is maintained for the

majority of a dive (Douglas et al., 2005; Madsen, Payne,

et al., 2002; Zimmer et al., 2003). Transforming the ICIs

into time series of modal ICI distributions of 5-min win-

dows, or ICIgrams, allowed us to reduce the variability

caused by the whale behavior during the dive. Even with

the variability in ICI distribution of several 5-min win-

dows from multiple animals clicking or clicks being

missed in a click sequence, the ICIgrams still represented

the characteristic click repetition rate of the whale within

the duration of an encounter. We found three dominant

ICI distributions, categorized as classes A, B, and C. The

three classes were found at all sites with similar level dis-

tributions. Lower received levels will indicate that

detected clicks were fainter and, therefore, further from

the sensor. Our results show that the difference in

received level did not correlate to the three classes, and

therefore classes were not related to the distance to the

receiver, both horizontally and vertically.

Our results from a subset of data relating the body length

ranges with ICI suggest that larger whales tend to click at a

slower rate than smaller whales. Sperm whales in the Azores

Islands had distinctive clicking rates (Gordon, 1991), with

adult males having slower rates (ICI ~ 0.85 sec) than

females (ICI ~ 0.51 sec) which was also revealed in our

markedly distinct classes and positively correlated ICI-body

length relationship. However, individual animal behavior

may vary and in the study by Teloni et al. (2008), while

three out of the four male sperm whales foraging off north-

ern Norway had long ICIs during deep and shallow dives,

one animal that comprised 2% of the clicks in their study

did not. While our method may not exactly capture the

variability of individual animals, it still provides an efficient

tool for big data to learn about population structure or

contribute to acoustic density estimation (i.e., click rate

estimation).

Based on the ICI-body length relationship, class A may

be associated with social groups which matched animal

sizes of adult females reported in the GOM that are on

average 1.5–2 m smaller than the global adult female

mean (Jaquet, 2006; Jochens et al., 2008). Class C may be

associated with adult males which had similar sizes to

adult males reported in the Atlantic (Miller, 2004; Santos

et al., 1999), and to those few males reported in the

GOM (the solitary animals observed from aerial surveys

of 14–15 m and one tagged whale of 12.4 m; Collum &

Fritts, 1985; Miller, 2004). Even though the ICI distribu-

tions of class B were well differentiated from the other

two classes, corresponding whale sizes to those ICI ranges

were not distinct enough to determine sexual maturity

and are similar to both large females and sub-adult males.

However, given their distinct separation from class A, the

mid-size class may represent the presence of sub-adult

male groups, which are often found in temporary aggre-

gations of smaller “bachelor” schools (Best, 1979). Obser-

vations of several bachelor males in the GOM had

average sizes of 11-m in length (Jochens et al., 2008).

Population structure in the Gulf of Mexico

The three classes were detected across all sites with varia-

tions in their temporal and spatial presence. Putative

social groups were common in the northern sites (GC

and MC), site MC being the most utilized. These sites are

close to the core areas of social units reported in the

northwestern and central GOM (Jochens et al., 2008).

Jochens et al. (2008) described that tagged whales

(n = 52) of adult females and juveniles moved irregularly

without migratory patterns in that general area. However,

we observed consistent seasonal patterns of the presumed

social groups in the summer months at DT over the

course of 7 years, and an increase in presence at MC and

GC during fall, and early spring at GC. These spatial and

temporal patterns suggest that there is a migratory pat-

tern in the GOM region. A decrease in presence of the

putative social groups at MC in the summer months
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indicates that a portion of whales moves away from the

area to another part of the GOM, perhaps to the DT

region, where strong seasonality was noted. This distinct

migration pattern could be linked to oceanographic con-

ditions associated with prey availability or breeding. How-

ever, no peak presence of the presumed adult males was

observed except in late summer at GC. Instead, adult

males were present throughout the year in low propor-

tions at all sites, making the reason for this migratory

pattern more complex. These results suggest that as in the

South Pacific and the Gulf of California, the breeding sea-

son is extensive, encompassing most months of the year

where males rove between groups of females staying only

a few hours or days with each group (Coakes, 2004;

Jaquet & Gendron, 2009; Whitehead, 1990).

Our results highlight the capability to monitor the pop-

ulation structure and dynamics at a large-scale from pas-

sive acoustic monitoring using dominant ICI

distributions as a proxy for body length. Application of

this method to the GOM provides the ability to detect

the presence of presumed adult males in the area and

new insights into spatial and seasonal variability of the

population. A major step forward would involve automat-

ing the process of classifying dominant ICI distributions

through the use of computer learning algorithms that

automatically recognize consistent patterns.
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