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ABSTRACT:
This work demonstrates the effectiveness of using humans in the loop processes for constructing large training sets

for machine learning tasks. A corpus of over 57 000 toothed whale echolocation clicks was developed by using a

permissive energy-based echolocation detector followed by a machine-assisted quality control process that exploits

contextual cues. Subsets of these data were used to train feed forward neural networks that detected over 850 000

echolocation clicks that were validated using the same quality control process. It is shown that this network architec-

ture performs well in a variety of contexts and is evaluated against a withheld data set that was collected nearly

five years apart from the development data at a location over 600 km distant. The system was capable of finding

echolocation bouts that were missed by human analysts, and the patterns of error in the classifier consist primarily of

anthropogenic sources that were not included as counter-training examples. In the absence of such events, typical

false positive rates are under ten events per hour even at low thresholds.
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I. INTRODUCTION

Toothed whales (suborder Odontoceti) use echolocation

for a variety of purposes, including navigation and foraging,

on a regular basis, making these signals common candidates

for passive acoustic monitoring. Detecting and characteriz-

ing echolocation clicks can be challenging, as toothed

whales have evolved to produce highly directional signals

that are focused into a narrow beam in front of the animal

(Au, 1993; Cranford, 2000). This results in signals that have

varying temporal and spectral characteristics, depending

upon the angle between the toothed whale’s longitudinal

axis and the receiver (Au et al., 2012a,b).

The directional variability of echolocation clicks makes

their detection more difficult. Clean on-axis echolocation

signals are easily recognized with highly characteristic

shapes. Off-axis clicks may contain species identity signals

(Soldevilla, 2008) for some species, but as the angle

increases, these clicks become more difficult to detect. At

closer ranges, off-axis clicks that have less energy fre-

quently dominate the number of echolocation clicks

received. As a consequence, the performance of most auto-

mated click detectors has been described either anecdotally

(e.g., Roch et al., 2011) by calibration to an existing click

detector, or by evaluation on small data sets (e.g., Kandia

and Stylianou, 2006). In this work, we present results of an

approximately 30 times faster-than-real-time neural

network-based click detector of over 850 000 analyst-

verified echolocation clicks without regard to the species

that produced them from different times and locations. Both

development and evaluation data have been labeled through

a semiautomated process that enables analysts to exploit

context to efficiently quality control potential echolocation

clicks.

Click detection has traditionally been treated as a signal

processing problem, such as Gillespie’s Rainbow Click

(Gillespie, 1997), that triggered on the amplitude of a signal

that had been detrended by a low-passed version of itself.

Most echolocation detectors are energy threshold detectors

(e.g., Houser et al., 1999). These detectors typically com-

pute peak to peak or root mean square received levels (RLpp

and RLRMS, respectively) and trigger detections when these

values exceed an energy threshold. Some variants trigger on

signal-to-noise ratio (SNR) instead of the absolute energy

measurement or compare energy in different bands (e.g.,

Klinck and Mellinger, 2011). It is common to bandpass or

high-pass filter the time-domain signal prior to computing

the energy (e.g., Gillespie and Caillat, 2008), as the fre-

quency band below the echolocation signal tends to be

much noisier. Decisions are commonly made based on a

threshold (e.g., Mellinger, 2001) or less frequently a hypoth-

esis test (e.g., Zimmer et al., 2008). Teager’s short-time

energy operator (Kaiser, 1990) is an alternative energy
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measurement that estimates energy over very short windows

of a few samples. It was first proposed for echolocation

detection by Kandia and Stylianou (2006) and can be

smoothed when working on high-frequency data for effec-

tive click detection (Soldevilla et al., 2008). Characteristics

of the energy detections are frequently examined to deter-

mine if the detected signal should be considered a click, fre-

quently looking at features such as duration, peak

frequency, bandwidth, envelope shape, etc. (e.g., Soldevilla,

2008; Frasier, 2015; Madhusudhana et al., 2015). Additional

methods examine spectral characteristics (Bermant et al.,
2019), spectral and temporal characteristics (Zimmer et al.,
2005a), and phase changes in the group delay of the time-

domain signal (Kandia and Stylianou, 2008). Machine learn-

ing approaches are rarely used, although there are some

examples, such as Bermant et al. (2019), who used convolu-

tional neural networks on spectrogram representations of

audio, and Luo et al. (2019), who used a deep one-

dimensional (1D) convolutional net on a modest data set

from the publicly available Mobysound archive. Machine

learning approaches are used for determining the species

that produced an echolocation click after the click has been

detected but usually rely on an energy-based method for the

detection step [e.g., Ferrari et al. (2020), which uses time

series of Teager energy detected clicks for classification to

species].

For a machine learning approach to detection, a large

corpus of training data is needed. Frasier et al. (2017) have

developed methods to accomplish this; a very permissive

peak to peak energy-based detector was created to detect

candidate echolocation clicks for the purpose of unsuper-

vised learning of click archetypes. All candidates with �115

dBpp re 1 lPa in bandpassed data (10–90 kHz) were admit-

ted by this detector and edited with a tool designed to pro-

vide contextual assistance for quality controlling

echolocation detections. DETEDIT (Solsona-Berga et al.,
2020) provides interactive displays that show detections in

relation to one another, providing information about the

inter-detection interval, which tends to cluster about the

inter-click interval, long-term spectrograms to place detec-

tions in a broader context, averaged waveforms and spectra

of groups of detections as well as the ability to compare and

contrast with easily selectable subgroups, and comparisons

of different energy and click duration measures. DETEDIT

assisted editing can quality control large numbers of detec-

tions much more efficiently than by simply examining time

series and spectrograms. This opens the door to developing

high-quality training sets that can be exploited by machine

learning.

II. METHODS

A. Data

Data were collected at two sites in the Gulf of Mexico

(Fig. 1) using calibrated high-frequency acoustic recording

package data loggers (Wiggins and Hildebrand, 2007).

These consisted of ITC 1042 hydrophones (International

Transducer Corp., Santa Barbara, CA) and custom preampli-

fier boards, sampled continuously at 200 kHz with 16 bit

sampling. We used subsets of these data (Table I) from two

deep-water locations, chosen to have a variety of quiet

times, ships, and echolocation activity. One deployment was

near the Dry Tortugas (25.539� N, 84.631� W) in fall and

winter 2014–2015. The second deployment was recorded

FIG. 1. (Color online) Dry Tortugas (DT) and Mississippi Canyon (MC)

deployment sites in the Gulf of Mexico. Bathymetry courtesy of the United

States National Center for Environmental Information (Amante and Eakins,

2009).

TABLE I. Data from two instruments deployed in the Gulf of Mexico. All times are reported in universal coordinated time (UTC). Dry Tortugas data are

used for cross-validation experiments in the development of the classifier and Mississippi Canyon data for evaluation. Number of training clicks indicates

the quantity of verified echolocation clicks contributing to cross-validation training data. As there were many other clicks in the data, “validated clicks”

details the number of correctly detected echolocation clicks that had a peak to peak received level �115 dB re 1 lPa. NA, not available. Further details on

these clicks can be found in Secs. II B and II D.

Site Depth (m) Data interval (UTC) Training clicks Validated clicks

Dry Tortugas 1189 1. 2014/10/07 00:00–2014/10/12 23:59 28 688 230 024

2. 2015/02/17 00:00–2015/02/17 23:59 1682 27 516

3. 2015/02/19 00:00–2015/02/20 15:37 14 153 147 063

4. 2015/02/20 16:32–2015/02/23 23:59 12 976 107 083

Mississippi Canyon 980 1. 2010/12/21 03:00–2010/12/24 03:00 NA 449 184

Total 57 499 853 787
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near Mississippi Canyon (28.846� N, 88.465� W) in early

winter 2010.

A wide variety of pelagic toothed whales are present in

the Gulf of Mexico (Frasier, 2015; Hildebrand et al., 2015;

Frasier et al., 2017; Hildebrand et al., 2019). These include

the delphinids: pantropical spotted (Stenella attenuata), spin-

ner (Stenella longirostris), Risso’s (Grampus griseus), striped

(Stenella coeruleoalba), rough-toothed (Steno bredanensis),
Clymene (Stenella clymene), Fraser’s (Lagenodelphis hosei)
dolphins and short-finned pilot (Globicephala macrorhyn-
chus), melon-headed (Peponocephala electra), false killer

(Pseudorca crassidens), and killer whales (Orcinus orca);

beaked whales: Blainville’s, Gervais’, and Cuvier’s

(Mesoplodon densirostris, Mesoplodon europaeus, and

Ziphius cavirostris); and sperm whales (Physeter macroce-
phalus) and pygmy (Kogia breviceps) and dwarf (Kogia
sima) sperm whales. Classification to species of the echoloca-

tion clicks is beyond the scope of this paper, but clicks in

these data are most commonly produced by delphinids and

beaked whales.

Data were stratified (Table I) into a development data-

set, used in cross-validation tests while designing the sys-

tem, and an evaluation dataset, only used once development

was complete and the model parameters and signal process-

ing chain were no longer modified. Approximately 12 days

of acoustic data were used for development and 3 days for

evaluation.

B. Signal processing

High-quality echolocation click candidates were identi-

fied using a permissive energy detector (Frasier et al., 2017)

on bandpass filtered (10–90 kHz) data that triggered when

the peak to peak received level exceeded 115 dB re 1 lPa

and the peak frequency was between 15 and 85 kHz. The

threshold was set low to identify a large number of clicks

with a potentially high false positive rate. These were qual-

ity controlled using the aforementioned detection editing

software (DETEDIT; Solsona-Berga et al., 2020) to reject false

positives with a focus on retaining high-quality echolocation

clicks. DETEDIT provides the ability to amplify analysis effort

by large margins, making the analysis of sizable numbers of

clicks feasible. The echolocation clicks identified by this

toolchain provided a training corpus for the detectors in this

work. As the focus was on identifying examples of unam-

biguous clicks, these data were only used in training and not

as a ground truth corpus other than to verify that these clicks

were a subset of the detected clicks in the test folds.

For the detection system, we similarly bandpass filtered

data between 10 and 90 kHz using a finite impulse response

equiripple filter designed to provide 1 dB of ripple in the

passband and 80 dB of attenuation in the stop bands.

Transition bands of 2 kHz occurred on either side of the

passband. In our experiments, these data were prefiltered,

and reported experiment time does not account for filtering,

which is typically quite fast. Echolocation clicks for most

odontocetes are shorter than a couple hundred ls [Table VII.2

of Au (1993)] with off-axis clicks having varying and

longer duration. The family of beaked whales have longer

echolocation clicks. Most but not all beaked whale clicks

are shorter than 500 ls (Baumann-Pickering et al., 2013).

Data were partitioned into 500 ls trial bins to select frames

that would capture most echolocation clicks and typically

provide contextual ambient noise.

In early experiments, we found that providing either the

peak to peak received level or the SNR of a bin was useful

(see Fig. 8 in Sec. IV), and in the experiments reported here,

we estimated the SNR of each trial bin by dividing it into

thirds. Under the hypothesis that most clicks are signifi-

cantly shorter than 500 ls, we split each 500 ls trial bin into

three 166.67 ls segments. Based on the duration of most

clicks and their random position within the 500 ls, it is

expected that clicks will not cover the full 500 ls of the

analysis bin, and it is almost certain that the high energy

portion of the click will not. When a click is present, it is

expected that at least one segment will be dominated by sig-

nal energy and at least one by ambient noise, which in some

cases may be mixed in with the low intensity tail of a very

long click. When clicks are absent, we expect all three seg-

ments to have less variability in intensity. We elected not to

use more than three segments, as this would increase the

chances that the intensity measurement was weakened due

to the main portion of the click being split across segments.

We estimated the SNR from the ratio (log difference) of

the strongest and weakest peak to peak received level

(RLpp) amongst the three segments. We considered using

order statistics as an alternative method of estimating the

ambient noise level, but the sort time required for 7.2� 106

analysis windows per hour would have been prohibitive.

Although our data were calibrated, we elected to use the

SNR as a feature as opposed to RLpp, as SNR can be used

when calibration information is unavailable.

C. Modeling

Training data were selected by framing the training

dataset into 500 ls non-overlapping segments starting at the

first sample of each contiguous block of data. The start of a

click provided in the ground truth data was used to select

frames that were labeled as clicks. This resulted in echoloca-

tion clicks that could fall anywhere within a 500 ls segment

and at times resulted in truncated clicks. Examples of train-

ing data without clicks were selected by using the next seg-

ment after a click except when (1) the start of the click was

more than 30% into the frame or (2) the next frame was

marked as containing a click. In both cases, a click absent

example was selected from the next non-click frame.

Detection was accomplished via a small neural network

that is publicly available on bitbucket (Roch, 2019). Custom

code was developed in PYTHON 3 using the Keras 2.2.4 and

Tensorflow 1.13.1 neural network libraries (Abadi et al.,
2015; Chollet et al., 2015). Network input consisted of

bandpassed samples associated with nonoverlapped 500 ls

trial frames (100 samples at 200 kHz) and the appended
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SNR. Ad hoc experiments showed that normalization of the

input resulted in overtraining with poor generalization. In

these ad hoc experiments, the time series was normalized by

the maximum absolute value of each trial frame and the

SNR by a high source level to restrict the SNR range to

approximately [0, 1]. Batch normalization would have been

inappropriate due to the rarity of the click present case dur-

ing classification. We concluded that intensity of the time

series was an important feature and presented unaltered

waveforms and SNR to the network.

These data were passed through two densely connected

layers of 101 units with rectified linear unit activation func-

tions (Nair and Hinton, 2010). Each dense layer was fol-

lowed by a dropout layer (Srivastava et al., 2014), which

provided regularization by dropping dense layer nodes with

a 20% probability during training. This was followed by a

two-node output layer that used a softmax activation func-

tion to provide a smooth estimate of the arg max function.

Some versions of the network not reported here used a

1D convolutional layer [in the same vein as the work of Luo

et al. (2019)], but our decision to append the SNR estimate

to the time series input prevented our including that in the

final network design without resorting to a parallel network

path for the SNR measurement. Parameter estimation used

the Adam optimizer (Kingma and Ba, 2015) with Keras

defaults and a categorical cross-entropy loss metric.

Optimization was stopped at 75 epochs, and there was no

attempt to use early stopping or further explore the parame-

ter space, as the loss function demonstrated reasonable

behavior and cross-validation performance was acceptable.

For each candidate detection frame where the network

estimated the probability that a click was present to be �0.5,

we identified the timestamp of the maximum magnitude

sample within the click. For additional processing described

in Sec. II D, we retained a time series consisting of 200 ls

before and after the peak amplitude, even if this resulted in

samples being retained from a prior or subsequent trial bin.

D. Experiment design

All experiments in which parameters were selected

were performed on the Dry Tortugas development data. We

used a threefold cross-validation, ensuring that all examples

within a contiguous set of data (Table I) were placed either

in training or test datasets. This resulted in uneven experi-

ment folds (Table II) but allowed us to examine whether

there were large differences in performance between data

that were temporally close to one another vs months apart.

As there were four time-contiguous regions in the develop-

ment data, some folds occasionally had three training

regions, while others had two. Fold 0 primarily tested data

from October 2014 with 1 day of February 2015 data and

was trained entirely on 2015 data. Folds 1 and 2 contained

both October and February training data and were tested on

February data, resulting in better matched conditions. We do

not report variations in experimental parameters, as we

found that many networks were capable of learning to pre-

dict echolocation clicks well and that small variations in

parameters did not tend to result in large variances in perfor-

mance. Also, the machine-assisted quality control process

described below is time intensive, and it would not be feasi-

ble to repeat it for a large number of network architectures.

As the training data were designed to provide good

quality exemplars, their timing information was an incom-

plete ground truth label set for the detection task. Manual

analysis on a large scale was infeasible, and we adopted a

strategy of manually verifying that the detector did not miss

acoustic encounters and using the DETEDIT toolchain as

described below to validate detections.

We used calibration data managed by the Tethys meta-

data system that allowed us to automatically retrieve cali-

bration information for recordings (Roch et al., 2016) and

limited detections to those that had prediction probabilities

�0.5 and received levels �112 dB re 1 lPa, 3 dB less than

the original threshold. During the DETEDIT analysis, we were

conservative in what we accepted as echolocation clicks,

using the displays in DETEDIT to verify temporal and spectral

properties as well as frequently returning to the time series

data to verify fine-scale temporal context. We do not believe

that our labels are error free, but that they are a reasonable

approximation of the truth with respect to the clicks that

were reported by our detector. They do not represent all

echolocation clicks, as there are many more apparent clicks

that were not detected by the energy- or neural network-

based detectors. While we audited all detections, we tried to

be especially careful with small groups of echolocation

clicks detected at times outside of regions suggested by our

high-quality training clicks. In general, we only accepted

detections if we could see characteristic temporal or spectral

patterns that matched well-described species, looking for

regular inter-click intervals, appropriate spectral shape, and

time series that roughly matched descriptions in the litera-

ture (e.g., Zimmer et al., 2005a; Zimmer et al., 2005b;

Johnson et al., 2006; Soldevilla et al., 2008; Baumann-

Pickering et al., 2013; Fais et al., 2015; Frasier et al., 2017).

Isolated clicks were rejected unless we could see clear

toothed whale activity within several minutes of the isolated

detection.

To measure performance as a function of precision and

recall, we set a received level threshold of 115 dB re 1 lPa

(see Sec. IV for rationale). Precision is the rate at which

detections are correct, and recall is the rate at which

expected ground truth clicks are retrieved. Precision and

recall are a better metric for highly skewed classes (Davis

TABLE II. Dry Tortugas data used in threefold cross-validation experi-

ment. Each fold uses the data listed for testing, with the remaining folds
being used for training data.

Fold Data interval (UTC)

Training clicks

from other folds

0 1. 2014/10/07 00:00–2014/10/12 23:59 27 129

2. 2015/02/17 00:00–2015/02/17 23:59

1 3. 2015/02/19 00:00–2015/02/20 15:37 41 346

2 4. 2015/02/20 16:32–2015/02/23 23:59 44 523
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and Goadrich, 2006) than metrics such as receiver operating

characteristic (Fawcett, 2006) or detection error trade-off

curves (Martin et al., 1997). Detections were considered to

be valid if the timestamp associated with the peak amplitude

was within 500 ls of the ground truth timestamp.

In addition, we computed the number of false positives

per hour as a function of recall. For any given threshold

resulting in a specific recall, we divided the number of false

positives at that threshold by the number of trial bins of test

data. As there are 7.2� 106 500 ls trials per hour, even a

high number of false positives can lead to very low false

positive rates, e.g., 10 000 false positives per hour leads to a

false positive rate of 0.0014. This metric provides better

insight into the “nuisance” factor of false alarms; see Shiu

et al. (2020) for a discussion.

III. RESULTS

In general, the detector was able to detect most of the

labeled echolocation clicks at or above 115 dB re 1 lPa

even at moderately conservative thresholds (Fig. 2). Except

at very high thresholds, precision was always above 0.8.

Overall false positive per hour rates never exceeded more

than a few hundred false positives per hour when averaged

across the data set, although specific regions of data had

high false positive rates.

Folds 1 and 2 had lower precision than fold 0 even

though most of the fold 0 test data were recorded 4 months

earlier than the training data used in the model. In contrast,

folds 1 and 2 had more training data that were recorded in

close temporal proximity to their test data, resulting in better

matched conditions across the train and test barrier. We note

that changing the threshold has a large impact on recall but

a weaker impact on precision, suggesting that one should

not interpret prediction scores as a confidence metric.

Neural network prediction scores are well known to not be

well calibrated, a subject of recent investigation by

Thulasidasan et al. (2019). The lower precision in folds 1

and 2 can be attributed to three sources of error: ship noise,

echosounders, and instrument noise. These patterns are eas-

ily observed when unmatched detections with probability

�0.5 are observed in a histogram with 15 min bins (Fig. 3).

The histogram also shows the number of echolocation clicks

in the ground truth data, demonstrating that the number of

false positives is not a function of the echolocation click

density. On February 20, 2015, a ship passed near the instru-

ment, producing cavitation noise that had energy across

the 80 kHz of analysis bandwidth. This produced high

FIG. 2. (Color online) Precision and false positive per hour (log scale) over recall curves on a threefold experiment on the Dry Tortugas development data.

Only detections with peak to peak received levels �115 dB re 1 lPa were evaluated. Numbers show operating thresholds at various recall points.

FIG. 3. (Color online) Fifteen min log-scale counts of clicks available for detection (squares) and false positive predictions (x’s, probability �0.5) over time

across the Dry Tortugas data. Top row, October 2014 data; bottom row, February 2015 data; gray shading, periods of no analysis effort. Strong peaks in the

2015 false positive counts are attributable to anthropogenic sources; see text for details.
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confidence predictions of clicks and is responsible for the

drop in precision in the fold 1 curve. As the threshold is

raised, more and more of the predictions are dominated by

the cavitation noise, lowering the precision. What is pre-

sumed to be a shipboard echosounder was present during

parts of February 22 and 23. Both types of events produced

large numbers of false positives. The presumed echosounder

consisted of a short impulse followed by a frequency-

modulated chirp that repeated approximately every 0.7 s.

We assume that this was vessel mounted as the intensity var-

ied, and there were other times that the echosounder was

present in the data without causing significant interference.

Both of these types of events caused spikes in the false posi-

tive rates. The final trend in error in folds 1 and 2 is from

instrument self-noise. Toward the end of the disk write that

occurred every 75 s, a click-like noise was observed, and

this was sometimes mistakenly detected as a click. This was

not as evident in fold 0, where most of the data were

recorded on a different magnetic disk within the same

instrument. Prediction probabilities for instrument noise

events tended to be very low, with predicted click probabili-

ties generally less than 0.55, suggesting that self-noise false

positives were only influential when operating at low

thresholds.

Apart from noisy conditions, which did not occur in the

6 days of fold 0, all models behaved reasonably similarly.

We therefore selected the model associated with fold 0 to

apply to evaluation data. This created an unmatched condi-

tion experiment from two sites that were separated by

621 km (335 nm) and nearly 5 years between recording

dates.

Performance on these data (Fig. 4) was reasonably con-

sistent in behavior with what was observed in the

development data. Overall, the detector provides good per-

formance at retrieving clicks with high precision except in

areas with ship passages (one on December 21 and two on

December 22). The ship passages contributed to higher false

positive per hour rates at low thresholds and precisions that

were between those of fold 0 and the other folds in the

development data.

In general, the network predictor was able to recover

the echolocation bouts that would characteristically be

found by analysts as well as additional bouts that were fre-

quently impossible to see in common visualization tools,

such as long-term spectral averages (Fig. 5).

Examples of detected clicks both within bouts and in

relative isolation (Fig. 6) illustrate the high precision of the

system in the absence of infrequently occurring anthropo-

genic signals that caused the spikes in false positive rate.

Missed clicks in these examples fall under the 115 dB re

1 lPa threshold.

IV. DISCUSSION

Application of machine learning-based click detectors

resulted in the recovery of large numbers of validated echo-

location clicks with low false positive per hour rates. Use of

the machine-assisted analysis of Solsona-Berga et al. (2020)

allowed the construction of large labeled datasets. The sys-

tem showed high precision and recall except in areas with

confounding anthropogenic signals. The training data did

not provide any examples of the confounding signals, and it

may be possible to reduce this using hard negative mining

(Sung and Poggio, 1995), where difficult counterexamples

are added to the training data. We also see ample opportu-

nity for using contextual cues and are pursuing this direction

in other experiments.

FIG. 4. (Color online) Evaluation of classifier developed from Dry Tortugas data on Mississippi Canyon data recorded 621 km away and 5 years earlier.

Precision and false positive per hour over recall curves are presented in the top panel, and 15-min log-scale counts of clicks available for detection (squares)

and false positives (x’s) are presented in the lower panel.
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The detector had the ability to detect echolocation

clicks with lower received levels than the echolocation

clicks that were used to train the network. However, we

observed that below 115 dB re 1 lPa, the number of

detections was not increasing as quickly (Fig. 7). Acoustic

modeling informs us that the number of detections should

rise exponentially with increasing distance from the sensor

(Frasier et al., 2016). In the case of a fixed hydrophone,

each bin in Fig. 7 corresponds to an annulus whose area

grows the farther it is from the hydrophone, with lower

intensity annuli tending to contain detections from animals

FIG. 5. (Color online) Long-term spectral average (Wiggins and

Hildebrand, 2007) of 2 h of Mississippi Canyon evaluation data showing

regions with predicted clicks of >0.5 probability. Spectral average was

over 5 s windows of spectra, and detected clicks are denoted by white points

plotted at 80 kHz. Lines are drawn across regions of clicks that are sepa-

rated by <1 min. There were no false positives in this region, and many

clicks are not visible in this long-term spectral average, a common tool

used by analysts to identify periods of activity in long-term recordings.

FIG. 6. (Color online) Examples of time-domain detections in the evaluation data. Upper panel shows 0.25 s of data taken from an encounter with dense

echolocation clicks. Lower panel shows 10 s of data corresponding to an isolated group of detections in the long-term spectrogram of Fig. 6. Detections are

marked with asterisks and labeled with the probability of echolocation click followed by the received level in dB re 1 lPa. Unlabeled echolocation clicks in

these data fall beneath the 115 dB re 1 lPa threshold and were not expected to be detected.

FIG. 7. (Color online) Histogram of received level intensity vs count of val-

idated echolocation clicks in fold 1 of the development data. The regression

line shows an ordinary least squares linear fit of log10 counts (R ¼ –0.978).

Other folds showed similar patterns with correlation coefficients of �0.973

and �0.983.
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that are farther away. While we may expect some variations

of this due to the wide body of evidence that source levels

vary both by species and context (e.g., Au et al., 1985; Møhl

et al., 2003; Wahlberg et al., 2011), propagation conditions

(Helble et al., 2013), and directionality of echolocation

clicks (Au, 1993, p. 44), detection counts generally showed

an inverse exponential relationship with intensity.

Consequently, we assumed that the detector was beginning

to miss many echolocation clicks below 115 dB re 1 lPa

and only considered detections that met this received level

criterion.

The addition of SNR to the time series feature vector

provided valuable information for separating clicks from

non-clicks, but the SNR by itself is insufficient to describe

the results obtained, and the network attended to the features

of the time series as well. The SNR distribution was time

varying and had heavy tails (Fig. 8).

The recall in these experiments merits discussion. The

recall is defined with respect to varying thresholds of a set

of detections that have probabilities �0.5, meeting a

received level criterion. In a traditional ground truth label

set, we would have found every echolocation click meeting

selection criteria in the 2 weeks of development and evalua-

tion data. As described in Sec. II, we verified that the detec-

tor did not miss any major encounters and that detectors

could retrieve all of the echolocation clicks marked as train-

ing from the initial label set, and we verified each detection

produced by the detector. This leaves the opportunity for

missed detections that would lower the recall if they had

been recorded. As the DETEDIT process focuses on verifying

detections, there is the possibility of unaccounted for clicks

that meet our selection criteria. However, the focus on man-

ual inspection of time series data along with the DETEDIT pro-

cess suggests that such echolocation clicks would not play a

significant role in lowering the recall. The vast majority

of echolocation clicks that were not detected are due to

not meeting the received level threshold (e.g., upper panel,

Fig. 6). Characterizing all possible echolocation clicks is

difficult; there are many times that analysts are unable to

determine whether weak or isolated signals are echolocation

clicks. Even strong clicks can be difficult to identify with

certainty when they are in isolation.

These issues are particularly important for density esti-

mation studies that rely on being able to adequately charac-

terize the detection function. Strategies used for these

studies are to limit the detection range by thresholding

received level (e.g., Hildebrand et al., 2015) or to use a trig-

ger based on detections of groups of clicks that provide a

cue, such as indicating the start of a dive for beaked whales

(e.g., Marques et al., 2009). For this type of work, improved

click detectors may not be necessary, although they will

increase the monitoring area, which is advantageous, espe-

cially for studies with poor spatial coverage. The detection

of less obvious echolocation clicks with lower intensity or

higher ambient noise may have stronger applications in

tracking studies where the strong directivity index of the

echolocation click (Au et al., 1986) contributes to the diffi-

culty of solving the association problem between clicks

received on different hydrophones. It also increases the

number of echolocation examples available for other tasks,

such as classification to species, group, etc. In general, the

classifier presented here not only improved the number of

clicks found, but also discovered entire groups of echoloca-

tion clicks that were not apparent in long-term spectrograms

or reported by the energy-based detector. Finally, being able

to reliably detect calls is useful for understanding long-term

trends and behavior, such as diel and seasonal patterns. An

important component of this is detecting presence, and high

false positive rates make this difficult. When operating on

data outside of the potentially addressable problematic con-

ditions outlined above (e.g., high ship noise, echosounders),

our detector typically has very low false positive rates that

can be described in the tens of clicks per hour, simplifying

the presence/absence task.

While we have shown that this method can generalize

to other sites and times, it should be noted that calibration

data are not used in the data processed by this time-domain

detector (apart from pruning low intensity trial bins during

FIG. 8. (Color online) Distributions of

SNRs of click present and click absent

500 ls trial bins that exceed 115 dB re

1 lPa RLpp. The upper panel contains

data on a day without apparent ship pas-

sages (02/19/2015). The lower panel

contains data from a day with ship pas-

sages (02/22/2015). Classification based

only on SNR would result in an equal

error rate of 6.5% and 15.1%,

respectively.
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post-processing) and that instruments with significantly dif-

ferent characteristics may require retraining. We have

shown that the system can be trained using data collected

from semiautomated toolchains and that varying the amount

of training data between 27 000 and 40 000 clicks does not

appear to have a significant impact on classification accu-

racy. When applying this system to other locations, we sus-

pect that the largest problem will be difficult classification

situations for specific environments, such as snapping

shrimp (genus Alpheus and Synalpheus) in shallow water

deployments. Whether these can be addressed with temporal

context and hard negative mining remains to be seen.

Additional issues are the presence of novel species as well

as differences in sample rate, the latter of which could

potentially be addressed by resampling.

The network used in this study is relatively small and

has approximately 20 000 parameters, making it a very mod-

est sized network by today’s standards. Execution is fast. On

data that were previously bandpass filtered, the system oper-

ated at approximately 30 times real time on an Intel Core

i7–9700K processor with an NVIDIA Geforce RTX 2080Ti

graphics processing unit. Consequently, we believe that this

algorithm could be used in real-time studies and is suitable

for processing large archival data sets.

V. CONCLUSION

We have developed a time-domain based click detector

that performs analysis without the use of a Fourier trans-

form. It provides higher resolution than most spectral based

methods, finding the maximal amplitude part of the click to

the nearest sample. It operates on 500 ls samples at nearly

30 times real time and produces false positive rates of 1–10

false positives per hour in areas without nearby ships or

echosounders, these latter situations being a focus of future

research. The use of machine learning as opposed to more

commonly used thresholding mechanisms allows the system

to attend to the shape of the signal, and the development of

recent annotation tools has enabled the generation of large

training sets that provide many examples of the variations in

echolocation clicks that vary both within and across species.

This system has been shown to be robust across both space

and time, demonstrating the ability to recognize echoloca-

tion clicks that were recorded nearly five years prior to and

over 600 km distant from the site that provided training data.
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