
Research article / Article de recherche

COMPARISON OF MACHINE LEARNING TECHNIQUES FOR THE CLASSIFICATION OF

ECHOLOCATION CLICKS FROM THREE SPECIES OF ODONTOCETES

Marie A. Roehl, Melissa S. Soldevilla1
, Rhonda Hoenigmanl

, Sean M. Wiggins1
, and John A. HiIdebrand1

1 Dept. of Computer Science, San Diego State University, 5500 Campanile Dr, San Diego, California, 92182-7720 USA
2 Scripps Institution of Oceanography, The University of California at San Diego, La Jolla, California 92093-0205 USA

ABSTRACT
A species classifier is presented which decides whether or not short groups of clicks are produced by one or
more individuals from the following species: Blainville's beaked whales, short-finned pilot whales, and
Risso's dolphins. The system locates individual clicks using the Teager energy operator and then
constructs feature vectors for these clicks using cepstral analysis. Two different types of detectors confirm
or reject the presence of each species. Gaussian mixture models (GMMs) are used to model time series
independent characteristics of the species feature vector distributions. Support vector machines (SYMs)
are used to model the boundaries between each species' feature distribution and that of other species.
Detection error tradeoff curves for all three species are shown with the following equal error rates:
Blainville's beaked whales (GMM. 3.32%/SVM 5.54%), pilot whales (GMM 16.18%/SVM 15.00%), and
Risso's dolphins (GMM 0.03%/SVM 0.70%). .

SOMMAIRE
Ce travail concerne la creation d'un systeme pour identifier trois especes d'odontocetes par les dics
d'echolocation: la baleine a bec de Blainville, la baleine pilote, et Ie dauphin de Risso. Les dics sont
identifies par I'operateur d'energie Teager-Kaiser, et les vecteurs cepstraux sont construits. Dans un travail
de detection, on compare les resultats obtenus avec deux modeles differents: Ie modele de melange
gaussiens (MMG) et la machine avecteurs de support (MVS). Les resultats de la detection sont exprimes
par les courbes de DET, « DeteCtion Error Tradeoff»). Le point sur les courbes de DET ou les probabilites
de fausses alarmes et manques de detection sont egales est comme suit: la baleinea bec de BIainville
(MMG 3,32%IMVS 5,54%), la baleille pilote (MMG 16,18%IMVS 15,00%) et Ie dauphin de Risso (MMG
0,03%/MVS 0,70%).

1. INTRODUCTION

The use of acoustic infonnation for study of marine
mammals is a promising method that is complimentary to
visual observations. One use of acoustics is to determine
the presence of species of interest, the so called detection
problem. In this work, we describe a detection system
implemented for the 3rd International Workshop on the
Detection and Classification of Marine Mammals Using
Passive Acoustics, a conference which brought together
multiple groups to work on a common data set containing
calls from Blainville's beaked whales (Mesoplodon
densirostris), short-fInned pilot whales (Globicephala
macrorhynchus) and Risso's dolphins (Grampus griseus).
Low error-rate detections were achieved for all three species
using both Gaussian mixture models (GMMs) and support
vect~)f machine algorithms.

2. BACKGROUND

Building an effective machine learning solution is a
combination of determining the right set of features to use
and an appropriate classifier. Features should be chosen
such that they capture the essence of the problem, a
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statement that is easy to make and frequently difficult to
achieve. Once the feature set is determined, a method of
detection or classification must be selected that enables the
system to effectively exploit characteristics of the feature
set.

2.1 Features

BioacOllsticians working on detection and identification
problems for odontocetes have traditionally concentrated on
extractipg features from whistles. Typically, systems
identify a variety of measurements of the whistle such as
slope, inflection points, frequency, etc. either manually or
automatically (e.g. [1,2]). There has been little effort in the
examination of echolocation clicks or burst pulses as
providing infonnation that can be used to determine species,
and until recently, band limitations of most field recording
systems prevented selious consideration of clicks as features
for species recognition tasks.

We have noted unique spectral patterns in echolocation
clicks of some species of delphinids, notably Pacific white
sided dolphins (Lagenorhynchus obliquidens) and Risso's
dolphins [3]. Earlier work [4] on an automatic species
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identification system showed good results on a species
identification problem where whistles, burst-pulses, and
clicks were processed in an identical manner. These results
have led us to investigate the suitability of clicks as
indicators of species. We see this as being a complementary
task to whistle-based systems rather than a competing one.
Both methods have advantages: whistles propagate farther
than clicks [2], but the short duration of clicks makes call
separation easier in large population groups, and some
species are not known to whistle [5]. In addition, whistle
production may be linked to behavioral state and we have
observed species which are known to whistle producing
only clicks.

A range of techniques have been used to characterize
odontocete clicks [6]. In general, signal samples are
squared and heuristics or distributional metries are lIsed to
determine the beginning and ending energy. As described
later, we use a technique based upon the Teager energy
operator which is similar to tbat proposed by Kandia and
Sylianou [7]. Once the click is identified, typical features
include the peak frequency, 3 dB bandwidth, inter-click
intervals, etc. [8]. These metrics are a very rough
approximation of the spectral shape. Most of the work on
echolocation has focused on on-axis clicks, but it is well
known that off-axis clicks lack the coherence of on-axis
ones and have significantly different spectra [9-11]. In
addition to inter-species differences, click production is
known to vary even in the same individual in source level,
peak frequency, and bandwidth, depending upon factors
such as activity and environment [8, 10]. The variation in
click attributes suggests that an effective species detector
needs to be able to learn a variety of click types associated
with each given target species.

2.2 Classifiers and detectors

A recent discussion on applications of machine learning
techniques to bioacoustics can be found in [4] and includes
linear discriminant analysis, neural networks, dynamic time
warping, adaptive resonance theory networks, classification
and regression trees, bidden Markov models, self-organiZing
maps, and Gaussian mixture models (GMMs). In this study,
we compare the perlormance of GMMs with that of support
vector machines (SVMs). GMMs are well.known for their
ability to model arbitrary distributions whereas SVMs
attempt to model the boundaries between distributions.
SVMs have gained in popularity throughout the 19908 in the
machine learning community and to our knowledge have
only recently been considered in the bioacoustics
community [12; 13].

3. METHODS

3.1 Click production of target species

The click characteristics of the three species vary greatly.
Digital acoustic recording tag (DTAG) recordings of free
ranging Blainville's beaked whales have shown that they
oroduce two tvoes of click trains rI01. One tvoe has been
Canadian Acoustics / Acoustique canadienne

observed in prey approach, characterized by a frequency
modulated (FM) sweep with inter-click intervals (lCIs) of
100 IDS and a median centroid frequency of 38.3 kHz, RMS
bandwidth and duration of 6.9 kHz and 271 I!S, respectively.
These swept clicks are presumed to be related to foraging
activities. As the whales close in on their prey, they have
been observed to switch to buzz clicks which have different
spectral characteristics from the FM sweep clicks. The buzz
clicks have greatly diminished ICls, a higher median
frequency of 51.3 kHz with wider RMS bandwidth' (14.6
kHz) and an RMS duration which is about half of the FM
sweep clicks (29 )..ls).

Analysis of clicks recorded on a ship-deployed hydrophone
array [9] show that free-ranging Risso's dolphins produce
clicks with lCIs generally between 40-200 ms with short
click trains having ICIs of20 IDS. Centroid frequency of on
axis clicks is 75 kHz (out of band for the conference data
set) with an RMS bandwidth of 25 kHz and duration of 30
50 lls. Presumed off-axis clicks from a different population
of Risso's dolphins have been shown to have a spectral peak
and notch structure [3].

Echolocation clicks of short-finned pilot whales recorded in
the Gomera and Canary Islands have been reported [14] to
produce clicks with RMS bandwidths of 27 kHz and
durations of 8.4 )..ls. The mean centroid frequency was 68
kHz (also out of band for the conference data).

3.2 Click detection and feature extraction

Clicks are detected using a two-stage search. In the first
stage, spectra are created for 20 IllS frames with a 10 ms
frame advance that have been windowed using a Hann
window. Noise is estimated on a per frequency bin basis
over a 5 s average. A frame is said to be a click candidate
when frequency bins covering at least 5 kHz exceed the
noise floor by 12 dB. After obtaining a set of click
candidates, a second pass locates clicks with greater
precision in a high pass filtered (10 kHz) signaL

The Teager energy operator [15] is an estimate of the
instantaneous energy of a signal and bas been shown to be
an effective method for detecting echolocation clicks [7]. It
is based upon a model of the energy needed to drive a
spring-mass oscillator, and measures energy with high
resolution:

V/d(x[n]) = x2[n] - x[n -l]x[n +1] . (1)

A noise floor is set at the 40 lh percentile of the Teager
energy measurements across the interval detected in the
previous step. Locations where the Teager energy exceeds
the noise floor by a factor of 50 are asswned to be interior to
the click and the click onset is found by searching for the
point at which the energy dips below 1.5 times the noise
floor.

Once the click has been located, cepstral features [16] are
computed for a 1200 I!S segment of the signal starting with
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(2)

the click onset. The log magnitude of the discrete Fourier
transfonn of the segment is computed after windowing with
a Haon window. The discrete cosine transform of this result
is the cepstrum. We also form an estimate of the cepstral
representation of noise in the vicinity of the click and
subtract the average noise. This is known as cepstral means
subtraction [17] and is a method which normalizes for
convolutional noise (e.g. mismatched hydrophones or
filtering). Once cepstral features have been generated, they
are grouped such that the first click and the last click are
separated by no more than 2 s and no click is more than 1 s
apart from the previous click,

3.3 Detection

Gaussian mixture models (GMMs) and support vector
machines (SVMs) were both used. in this study. Due to
'space constraints, only an outline of each technique is
presented., but references to the literature where complete
details can be found are provided. For both methods, our
experiments are designed. to answer the question: Given
that we are looking for target species X, was a specific set of
clicks produced by this species? This contrasts with an
identification task where one attempts to determine which
species produced the set of clicks.

Gaussian mixture models

For GMM classifiers, one GMM was trained for each of the
three species. GMMs are frequently used to approximate
arbitrary distributions as a linear combination of parametric
distributions. A set of N normal distributions with separate
means Iti and diagonal covariance matrices I:; are scaled by a
weight factor Ci such that the sum of their integral across the
entire feature space is 1. The likelihood of the cepstral

feature vector xwhich represents a click can be computed

for model M=[{c; } , LUi} ,{L:;} where 1~ i ~ NJ by:

N -(x-iiin:;l (X-iii)

Pr(i IM) = L ;i .L e 2

i=1 (2n) 2 I L: i 1
2

The number of mixtl.lreS is typically chosen empirically.
Model estimation (training) cannot be accomplished by a
straightforward application of the maximum likelihood
(ML) principle as the relative contribution Ci of each
mixture to the total likelihood is unknown. To address this,
the GM1v1 is trained incrementally. A single mixture GMM
is estimated from the sample mean and variance. This
mixture is then split into two mixtures by dividing the
weight in two and fonning new mixtures where the means
have been slightly perturbed by a small vector ±o, The
resulting model is then refined by an application of the EM
algorithm [18] where the current estimate is used to
determine the expected values of the mixture weights. With
the missing weights estimated., the ML estimator can be
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found. This process is executed several times and the model
is split again. Once the desired number of mixtures is
reached, iteration is performed until a convergence
threshold is reached. Convergence is guaranteed and is
typically fast (5-15 iterations).

After the models have been trained, the likelihood of click
groups are computed and a log likelihood ratio test is used
to decide whether each group belongs to each species (19].
We make the simplifying assumption that clicks in a group
are independent and compute the group likelihood as the
product of the individual click likelihoods normalized for
group duration by using tile geometric mean. These
operations are done in the log domain to prevent machine
underflow. Decisions to accept or reject the hypothesis that
a click group was produced by the species in question are
based upon a log likelihood ratio test. Due to the small
number of competing classes, we set the alternative class
likelihood to be the likelihood of the highest competitor
model as opposed to a background model. The system is
implemented using Cambridge University's hidden Markov
toolkit (HTK) [20] along with a custom set of programs
written in Python and MatlabTM.

Support Vector Machines

Support vector machines do not model the distribution of
classes, but rather their separation [21]. SVMs find the
separating hyperplane that minimizes the risk of a classifier
under a 0-1 loss rule. LetfoO be a function parameterized

by 6l that maps examples to negative and positive class

labels Y E {-I, l}. As we almost never have access to the

actual risk, we can attempt to minimize the empirical risk:

_ 1 N 1 _
R emp C6l) = N L '2 1Yi - feCx i ) I· (3)

1=1

Thus, optimizing the parameter vector eis likely to result in
lowering the misclassification rate. For a given family of
classifiers, it can be shown that there exists an upper bound
on the actual risk wi th any desired level of certainty [21,
22]. For SVMs, each f- [_ ]' (-) specifies a hyperplane

8= w,b

WX +b =0 which separates the two classes of linearly
separable training data (nonseparable data is discussed
later). The hyperplane normal vector wand bias b are

scaled such that M'X + b = ±1 holds for the closest positive
and negative training example, resulting in an empirical risk
of O. The separating line for a two dimensional synthetic
data set and the parallel lines that occur at M'X +b =±l are
shown in Figure 1. As points on the hyperplane
satisfy wi +b =0 , the distance between the closest point of

each class and the hyperplane is )i,,~ .
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Figure 1 - Separating hyperplane (solid line) between squares
and circles that maximizes the distance between the closest

vectors (margin). Support vectors lying on wi +h = ±l are
outlined.

Figure 2 - Squares and circles that are not linearly separable.
Hyperplane with dot product kernel (left) versus Gaussian

kernel (right).

complicated function of the support vectors which we omit.
We decide the class of test vector I by examining the sign

ofwI +b, or equivalently in the dual representation:

Consequently, the separation between the two closest points
and the hyperplane is }f"1I' This quantity is referred to as

the margin and we can learn the appropriate parameters for
the SVM by maximizing the margin subject to the
constraints of the closest vectors. This is done by

minimizing Ilwll or equivalently IIwl12 subject to constraints:

This is a constrained convex optimization problem, which
can be solved by optimizing the dual of the Lagrange
multiplier representation [2]]. The Lagrange multipliers
alSi9{ will only be nonzero for training examples which

satisfy equality in (4). These vectors are called support
vectors. The SVM normal vector w can be constructed

from the dual solution: w= L aiy/xi , and b is a more

When multiple test vectors are classified as a group. the
decision to accept a hypothesis that the clicks are produced
by a specific species is based upon the threshold of a
statistic of the group's click scores. We use as our statistic
the percentage of clicks for which f o(-) ~ O. The system is

implemented using the Torch machine learning library [23]
and custom C++, Matlab™, and Python code.

Typically, the normal vector wis not actually constructed,
but left as a linear combination of the Lagrange multipliers
a i and their associated training data Xi and class Yi :

wi = La;Yix;,f . A second key element to address

nonlinearly separable data is to use a kernel functionKC')

to transfonn the data into a different space where linear
separation is possible. The examples that we have seen so
far use what is known as the dot product

kernel K(.x,t) = X'I . While numerous kernels have been

proposed [22], we will restrict ourselves to nonlinear
Gaussian kernels

-llx-iJ
K('X,f) =e--:;;;r- (7)

where (J is a tunable parameter. Figure 2 shows an example
of separating hyperplanes for nonlinearly separable data.

(4)

(5)
LaiYixl +b < 0 .

i

fo(t) = { 1
-1

(6)

The above discussion is for sets that are linearly separable,
and can be extended in two ways. The first is to introduce a
slack variable ~i ~ 0 for each training vector which penuits

support vectors to be on the wrong side of the hyperplane:

W-(i +b ~ 1- ~i Yi = 1

W-(i + b $ -1 + Si y, =-1.

When minimizing the risk, a cost factor C is introduced
which scales the swu of the slack variables, with high values
of C resulting in higher penalties for crossing the margin.
Like the linearly separable case, this can also be solved as a
constrained optimization problem. The complexity of
solving these problems results in selecting strategies such as
the sequential minimal optimization algorithm [22] to
provide solutions within a reasonable time frame.

For both types of classifiers, we used all available training
data for the fmal classifier. During development, training
data was jackknifed by recording date so that the system
could be evaluated with test data separate from the
evaluation test reported in the results section.

3.4 Evaluating results

Results are plotted using the detection error tradeoff (DET)
curve [24]. DET curves are similar to receiver operator
curves (ROC) except that in the fanner error rate nonnal
deviates are plotted on both axes, whereas in the latter the
correct detection and false alarm probabilities are plotted.
When the false alarm and missed detection probabilities are
normally distributed, the result is a straight line in DET
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Figure 3 - Detection error tradeoff curves for GMM detector
. on evaluation data.

space. DET plots are more effective at highlighting
differences between similar systems than ROC curves.

4. RESULTS

Mean normalized cepstral features were extracted for all
files of the dataset. Tests on the jackknifed training data
were used to tune the parameters of each classifier. For the
GM:Ms, 2,4,8, 16,32, and 64 mixture models were created,
with 16 mixture models outperforming other parameters.
For SVMs, a grid search on the penalty and standard
deviation was perfonned (C E {100, 200, ... , 600},
0- E {100, 200, ... , lOOO}). Equal error rates (EERs), the
point at which a decision threshold results in the same
percentage of false alarms (false positives) and missed
detections are summarized in Table 1. Tests on the last
day's training data perfonned poorly for SVMs, leading to
the high overall EERs.

The best performing models from the development data
were then used to classify click groups from the nine
evaluation flies whose content is summarized in Table 2.
The evaluation dataset contained calls from the three
aforementioned species plus an additional two: Atlantic
spotted dolphins (Stenella frontalis) and sperm whales
(Physeter macrocephalus).

EER% GMM SVM
Blainville's 2.8 21.4
pilot 3.7 21.1
Risso's 2.3 14.7

Table 1- Equal error rates for jackknifed development data
with 16 mixture GMMs and C = 100,0- =200 SVMs for the.

best parameter set across all jackknife splits.
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Figure 4 - Detection error tradeoff curves for SVM
detector on evaluation data.

File 1 had mixed BIainville's and pilot whale clicks. We
manually established "correct" labels for each click group in
the file based upon known characteristics of the species and
our obserVations of the calls in the development data. A
total of 2040 click groups with a mean of 10.1 clicks per
group (min=l, max=103, std dev.=7.2) were classified.
DET curves and EERs for all three target species are
produced for the GMM and SVM detectors in Figures 3 and
4. The curves show the tradeoff between false alarms and
missed detections for various detection thresholds. Note
that the thresholds themselves would add a third dimension
to the plot and are not reported.

5. DISCUSSION

For both classifiers, the detector performance on Risso's
dolphins appears to be nearly perfect in the evaluation data,
but the Risso's calls in the conference data were filtered,
leading us to suspect that part of the accuracy is due to
environment detection as opposed to species detection. It is
also worth noting that much of the enor on the SVM
development set for Risso's dolphins comes from one
particular split where the data from August 19th 2006 was
used as test data. This was the one day for which the
Risso's dolphin data contained clicks with spectra above 40
kHz. The GMM classifier dealt better with this situation,
recognizing other similarities in the data. The pilot whale

Species producing calls in the test files
1 Blainville's + some 4 spotted 7 Risso's

pilot
2 B1ainville's 5 Risso's 8 oilot
3 spotted 6 BIainville's 9 sperm

Table 2 - Contents of evaluation fIles 1-9.
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detectors had the worst performance on the evaluation data,
with the majority of errors being in the 661 out-of-set
(species not seen in training) click groups from the spotted
dolphins and sperm whales. Using the EER threshold,
42.97% (GMM) and 39.79% (SVM) of the out-of-set click
groups were incorrectly identified as pilot whales, indicating
that rejection of out-of-set clicks is an area for future work.

For any out-of-set test, the impostor click will most closely
fit one of the three distributions, making its GMM
likelihood higher than the others. The likelihood ratio
between the two highest ranked models may be large, and it
is not unexpected that a greater number of errors will occur
in this situation. When examining the likelihoods produced
by the pilot whale model without the normalizing alternative
hypothesis, there is significant overlap. Consequently,
'setting a threshold based upon the pilot whale model alone

I would not bave improved the results. Adding enough
species to the alternative hypothesis to better represent the
variability of clicks across species may improve out-of-set
rejection. For SVMs, the lack of a distributional approach
means that even if a click is far from the target species'
distribution, if it lies on the target side of the hyperplane, it
will be considered a target, making the need for additional
data criticaL

It is worth noting that the DET curve for Blainville's beaked
whales has a relatively flat slope over much of its length for
both detectors. This means that the threshold is not overly
sensitive, and we can reduce either the miss or false alarm
probabilities significantly with a low impact on the other
metric. As an example with GMMs, it is possible to have a
very low false detection rate « 0.2%) and miss no more
than 5% of the click groups. While lhe Risso's dolphin
curve has a steep slope, ils location in the lower left comer
makes this less critical. The shape of the pilot wbale curves
is more problematic, with small differences in threshold
having more significant impact.

When examining what appeared to be off-axis clicks,
Johnson et al. [10] were able to distinguish individual pulses
by cross correlation with on-axis clicks. They noted that the
spectra of the off-axis clicks were "highly featured," lacking
the smoothness of presumed on-axis clicks. The spectral
irregularities were attributed to possible interference
between pulses. We believe this to be a reasonable
hypothesis, and one of the major reasons that echolocation
based species detection works well. Measurements of the
melon taken from CT scans of a deceased Risso's dolphin
show a 30 cm length from dorsal bursae to probable signal
exit and a 20 cm width at the widest section. While exact
propagation paths are beyond the scope of this work, the
1200 j.1s window used in this study is adequately long to
permit multiple paths to have interfered in cOllStructive
and/or destructive manners (assumed sound speed of 1500
mls), even for the larger species. It is interesting to nole that
when we used windows smaller than I lOO tlS, detection
perfOlmance degraded significantly.

Canadian Acoustics / Acouslique canadienne

6. Conclusions

We have shown that cepstral feature vectors extracted from
spectra over a 1200 j..lS window starting at the beginning of
an echolocation click can be used as the basis for automated
species detectors. These detectors are competitive with
other state-of-the-art systems for the detection of
echolocating marine mammals. It is of particular interest
that the system perfonned well even though. the
echolocation clicks extended beyond the bandwidth
supported by the recording equipment. EERs for this dataset
ranged between 0.03% and 16.8% for GM1v1s and 0.70%
and 15.0% for SVMs. Further work is needed on rejecting
out-of-set species whose clicks bear a stronger resemblance
to the target species than to any of the species used lo build
the impostor set.

While other explanations may exist, we also believe that the
observed degradation of performance when the analysis
window was shortened is a strong indicator that interference
patterns may play a role in the spectral patterns. Further
experiments may help to confirm or reject this hypothesis.
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