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SUMMARY

Superposition principle is used to separate the incident acoustic wave from the scattered and radiated
waves in a displacement-based finite element model. An absorbing boundary condition is applied to the
perturbation part of the displacement. Linear constitutive equation allows for inhomogeneous, anisotropic
materials, both fluids and solids. Displacement-based finite elements are used for all materials in the
computational volume. Robust performance for materials with limited compressibility is achieved using
assumed-strain nodally integrated simplex elements or incompatible-mode brick elements. A centered-
difference time-stepping algorithm is formulated to handle general damping accurately and efficiently.
Verification problems (response of empty steel cylinder immersed in water to a step plane wave, and
scattering of harmonic plane waves from an elastic sphere) are discussed for assumed-strain simplex
and for voxel-based brick finite element models. A voxel-based modeling scheme for complex biological
geometries is described, and two illustrative results are presented from the bioacoustics application domain:
reception of sound by the human ear and simulation of biosonar in beaked whales. Copyright 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Models for the propagation of mechanical waves through biological specimens are becoming more
widespread given significant recent advances in software and hardware. The challenges are many:
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heterogeneous, anisotropic, often only very slightly compressible, lossy (attenuating) materials;
arbitrary mixtures of liquids and solids; complex geometries, with many features on multiple scales,
requiring very large discrete models to achieve acceptable resolution; long propagation distances,
with many wavelengths, and correspondingly long integration times. Considerable progress has
been made in recent years: consult for instance References [1–8].
The present computational framework addresses all of the above aspects: Firstly, we formulate a

displacement-based initial boundary value problem (IBVP) model using a superposition principle
to separate the incident acoustic wave from the scattered and radiated waves. This novel use for
the superposition as originally used in the scalar potential model by Sprague and Geers [9] allows
the present model to handle arbitrary transient incident waves and multiple heterogeneous solid
and fluid inclusions. To incorporate the effect of an infinite surrounding medium, an absorbing
boundary condition, in this work in the form of the plane-wave approximation, is applied to the
perturbation part of the displacement. The stress is assumed to depend linearly on the small-
displacement, small-amplitude strain and strain rate, but we allow for inhomogeneous, anisotropic
materials, both fluids and solids.
Secondly, we propose to discretize in space with displacement-based finite elements.

Displacement-based finite elements have been used for fluids since early on [10, 11]. In some
respects these formulations have proven tricky, especially when they produced non-zero (spurious)
circulation modes or when they ‘locked’ for penalty rotational constraint in combination
with models for almost incompressible fluids [12]. Various potential formulations have been
proposed as remedies [13], or the displacement-based formulations have been converted to
pressure /displacement ones [14]; literature on the subject is voluminous: refer for instance to
Reference [9]. Nevertheless, several authors have shown that displacement-based finite elements
can be used for fluids with good results if the capabilities of the elements are matched to the
intended application [15–17]. In this work, we make use of two kinds of finite element formula-
tions to treat fluids and solids with little compressibility robustly and efficiently: assumed-strain
nodally integrated simplex elements and incompatible-mode brick elements. The unified treatment
of fluids and solids allows for inhomogeneous, anisotropic materials, and simplifies the handling
of fluid /solid interfaces which is normally difficult when different partial differential equation
(PDE) models are used on the opposite sides of the interface.
Thirdly, we formulate a time-stepping algorithm to handle general damping accurately and

efficiently. The transient nature of the problems we wish to address together with the very large
size of the discrete system makes an explicit algorithm attractive (the centered differences being
a natural candidate). However, the presence of damping couples the update equations [18, 19].
This makes the normally efficient update using a lumped (diagonal) system matrix (the mass
matrix) potentially very expensive, as the system matrix will be a mixture of the mass matrix
(diagonal) and the damping matrix (non-diagonal, in general). We formulate the centered-difference
update in the classical form of an explicit Newmark to incorporate general damping using a
fixed-point iteration solver, and we show that this solver achieves good efficiency provided the
damping matrix due to the absorbing boundary conditions is reduced to a lumped (diagonal)
form.
Finally, we describe our voxel-based modeling scheme for complex biological models. We

introduce both verification (benchmark) problems (response of empty steel cylinder immersed
in water to a step plane wave, and scattering of harmonic plane waves from an elastic sphere),
and initial illustrative results from the bioacoustics application domain: reception of sound by the
human ear and simulation of biosonar in beaked whales.
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Figure 1. Train of waves passing through ideal fluid (left), and through a solid
immersed in an ideal fluid (right).

2. DISPLACEMENT-BASED MODEL

Our goal is to compute the displacements and stresses in some object submerged in an infinite
extent of ideal homogeneous fluid that are produced by an acoustic excitation that arrives through
the fluid from some source either outside or inside the volume of interest.
First, consider an infinite extent of ideal fluid, with bulk modulus Kw , and mass density  w .

Trace out an imaginary closed surface S, which contains a bounded volume of fluid V . Further,
consider a train of waves passing through the fluid, traversing the volume V (Figure 1). For certain
kinds of waves, analytical solutions for the displacements of the particles of the fluid are available;
for instance, for harmonic plane waves a displacement vector function may be written as

uinc= Ansin(n·r−cw t ) (1)

where A is the amplitude, n is the normal to the plane of the wave, cw is the speed of sound in
the fluid and t is the time. From the known solution to the displacement field, it is possible to
reconstruct the stress anywhere in the volume V or on the surface S.
Now consider the original situation, in which the volume V contains an inclusion V̂ which

is not the same fluid, but rather a solid (for instance viscoelastic), or a different kind of fluid
(viscous or inviscid). The waves that arrive from the source will be perturbed by the inclusion, and
reflections and transmissions of waves will be generated. The wave pattern in the volume V (the
displacements of the fluid particles or of the solid particles) will not be available from analytical
expressions such as (1). The goal of this section is to formulate a model to computationally solve
for the displacement in the volume.

2.1. Displacement superposition

We use displacement superposition as a basic tool to separate the effect of the forcing by the train of
incident acoustic waves from the scattering and radiation due to the inclusion. The same principle
has been used by Sprague and Geers [9], but for a pressure-based (scalar potential) formulation.
The model will be formulated for the bounded volume V , incorporating the infinite extent of the
fluid in the so-called absorbing boundary conditions.
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Thus, we write a standard weighted residual formulation of a small deformation, small strain
Lagrangian deformation model [20]:

∫

V
g·  üdV −

∫

V
g·bdV − ∑

i=x ,y ,z

∫

St ,i

(g)i t i dS+
∫

V
(Bg) ·rdV =0

ui =ui and (g)i =0 on Su ,i for i= x , y , z
(2)

where g is the vector test function, (g)i indicates the i th component, u is the displacement vector
function, b is the known body load (for simplicity we may assume the body load to be absent,
b=0), t i the i th component of the traction vector and St ,i is the part of the boundary S on which
the i th component of the traction is known. A discussion of the stress r follows in Section 2.3.
The displacements u and the test function g are assumed continuous across the inter-material
interfaces; B is the symmetric gradient operator (produces the symmetrized small-deformation
gradient tensor components, including a factor of two required for the shear components in the
present ‘Voigt’ vector formulation [20]):

B=





! /!x 0 0

0 ! /!y 0

0 0 ! /!z

! /!y ! /!x 0

! /!z 0 ! /!x

0 ! /!z ! /!y





(3)

The integrals in (2) need to be evaluated over the volume of the fluid and the volume of each
inclusion separately, but for simplicity we do not explicitly indicate that with notation. The mass
density  will assume different values depending on the material,  =  w in the surrounding fluid,
 =  j for the j th inclusion.

2.2. Initial and boundary conditions

The IBVP requires the specification of the initial conditions at each point of V at time t=0
u(x, 0) =W(x), u̇(x, 0) =V(x) (4)

where W(x) (the initial deflection) and V(x) (the initial velocity) are known functions.
Now for the boundary conditions: On the surface S we define any suitable Cartesian coordinate

system at each point, and express the boundary conditions in terms of the components: t i is a
component of the traction vector prescribed on St ,i , and ui is a component of the displacement
vector prescribed on Su ,i . In our case, the displacement components are not known on any part of
the surface S, and the boundary conditions on S will be developed entirely in terms of the tractions
on that surface. Therefore,

St ,i = S , Su ,i =∅ for i= x , y , z (5)

It is not possible to construct a solution to the IBVP (2) with the initial conditions (4), because
the boundary tractions are unknown. Initial progress is derived from the (usual) assumption that
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the surrounding fluid medium supports only normal stresses. Therefore, the traction vector on S
will have only the normal component

t=−pwn

where pw =−(  x +  y+  z ) /3 is the pressure in the fluid, expressed through the normal components
of the stress in the fluid, and n is the outward normal to S. The pressure in the fluid pw is unknown,
but it is possible to separate the pressure on the surface S into two constituents: the first part will
be the pressure corresponding to the incident excitation wave (for instance, as generated by (1)),
and therefore known; the second part will be everything else, in other words the perturbation due
to the scattered and radiated waves produced by the inclusion(s). Thus, we will write the total
pressure in the fluid as

pw = pinc+P

where pinc is known from the analytical solution, and P is the pressure disturbance due to the
inclusions.
The second advance in the formulation of the boundary conditions may be now made if we

assume that the perturbation pressure is due to waves which will only pass through the surface S
from the volume V to the exterior infinite part of the fluid domain (note that for this to work the
bounding surface S needs to be convex). The displacement may be decomposed as

u=uinc+U

where uinc is the known analytical solution, and U is the displacement disturbance due to the
inclusions. Now, if the pressure disturbance is produced only by the disturbance part of the
displacement (which is a reasonable assumption for small-amplitude acoustic excitation in an ideal
fluid), some form of an absorbing boundary condition may be invoked on S [21–26].
For our particular range of applications, the early-time approximations [21, 27] are especially

relevant, both the so-called plane-wave approximation [27] and the curved-wave approximation
[28]. More accurate alternatives are available: The first-order doubly asymptotic approximation
(DAA) [29] improves accuracy for low-frequency wave motion (late-time added mass effects).
High-order DAA’s and other sophisticated treatments of absorbing boundary conditions [22–26]
may improve the accuracy, but the cost would tend to be significant. Thus, the trade-off is between
accuracy (DAA more accurate than early-time approximations, curved-wave approximation more
accurate than plane-wave approximation) and cost (DAA and curved-wave approximation more
costly than plane-wave approximation). Owing to the transient nature of the expected applications,
which will clearly require many repeated evaluations of the absorbing boundary condition, the
cost associated with more accurate conditions may well be excessive. Therefore, the plane-wave
approximation [21, 27] was adopted in this work

P=  wcwU̇ ·n (6)

to link the unknown perturbation pressure to the (still unknown) perturbation displacement. This
is the time-dependent approximation of the Sommerfeld radiation condition for time harmonic
pressure field at infinity (i.e. only outgoing waves are allowed to pass through the convex bounding
surface as the bounding surface is moved to infinity in all directions). With the elimination of

Copyright 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
DOI: 10.1002/nme



P. KRYSL, T. W. CRANFORD AND J. A. HILDEBRAND

P from the boundary condition the weighted residual statement becomes well defined, as upon
substitution into (2) we obtain first

∫

V
g ·  üdV −

∫

S
g· pwndS+

∫

V
(Bg) ·rdV =0

and then with the displacement decomposition and with (6) we obtain
∫

V
g ·  üinc dV +

∫

V
g·  ÜdV −

∫

S
g · pincndS−

∫

S

(
 wcwU̇ ·n

)
g ·ndS+

∫

V
(Bg) ·rdV =0 (7)

written in terms of the perturbation displacement U as the only unknown. Next, the relationship
of the perturbation displacement and the total stress r will be discussed.

2.3. Constitutive equation

The primary unknown in Equation (7) is the perturbation displacement, U. In the present model
we assume that the stress r may also be separated using the principle of superposition. We shall
assume a constitutive equation of the form

r=Dse+Dv ė

where e is the total strain vector, ė is the total strain rate vector, Ds is the material stiffness matrix
(symmetric and positive semi-definite—allowing for fluids with zero shear stiffness), and Dv is
the material damping matrix (symmetric). The matrices Ds ,Dv are allowed to vary from point to
point (inhomogeneous materials), but they do not depend on any other quantity in the problem.
Note also that we are allowing for general anisotropic materials, with general strain-rate (damping)
response.
Using the displacement superposition, which yields for the total strain and the total strain rate

e=Buinc+BU, ė=Bu̇inc+BU̇

the last term in (7) may be therefore split into a couple of known incident-wave-produced terms
∫

V
(Bg) ·DsBuinc dV +

∫

V
(Bg) ·DvBu̇inc dV (8)

and the perturbation–displacement terms
∫

V
(Bg) ·DsBUdV +

∫

V
(Bg) ·DvBU̇dV (9)

The weighted residual statement (7) will become upon the incorporation of (8) and (9)
∫

V
g ·  üinc dV +

∫

V
g·  ÜdV −

∫

S
g · pincndS−

∫

S
(  wcwU̇ ·n)g ·ndS

+
∫

V
(Bg) ·DsBuinc dV +

∫

V
(Bg) ·DvBu̇inc dV

+
∫

V
(Bg) ·DsBUdV +

∫

V
(Bg) ·DvBU̇dV =0 (10)

entirely in terms of the single unknown field, the perturbation displacement U.
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3. DIRECT TIME INTEGRATION

Upon standard spatial discretization of (10) with finite elements, the terms
∫

V
g·  üinc dV −

∫

S
g · pincndS+

∫

V
(Bg) ·DsBuinc dV +

∫

V
(Bg) ·DvBu̇inc dV

will be an expression of the dynamic forces at the nodes due to the incident wave displacements.
For convenience we avoid the surface integral by introducing an extended mesh: see Figure 2. The
nodes on the boundary (the thick line) will be made interior to an extended mesh which is obtained
by wrapping the domain mesh (shaded cells) with one layer of additional finite elements. The
above terms will be therefore expressed in terms of (square) matrices computed for the extended
mesh as

Mextüinc+Cextu̇inc+Kextuinc

where we slightly abuse the notation by recycling the symbol uinc, formerly used for the incident
displacement (vector with three component functions), for the column matrix representing the nodal
parameters for the incident wave displacement. The matrices Mext ,Cext ,Kext are never actually
formed, the product is computed element by element.
The terms

∫

V
g·  ÜdV −

∫

S
(  wcwU̇·n)g ·ndS+

∫

V
(Bg) ·DsBUdV +

∫

V
(Bg) ·DvBU̇dV

will yield upon discretization

MÜ+ (CABC+Cmat)U̇+KU=MÜ+CU̇+KU

where U represents the column matrix of the nodal parameters corresponding to the perturbation
displacement, M and K are the mass and stiffness matrices, and CABC is the damping matrix

Figure 2. Mesh of the domain (shaded), mesh of the boundary of the domain (thick line), and the extended
mesh (the shaded rectangles plus the empty cells on the circumference).
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resulting from the absorbing boundary condition, and Cmat is the material damping matrix. The
coupled system of ordinary differential equations to be solved is therefore written as

MÜ+CU̇+KU=−Mextüinc−Cextu̇inc−Kextuinc

Next we will develop a suitable time-stepping procedure.
The centered-difference time-stepping algorithm may be formulated in several variants to accom-

modate general damping [19]. In this work, we apply the two-parameter Newmark algorithm as
discussed in detail in Reference [20], substitute  =0 to extract the explicit version (conditionally
stable: time step must be shorter than the so-called critical time step which is related to the time
taken by the fastest stress wave to traverse a single finite element [20]) and we arrive at the
following algorithmic update equations:

Ut+  t = Ut +  tVt +
 t2

2
At

MAt+  t = −KUt+  t −CVt+  t −rinc

Vt+  t = Vt +
 t
2

(At +At+  t )

(11)

where

rinc=Kextuinc,t+  t +Cextvinc,t+  t +Mextainc,t+  t

If there is no damping (C=0, Cext=0), the optimal efficiency of this algorithm derives from a
diagonal (lumped) form of the mass matrix, since then the required linear system-of-equations
solve in the second of the equations (11) is trivial.
Evidently, when damping is present (absorbing boundary condition is in effect, and /or materials

exhibit damped response) the difficulty is that the update equations for the velocity Vt+  t and the
acceleration At+  t in (11) are coupled. Substituting for the velocity from the last equation, the
system of linear equations to be solved for At+  t in each time step is

(
M+  t

2
C

)
At+  t =rp (12)

where

rp =−KUt+  t −C
(
Vt +

 t
2
At

)
−rinc

The system matrix for a general damping matrix C will be non-diagonal, and the solution of the
system of equations may become an expensive operation, as pointed out for a different centered-
difference formulation already by Park and Underwood [18]. These authors concluded that it was
important to represent the general damping well for both accuracy and stability of the overall
scheme, but at most two corrective iterations would be executed to minimize computational expense
(which in their algorithm were not performed using the general damping matrix on the left-hand
side).
Similarly, we find that the algorithmic update needs to be done consistently for both accuracy

and stability reasons. Therefore, we attempt to solve (12) (a) accurately, while at the same time (b)
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minimizing the cost. One possible approach that avoids an expensive system-of-equations solve is
to perform a few steps of fixed-point iteration

MA(k+1)
t+  t =rp−  t

2
CA(k)

t+  t , k=1, 2, . . . (13)

However, in the above form the convergence could be painfully slow. We will illustrate this with
an example: Consider a model without material damping, in which case the damping matrix is
only due to the absorbing boundary condition and rectangular 3-D finite element grid with spacing
 x ,  y ,  z. Using nodal integration will make the damping matrix diagonal with elements of the
form

C j j =  wcw  y  z

for a node interior to the surface perpendicular to the x-axis, and analogously for the other two
directions. The (diagonal) mass matrix element j j would correspondingly be

Mj j = 1
2  w  x  y  z

Evaluating the expression for the iteration matrix M−1(  t /2)C, yields

 t
2
C j j /Mj j =

 tcw

 x

Now, without loss of generality we can assume that  x is the shortest distance between nodes,
and then we conclude that

 t
2
C j j /Mj j =

 t
 tcr

with the critical time step  tcr=  x /cw . Since this fraction (which is the largest eigenvalue of
the iteration matrix) may be arbitrarily close to one, we see that convergence of the fixed-point
iteration could become very slow indeed.
To avoid this difficulty, we additively split the damping matrix

C=CABC+Cmat

where CABC is the damping matrix due to the absorbing boundary condition, and Cmat is the
material damping matrix. Furthermore, we form CABC as a diagonal matrix. Then, the fixed-point
iteration is started with the trivial solve (the system matrix is diagonal!)

A(0)
t+  t =

(
M+  t

2
CABC

)−1
rp

followed by a few iterations of (13). Provided the sets of nodes affected by non-zero elements
of CABC and Cmat are disjoint (such as when the material damping is only associated with the
material of the inclusion), the predicted accelerations on the boundary are exact, and only the
accelerations at interior nodes associated with material damping are iterated. For moderately weak
damping the convergence is rapid; on the other hand, for strong damping iteration may be slow,
and improvement of the iteration convergence by reduction of the time step then goes hand in
hand with stability requirements (damping reduces the critical time step).
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4. BENCHMARK USING ASSUMED-STRAIN FINITE ELEMENTS

A good verification problem is the response of an infinitely long, air-filled, thin-walled steel
cylinder submerged in water to a step plane-wave pressure pulse perpendicular to the axis of the
cylinder. Various numerical solutions have been discussed for instance in References [30–36].
In this example we present results obtained on unstructured meshes. Simplex elements with nodal

quadrature have been proposed in Reference [37] as an ad hoc technique based upon an averaged
B matrix as the strain–displacement operator (inspired by the well-known Flanagan, Belytschko
formulas). Generalization of this work, using the Reissner strain–displacement principle to yield
assumed-strain finite elements of other 1-, 2-, and 3-D shapes, has been recently developed [38].

Figure 3. Mesh of the cylinder and the surrounding water. Domain size of 3R×3R, mesh size h=30.

Figure 4. Shape of the cylinder at the time instants tc / R=0, 1, . . . , 5 (c is the speed of sound in water).
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Figure 5. Normalized velocity V /c of the points  =0,  =  /2 and  =  versus the normalized time
tc / R. Domain size 4R×4R, mesh size h=30.
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Figure 6. Normalized velocity V /c of the points  =0,  =  /2 and  =  versus the normalized time
tc / R. Domain size 3R×3R, mesh size h=15.

The resulting finite elements are insensitive to volumetric locking due to reduced compressibility,
their bending behavior is considerably improved, and they are relatively insensitive to aspect
ratio [37]. We use a plane-strain model, with an unstructured uniform triangulation (three-nodes
triangles) and the same type of approximation is used in the cylinder and in the surrounding
water (Figure 3). We report results for two different mesh sizes. The coarsest mesh of the cylinder
(h=30) is good enough to allow for the first five in vacuo free vibration modes to be computed
within a 5% accuracy, despite the poor aspect ratio of the triangles in the mesh of the cylinder.
Huang has formulated a series solution based on modal expansion and the Laplace transform

[30]. The solution for eight terms of the series is shown as a solid black line, and in the following
figures serves as a reference. Figure 3 shows the mesh for the domain size 3R×3R (R=205.9 is
the outer radius of the cylindrical shell), and mesh size h=30 (all in consistent units).
Figure 4 shows the magnified deformation of the cylinder at equally spaced time instants. The

three points  =0,  =  /2 and  =  at the circumference of the steel cylinder at which velocities
of the structure and pressures in the surrounding fluid are being measured are indicated with
arrows.

Copyright 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
DOI: 10.1002/nme



P. KRYSL, T. W. CRANFORD AND J. A. HILDEBRAND

0 1 2 3 4 5

0

0.5

1

1.5

 Normalized time t*c/R

 N
or

m
al

iz
ed

 v
el

oc
ity

 V
/c

θ = 0

θ = π/2

θ = π

Figure 7. Normalized velocity V /c of the points  =0,  =  /2 and  =  versus the normalized time
tc / R. Domain size 4R×4R, mesh size h=15.
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Figure 8. Normalized velocity V /c of the points  =0,  =  /2 and  =  versus the normalized time
tc / R. Domain size 3R×3R, mesh size h=30.

Figure 8 shows the velocities of the three points  =0,  =  /2, and  =  for mesh size h=30,
and domain size 3R×3R (c is the speed of sound in water, V is the magnitude of the velocity in
the direction of the arrow). The present solution matches quite well in the early stages, but toward
the end of the computational interval the speed attained by the cylinder in the direction of the
pressure pulse is too low. This mismatch is likely due to the plane-wave approximation for the
absorbing boundary (i.e. an early-time approximation). Increasing the size of the computational
domain to 4R×4R leads to improved matching at the later stages (Figure 5). Similarly, for a finer
mesh size, h=15, the computational domain 4R×4R improves the matching of the velocities
compared with the domain size 3R×3R: compare Figures 6 and 7.

5. VOXEL-BASED MODELING FOR BIOACOUSTICS

The starting points when modeling the geometry of biological specimens are usually volumetric
images: CT, MRI and other scans. Using unstructured meshes for biological geometries poses
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many challenges. Not the least of them is the need to segment anatomical structures from which
automatic mesh generation tools can produce volumetric and surface meshes. The latter step is
fraught with difficulties of its own, and it is the subject of much research. The main point of
having the mesh is to perform a vibration/acoustic analysis, in which the mesh serves as a means
of approximating the mechanical behavior of the materials in the computational volume. The
mechanical properties of the individual finite elements are nevertheless derived by mapping the
information from the original volumetric images onto the mesh. An attractive alternative is to avoid
this intermediate meshing step by using an image-based discrete model.

5.1. Generating the discrete model

Modern volumetric image acquisition techniques produce three-dimensional data sets, typically as
stacks of rectangular images. Therefore, it is quite natural to begin thinking in terms of the voxel
tiling of the volume of interest. A voxel-based geometric representation of solids (volumes, in
general) has a long history (refer, for instance, to the review [39]). Voxel meshes have also been
utilized in computational procedures [5, 40, 41], including for wave propagation [42]. Voxel-based
computations are rather appealing in that each voxel has an identical shape, which in turn may
lead to considerable savings via pre-computation.
We describe our system for generating the discrete model next. The Analyze 7.5 volumetric

image format has been adopted for both input data and for post-processing. An existing open-
source Matlab toolkit has been adapted to provide the Analyze 7.5 volumetric image read /write
capability. Various utilities have been developed to resample, resize and otherwise manipulate the
volumetric data.
The intensity data of the 3-D images need to be mapped to material properties. To illustrate

this procedure, we will use the example described previously for the head of the neonate Cuvier’s
beaked whale [43]. The animal’s head was scanned with X-ray Computer Tomography (CT), as
reported by Soldevilla et al. [44]. The data were collected continuously with 152 transverse scans
along the longitudinal axis. The resolution within each transverse plane was 1.5mm square pixels.
Each of these transverse scans was 5mm thick, collected every 5mm. The GE Lightspeed scanner
used a 500mm diameter field of view scan region. The voxel values were in the Hounsfield units.
All of the voxels external to the boundary of the head were converted to a Hounsfield value
corresponding to seawater. Thus, the specimen was ‘immersed’ in an environment of sea water
near sea-surface pressure. Additionally, a layer of water was wrapped around the specimen to
ensure adequate space between the specimen and the bounding box for the simulations. In this case,
approximately 30–80mm was provided between the specimen and the bounding box. The voxel
values in the Hounsfield units finally have been mapped to material density and other material
parameters using a mapping given by Soldevilla et al. [44].

5.2. Finite element formulation

Since all the elements are rectangular, the Wilson incompatible formulation is a natural choice: both
the bending response and the dilatational locking insensitivity are significantly enhanced [20, 45].
No irrotationality constraint is used: its absence does not affect the quality of slosh and acoustic
modes [17]. It does produce zero-frequency circulation modes which would be problematic for an
eigenvalue solver, but that is not the case here.
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5.3. Implementation

Matlab has been selected as the language of choice for the front-end of the simulation framework,
with resulting portability and ease of use. The Matlab environment is used to develop simulation
scripts, pre-process data, generate simulation source code and to post-process simulation results.
The generated C-language source code is compiled on a suitable computer platform (Windows,
Linux, or Mac OS-X workstation, Linux or IBM multiprocessor machines, etc.) The C-language
source code for the finite elements simulation is generated automatically from templates to reflect
the particulars of the study (input parameters, control parameters, etc.), and the various configuration
options (double /single precision, computer platform, etc.). An important characteristic of the
present framework is that the complete code for the simulation becomes an inseparable part of the
simulation data, which guarantees repeatability and facilitates record keeping.
The compiled simulation is executed on the selected platform. The finite element code has been

parallelized using pthreads (the POSIX thread mechanism for shared-memory multiprocessors).
Because of the identical shape of the voxels, the strain–displacement operator may be computed
just once for the entire mesh. Further optimization is achieved by binning materials: a finite number
of material-type bins is created, typically a much smaller number of material types than there are
cells, and all material-dependent calculations are precomputed for each material and then used over
and over again when performing calculations on individual finite elements. A fairly high efficiency
results. As an example, a Dell Precision 690 dual 3GHz quad-CPU processor workstation can
process a single element per CPU in approximately 5.7  s (for non-zero incident wave excitation;
the computing time is approximately halved when the incident wave is absent).
Post-processing is performed again in Matlab, with various graphing and section-based visual-

ization tools, and with volume rendering using the VTK toolkit [46].

5.4. Example: sound scattering from acoustically soft sphere

In this example we present a numerical solution to a scattering problem. An elastic sphere is exposed
to a train of planar harmonic waves in air (analytical solution available from Reference [47]).
Sphere data: radius R=0.0452m, mass density  s =2000kgm−3, Young’s modulus Es =3GPa,
Poisson ratio  s =0.3. Air data: mass density  a =1.2kgm−3, speed of sound ca =340ms−1. The
primary sound speed in the sphere is about 3.28 times higher than ca . The acoustic forcing is a
plane pressure wave of frequency f =3kHz, which yields ka R≈2.5 or R /  a ≈0.4 (ka =2  f /ca
is the wavenumber,  a is the wavelength).
The harmonic incident plane wave is windowed with a hyperbolic-tangent time function to

simulate a progressive wave. The arrival of the wave is illustrated in Figure 9: the five snapshots
document the progression of the wave within one oscillation period. Within a few more oscillation
cycles the pressure field around the sphere assumes the steady-state form.
The transient solution yields curves of pressure versus time at various points around the circum-

ference. The ratio of the numerically integrated areas under one half wave of the computed response
and the corresponding area under one half wave of the incident pressure approximates the pressure
amplitude distribution.
Figure 10 shows the normalized total pressure amplitude around an elastic sphere for a plane

wave propagating along the natural direction of the grid n=[1, 0, 0]. The boundary is offset by  R,
where in this case  = 1

2 . For NR =12 elements along the radius of the sphere the approximation
of the actual spherical surface is rather crude: see Figure 9, where in a darker shade overlay is a
cross-section of the sphere. Still, the computed solution converges toward the analytical distribution
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Figure 9. Normalized total pressure around a sphere. Boundary offset  = 1
2 . Number of elements along

the radius of the sphere NR =12. Plane wave propagates in the direction n=[1, 0, 0]. Grid for the sphere
indicated with darker shade overlay. Positive pressures are light gray, negative pressures are dark gray.
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Figure 10. Normalized total pressure around a sphere. Boundary offset:  =1 /2 (refer to the inset). Number
of elements along the radius of the sphere NR . Plane wave propagates in the direction n=[1, 0, 0].

Comparison with analytical deformable-sphere sound pressure solution.

for a stiff deformable sphere with mesh refinement, and thus one of the main requirements for the
usability of the present technique is satisfied.
For practical applications it is important to recover essentially the same solution irrespectively

of the direction of the incident wave. The present method displays a decent lack of sensitivity
to the grid orientation as illustrated in Figure 11, which shows the normalized total pressure
amplitude around an elastic sphere for a plane wave propagating along the direction n=[1, 2, 3].
This wavefront direction breaks the symmetry of the grid. (The boundary is offset by the same
amount  R, with  = 1

2 , as in the previous simulation.) The computed results show slight asymmetry,
but qualitatively and quantitatively there is little difference with respect to Figure 10.

5.5. Example: simulation of received sound pressure level in humans

We developed an acoustic wave propagation model to track and quantify an airborne incident
acoustic wave in and around the human head. (Such models are of significant interest: For instance,
alternate acoustic propagation paths into the inner ear can be investigated computationally, and the
sound pressure amplitudes can be quantified [48].)
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Figure 11. Normalized total pressure around a sphere. Boundary offset:  = 1
2 (refer to the inset). Number

of elements along the radius of the sphere NR . Plane wave propagates in the direction n=[1, 2, 3].
Comparison with analytical deformable-sphere sound pressure solution.

We have adopted the 3-D CT scan of a human head publicly available on the web (University of
Erlangen-Nürnberg), which is provided as unsigned eight-bit 512×512×106 intensity data with
resolution 0.436mm×0.436mm×2mm. The data set has been re-interpolated in the axial direction
to yield the final data size of 512×512×504 voxels, which is converted into a finite element
model with over 132 million elements. The intensity data have been mapped to air (compressible
inviscid fluid, sound speed 340ms−1,  =1.2kgm−3), tissue (slightly compressible isotropic solid,
E=0.25MPa,  =0.4999,  =1100kgm−3) and bone (isotropic solid, E=2500MPa,  =0.22,
 =2000kgm−3).
Using this data set, we have simulated the propagation of progressive plane harmonic waves

of frequencies 3 and 20kHz past the entire human head, and we have recorded the instantaneous
acoustic pressure waveforms at various positions. Figure 12 shows a snapshot of the instantaneous
pressure distribution for the 3kHz excitation on one axial and one coronal section (light shades are
high positive pressures; dark shades are high negative pressures); Figure 13 is a volume-rendered
visualization of the pressure for the 20kHz progressive-wave signal which has arrived roughly at
the midsagittal plane (soft tissues are suppressed in the display, but were part of the model).
The pressure waveforms have been processed to extract approximate sound pressure levels. For

3kHz, the sound pressure level received at the proximal eardrum is about 10.2dB higher compared
with the incident pressure level; for 20kHz, the sound pressure level received at the proximal
eardrum is about 6.6dB lower than the incident pressure. These data agree reasonably well with
published estimates of sound pressure level increase for the lowest resonance (around 3kHz for
adults) and of sound pressure level decrease at very high frequencies [49, 50].
Owing to its ability to deal with complex geometries, almost incompressible materials, and

arbitrary transient incident waves, the present model seems to be well matched to investiga-
tions of some important questions in human hearing, for instance, the issue of bone conduction
[51–54].
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Figure 12. Planar section rendering of the total pressure in and around a human head. High positive
pressure rendered in light shades and high negative pressure rendered in dark shades. Plane-wave excitation

of 3kHz. Grid with 512×512×504 voxels.

Figure 13. Volume rendering of the total pressure in and around a human head. High positive pressure
is red and higher negative pressure rendered in blue. Plane-wave excitation of 20kHz (the wavefront has
just reached the mid-sagittal plane). The soft tissues are included in the calculation, but suppressed in the

display. Grid with 512×512×504 voxels.

5.6. Example: biosonar of beaked whales

As awareness of noise pollution in the oceans increases, so does our interest in under-
standing hearing and sound production in marine vertebrates. Simulations are a powerful tool for
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Figure 14. Pressure pulse generated by an echolocation click: distribution of pressure when the pressure
pulse traversed the mid-section of the melon. High positive pressure is indicated by a dark color. The

anatomy is displayed as shadows in the background.

Figure 15. Pressure pulse generated by a click: distribution of acoustic intensity when the pressure pulse
reached the nose of the animal. The bones of the skull are displayed as a semi-transparent surface.

investigating these effects in animals which are difficult to observe in nature, or for rapid
explorations of ideas and hypotheses [43, 55].
The manner in which echolocation signals are produced by beaked whales is a matter of

conjecture at this point. Here we report some preliminary results for simulations of echolocation
click production in an adult beaked whale, Ziphius cavirostris.
The computational grid used in this study was a factor-two sub-sampling of the original CT

scan which resulted in 247×288×332 voxels, with the spatial resolution of the grid of (3mm)3.
The CT image intensity values have been used to assign one of nine materials to each voxel: air
cavity, fatty tissues, muscle, connective tissue, soft bone, hard bone and porcelaineous bone. Tissue
properties have not been measured for this specimen, but estimates were available from a specimen
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Figure 16. Pressure pulse generated by an echolocation click: pressure recorded
in two locations within the anatomy.

of a neonate Z. cavirostris which was subjected to CT scans and tissue property measurements,
reported by Soldevilla et al. [44].
The pressure pulse was produced by assigning non-zero initial bell-shaped radial velocity distri-

bution to a small spherical volume (radius 10mm) at the location of the phonic lips on the right
side of the nasal apparatus.
Figure 14 shows the pressure distribution after the click disturbance traversed the mid-section of

the melon (fatty body with some presumed acoustic function). The formation of a beam is clearly
visible. This is also confirmed by Figure 15, where it is possible to identify a cone of high-intensity
sound in a horizontal plane along the animal’s nose. The filtering of the signal by the anatomy may
be appreciated in Figure 16, which shows a complex signal recorded at the center of the melon,
and a much cleaner wavelet recorded when the signal left the tissue of the animal at the top of
its nose. An attempt to correlate these results with signals recorded by Zimmer et al. [56], with
measurements of acoustic radiation by the harbor porpoises reported by Au et al. [57], and with
signals produced by bottlenosed dolphins, is underway.

6. CONCLUSIONS

A displacement-based elasto-dynamic model using a superposition principle to separate the incident
acoustic wave from the scattered and radiated waves has been formulated for complex biosolids
(possibly with fluid inclusions) immersed in a fluid environment. An absorbing boundary condition
is applied to the perturbation part of the displacement on the boundary of the computational domain
to allow outgoing-only perturbation waves. The stress is assumed to depend linearly on the small-
displacement, small-amplitude strain and strain rate, but we allow for inhomogeneous, anisotropic
materials, both fluids and solids. The discrete model is obtained spatially with displacement-based
finite elements (assumed-strain nodally integrated simplex elements and incompatible-mode brick
elements) and temporally using a centered-difference time-stepping algorithm with a specialized
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solver of the resulting system of coupled equations to handle general damping accurately and
efficiently. Both verification (benchmark) problems and illustrative results from the bioacoustics
application domain have been discussed.
The present model has been developed with acoustics of hearing and sound production in mind.

Investigations of sound reception and sound generation in marine mammals are ongoing, and the
detailed results will be reported elsewhere.
On a parallel track is the use of the present acoustic wave propagation model to simulate acoustic

waves around and inside the human head, which is of considerable medical and scientific interest
[48]. The present model seems to be well suited to investigations of some important questions in
human hearing, for instance the issue of bone conduction [51–54].
Large-scale simulation of ultrasonic pulse propagation for inhomogeneous tissue is becoming

indispensable for the study of ultrasound-tissue interaction as well as for the development of new
imaging methods. The concept of model-based imaging makes it possible to integrate structural
and functional information [4, 5, 58, 59]. The present model can be integrated into coupled models
used in estimations of ultrasound heating rates and other ultrasonic and biophysical effects [60].
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