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ABSTRACT:
Localization and tracking of marine animals can reveal key insights into their behaviors underwater that would

otherwise remain unexplored. A promising nonintrusive approach to obtaining location information of marine

animals is to process their bioacoustic signals, which are passively recorded using multiple hydrophones. In this

paper, a data processing chain that automatically detects and tracks multiple odontocetes (toothed whales) in three

dimensions (3-D) from their echolocation clicks recorded with volumetric hydrophone arrays is proposed. First,

the time-difference-of-arrival (TDOA) measurements are extracted with a generalized cross-correlation that whitens

the received acoustic signals based on the instrument noise statistics. Subsequently, odontocetes are tracked in the

TDOA domain using a graph-based multi-target tracking (MTT) method to reject false TDOA measurements and

close gaps of missed detections. The resulting TDOA estimates are then used by another graph-based MTT stage

that estimates odontocete tracks in 3-D. The tracking capability of the proposed data processing chain is demon-

strated on real acoustic data provided by two volumetric hydrophone arrays that recorded echolocation clicks from

Cuvier’s beaked whales (Ziphius cavirostris). Simulation results show that the presented MTT method using 3-D can

outperform an existing approach that relies on manual annotation. VC 2023 Acoustical Society of America.

https://doi.org/10.1121/10.0017888

(Received 22 October 2022; revised 4 April 2023; accepted 5 April 2023; published online 2 May 2023)

[Editor: Haiqiang Niu]] Pages: 2690–2705

I. INTRODUCTION

Passive acoustic monitoring (PAM) is a nonintrusive

and efficient approach for studying and monitoring acousti-

cally active animals, especially species that are challenging

to observe visually. PAM enables detection, localization,

and tracking of those animals and is, therefore, well-suited

for studying their abundance,1,2 behavior,3 and response to

anthropogenic activities.4,5 With continuously increasing

human activities in the ocean,6–8 consistent monitoring and

assessment of the population, behavior, phenology, and

physiology of marine animals are necessary to make

informed conservation plans and management policies.9 Of

particular monitoring interest are cetaceans (whales)

because they are apex predators and environment senti-

nels.10 Information on their density and geographic location

can help us understand complex environmental changes,

e.g., those caused by anthropogenic disturbances.

Cetaceans are known to produce various types of

sounds for communication, navigation, and foraging.11 They

are divided into two suborders: Odontoceti (toothed whales

or odontocetes) and Mysticeti (baleen whales or mysticetes).

Odontocetes predominantly use high-frequency whistles or

burst pulses to communicate,12 whereas mysticetes produce

low-frequency tonal calls, which when used in a pattern are

considered songs.13 To locate prey and relevant features of

the environment, odontocetes also frequently emit echoloca-

tion clicks,11 which are intense and directional short pulses

underwater. As the echolocation clicks are impulsive and

braodband in frequency,14 they are promising signals for

researchers to process to localize and track the echolocating

odontocetes with PAM.

Various PAM technologies that are suitable for studying

whales have been developed. Promising sensing approaches

for PAM include towed arrays,15 fiber optic cables,16 mobile

hydrophone recorders,17,18 and bottom-mounted hydrophone

arrays.3,19 Emerging accessible and inexpensive PAM tech-

nologies are expected to provide acoustic datasets that are

orders of magnitude larger than datasets provided by con-

ventional technologies.20 Thus, establishing effective algo-

rithmic solutions for data processing, data management,

data analysis, and performance evaluation is crucial.

This work focuses on the acoustic data recorded by vol-

umetric hydrophone arrays that can provide location infor-

mation of echolocating odontocetes in a three-dimensional

Euclidean space. Here, human operators are typically

required to manually inspect acoustic data, make decisions

on the presence of whales, and select promising measure-

ments.3,21,22 Fully automated tracking of acoustically active

whales from their recorded acoustic data involves numerous

algorithmic challenges. In particular, typically, there are

false positive detections due to noise from the environment

and the instrument itself. Furthermore, there are missed

detections as a result of signal aspect dependence witha)Electronic mail: jujang@ucsd.edu
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respect to the receivers and signal masking by background

noise. Hence, it is necessary to solve a data association prob-

lem for the automated tracking of acoustically active whales

across multiple data snapshots. Data association is compli-

cated in scenarios where multiple acoustically active whales

and other acoustic sources are present. In this work, a novel

data processing chain that automatically detects and tracks

odontocetes in three dimensions (3-D) from their echoloca-

tion clicks is proposed, and the tracking of Cuvier’s beaked

whales (Ziphius cavirostris) near the coast of California is

demonstrated.

A. State-of-the-art

An established method to detect acoustic signals pro-

duced by whales is to first cross-correlate the time series of

acoustic measurements provided by a pair of hydrophones

and then apply a detection criterion to the peaks of

the resulting cross-correlation signal. In addition, time-

difference-of-arrival (TDOA) measurements can be

extracted using the detected peaks from the cross-correlation

signal. Although the conventional cross-correlation23 is well

suited for signals with a high signal-to-noise ratio (SNR),

the generalized cross-correlation (GCC)24 is typically used.

The GCC performs frequency weighting to suppress noise,

improving the detection performance.

If the TDOA measurements are extracted from four

hydrophone pairs and the positions of the hydrophones are

known, in principle, the three-dimensional location of a sin-

gle whale can be computed by solving a nonlinear optimiza-

tion problem.11 Multiple hydrophones typically form a rigid

volumetric hydrophone array to facilitate deployment and

data processing, recording, and storage. For geometric rea-

sons, just location information in bearing can be provided

for whales in the far field of the array. Thus, two or more

arrays are deployed for three-dimensional acoustic source

localization.

In particular, in Refs. 3 and 25, a sequence of three-

dimensional locations of echolocating beaked whales is esti-

mated from the recordings of two high-frequency acoustic

recording packages (HARPs), which host tetrahedron-

shaped hydrophone arrays. For each snapshot of the acoustic

signal, potential direction-of-arrivals (DOAs) relative to

each HARP are computed from the TDOA measurements.11

Each whale is localized in 3-D using the least squares

method from manually selected DOAs that are likely gener-

ated from that whale. The sequence of each whale’s three-

dimensional location forms a track.

Multi-target tracking (MTT) methods are sequential

Bayesian estimation techniques that automatically infer the

number and states of multiple targets from sequences of

measurements provided by one or multiple sensors, i.e.,

without the involvement of human operators. In the context

of whale tracking, the states of interest can be the three-

dimensional locations of the whales, the TDOAs of whales

for a particular hydrophone pair,15 or the frequency of

narrow-band whale whistles in the spectrogram.26 The MTT

methods can succeed in tracking scenarios with false posi-

tive detections, missed detections, and data association

uncertainty between measurements and targets. Traditional

MTT methods, such as the joint probabilistic data associa-

tion filter27 and multiple hypothesis tracker (MHT),28 model

measurements and target states as random vectors. Newer

methods, such as the probabilistic hypothesis density (PHD)

filter29 and multi-Bernoulli filter,30,31 are derived in the for-

malism of random finite set.30 Recently, a graph-based MTT

method that is highly scalable in the number of targets, mea-

surements, and sensors has been proposed.32 This approach

uses particle-based computations to perform operations that

cannot be evaluated in closed form due to nonlinearities in

the system model.33 Graph-based MTT methods for locali-

zation and tracking from TDOA measurements in two

dimensions have been introduced in Refs. 34 and 35.

Some MTT methods have been successfully employed

for whale tracking. In Ref. 36, the MHT is applied to track-

ing beaked whales in 3-D. Here, potential three-dimensional

locations of beaked whales are preprocessed from TDOA

measurements, which are associated across hydrophone

pairs based on click characteristics.37 The preprocessed

three-dimensional locations are used as measurements for a

MHT that determines the number of beaked whale tracks,

performs data association of three-dimensional locations

with tracks, and runs a Kalman filter for each track. The sub-

optimum computing of three-dimensional locations is neces-

sary because the MHT is limited to linear measurement

models or mildly nonlinear measurement models. Further

inherent challenges of the MHT are its computational com-

plexity and memory requirements.38 In addition, a Gaussian

mixture probabilistic hypothesis density (GM-PHD) filter39

for the tracking of whales in the TDOA domain is intro-

duced in Ref. 15. Echolocation clicks and whistles of false

killer whales are exploited to compute TDOA measurements

for MTT. The data were acquired during line-transect sur-

veys with towed hydrophone arrays. The introduced method

extends the original GM-PHD filter by updating the existing

and new whale tracks separately and incorporating

amplitude information to support the initialization of new

whale tracks and to better reject false positive detections.

However, the GM-PHD filter also relies on linear measure-

ment models or mildly nonlinear measurement models and

is, therefore, limited to tracking in the TDOA domain.

Various methods for the localization and tracking of

whales from their acoustic signals have been developed. A

common approach for the three-dimensional localization of

whales is a grid-search,3,22,40–42 wherein an ambiguity sur-

face is generated on a three-dimensional grid of potential

whale locations by comparing the expected modeled TDOA

measurements with the actual measurements. In Refs. 41

and 42, multiple whales are localized by determining local

maxima of the ambiguity surface using the Simplex43 or

Metropolis-Hastings44 algorithm. The method in Ref. 41

iteratively finds whale locations in 3-D by selecting the

maximum peak that corresponds to the best match of the

TDOA measurements, removing the TDOA measurements
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corresponding to this maximum peak, and selecting the

maximum peak that corresponds to the best match of the

remaining TDOA measurements. In Ref. 42, Kalman filter-

ing is used to estimate the whale tracks. In the case of simul-

taneously present whales, multiple Kalman filters run in

parallel, and the Hungarian algorithm45 is used for associat-

ing local maxima of the ambiguity surface to Kalman filters.

Alternative approaches perform three-dimensional localiza-

tion of whales by first estimating the DOAs of acoustic sig-

nals from hydrophone arrays.17,25,46 The method in Ref. 17

subsequently tracks individual whales using nonsequential

estimation based on Gibbs sampling.47

Common challenges of TDOA-based localizing and

tracking are finding the correct combination of measure-

ments across hydrophone pairs that correspond to the same

acoustic source and initializing whale tracks accordingly.

Typically, there are multiple TDOA measurements per

hydrophone pair due to the presence of noise, echoes, and

simultaneous vocalization of multiple whales. This chal-

lenge is often referred to as multisensor data associa-

tion.33,48 To address this, existing techniques either employ

human operators to select and combine measurements man-

ually,3 rely on the local maxima corresponding to incor-

rectly matched TDOA measurements being significantly

lower than those corresponding to true whale locations,41

compute potential whale locations in a brute-force manner,

i.e., based on all of the possible combinations of TDOA

measurements,42 or weigh grid points based on the number

of TDOA measurements that are consistent with the corre-

sponding potential whale location.37 All of the existing

methods for TDOA-based localizing and tracking of whales

in 3-D either rely on human operators or heuristics to com-

bine TDOA measurements and initialize the whale tracks.

B. Contributions and notation

The fundamental problem addressed in this paper is

establishing an algorithmic solution for the tracking of echo-

locating odontocetes in 3-D. The goal is to develop a data

processing method that fully automatically determines the

number of odontocetes in the environment and estimates

their tracks in 3-D from acoustic measurements. The pro-

posed method will make it possible to (i) study deep-diving

echolocating odontocetes more objectively and efficiently

compared to approaches that rely on human operators and

(ii) reveal key insights on behaviors of odontocetes under-

water that otherwise would remain unexplored.

The proposed data processing chain extracts TDOA

measurements of echolocation clicks from the raw acoustic

signals using a GCC. An algorithm that uses a variant of the

GCC, referred to as a generalized cross-correlation for whit-

ening instrument noise (GCC-WIN), is introduced. This

technique aims to suppress the instrument noise that inter-

feres with the echolocation clicks. The peaks of the TDOAs

above a certain amplitude threshold are used to estimate

the parameters of interest, i.e., locations and velocities of

the odontocete in time. Odontocetes are first tracked in the

TDOA domain using a MTT method based on the frame-

work of factor graphs and the sum-product algorithm

(SPA).49 A second MTT stage estimates odontocete tracks

in 3-D by consistently combining (“fusing”) estimated

TDOAs of all of the hydrophone pairs provided by the first

stage. The increased detection rate of the GCC-WIN algo-

rithm results in a lower probability of missing an echoloca-

tion click and, in turn, improved tracking performance. The

first tracking stage aims to reject false positive TDOA mea-

surements and resolve longer gaps of missing TDOAs. This

first MTT stage significantly improves the performance of

estimating odontocete tracks in 3-D as performed by the sec-

ond MTT stage.

Tracking whales in 3-D from TDOA measurements is

further complicated because the underlying measurement

model is nonlinear and the state space is high-dimensional.

To address this challenge, a SPA that embeds particle flow50

is used. Here, the particles are actively migrated toward

high likelihood regions, making it possible to obtain good

target detection and tracking performance in high dimen-

sions.51 Contrary to existing methods for detecting and

tracking whales in 3-D, the proposed signal processing chain

systematically reduces the instrument noise and uses a sta-

tistical model for multisensor data association and initializ-

ing whale tracks. This is expected to improve detection and

tracking performance, especially in scenarios with low SNR

and a significant number of false positive measurements.

This paper establishes a data processing chain that auto-

matically detects and tracks odontocetes from acoustic mea-

surements of their echolocation clicks. The key

contributions of this paper are summarized as follows:

• A GCC that whitens instrument noise is developed. This

GCC increases the detection probability of echolocation

clicks and reduces the number of false positive detections.
• Two stages of graph-based MTT are established. The two

MTT stages reject false positives, perform data associa-

tion, determine the number of odontocetes, and estimate

odontocete tracks in 3-D.
• The capabilities of the proposed data processing chain are

demonstrated. For performance evaluation, recordings of

echolocation clicks from two Cuvier’s beaked whales are

considered.

1. Notation

Random variables are displayed in sans serif and

upright fonts; their realizations are displayed in serif, italic

fonts. Vectors and matrices are denoted by bold lowercase

and uppercase letters, respectively. For example, a random

variable and its realization are denoted by x and x, respec-

tively, and a random vector and its realization are denoted

by x and x, respectively. x0:k is short for ½x0;…; xk�T.

Furthermore, jjxjj and xT denote the Euclidean norm and the

transpose of vector x, respectively; / indicates equality up

to a normalization factor; f ðxÞ denotes the probability den-

sity function (PDF) of random vector x, and f ðxjyÞ denotes
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the conditional PDF of random vector x conditioned on ran-

dom vector y. fRVðxÞVðxÞ and f ðxjyÞ are short notations for

f xðxÞ and fRVðxÞjVðyÞVðxÞjVðyÞ respectively. jSj denotes the

cardinality of set S; In denotes the n� n identity matrix. The

operator “*” denotes the complex conjugate, and j ¼
ffiffiffiffiffiffiffi
�1
p

is

the imaginary unit. Finally, the acronyms used throughout

this paper are summarized in the nomenclature at the end of

the paper.

II. GCC AND TDOA MEASUREMENTS

TDOA measurements are typically extracted from pairs of

receivers for the localization of an uncooperative source. In

three-dimensional space, each TDOA measurement gives rise

to a hyperboloid (Fig. 1). With more than two receivers, multi-

ple TDOA measurements can be extracted, and all of the hyper-

boloids, ideally, intersect in a single point at the source location.

For TDOA measurement extraction, the cross-correlation

between the signals from a spatially separated hydrophone

pair (s1,s2) is computed. The hydrophone pair forms a

TDOA sensor s 2 f1;…; nsg, where ns is the number of sen-

sors, i.e., number of pairs of receivers. The two received sig-

nals from a remote source in the presence of noise are

modeled as

y s1
ðtÞ ¼ x s1

ðtÞ þ ns1
ðtÞ;

y s2
ðtÞ ¼ ax s1

ðtþ dÞ þ ns2
ðtÞ; (1)

where x s1
ðtÞ; ns1

ðtÞ, and ns2
ðtÞ are real, stationary, and ergo-

dic random processes, respectively, a is a scaling factor, and

d is the TDOA. For an observation interval, Tg, and a

TDOA sensor, s, an estimate of the cross-correlation as a

function of time delay, s, can be obtained as

/sðsÞ ¼
1

Tg � s

ðTg

s
y s1
ðtÞy s2

ðt� sÞ dt: (2)

An estimate of the cross-power spectral density

(CPSD), Usð f Þ, between the two signals is computed by tak-

ing the Fourier transform of the cross-correlation, i.e.,

Usð f Þ ¼
ð�1
1

/sðsÞe�j2pf s ds ¼ Ys1
ð f ÞY�s2

ð f Þ; (3)

where Ys1
ð f Þ and Ys2

ð f Þ are the Fourier transforms of y s1
ðtÞ

and y s2
ðtÞ, respectively, for the observation interval Tg.

The GCC (Ref. 24) is defined as the inverse Fourier

transform of the frequency weighted CPSD, i.e.,

/̂sðsÞ ¼
1

2p

ð�1
1

Cð f ÞUsð f Þej2pft df ; (4)

where Cð f Þ is the frequency weighting factor. Note that the

GCC with Cð f Þ ¼ Hs1
ð f ÞHs2

ð f Þ can be interpreted as

applying linear filters with frequency responses Hs1
ð f Þ and

Hs2
ð f Þ to the signals y s1

ðtÞ and y s2
ðtÞ, respectively, and sub-

sequently performing a conventional cross-correlation.

Frequency weighting is performed according to specific

optimization criteria. In applications where the noise power

spectral density (PSD) is unknown, popular choices of fre-

quency weighting factors result in the smoothed coherence

transform (SCOT)52 and phase transform (PHAT).24 The

SCOT normalizes the PSDs of the individual signals to unit

magnitude, i.e., CSCOTð f Þ ¼ 1=ðRs1;s1
ð f ÞRs2;s2

ð f ÞÞ1=2
, where

Rs1;s1
denotes the PSD of y s1

ðtÞ. Similarly, the PHAT nor-

malizes the CPSD to unit magnitude, i.e., CPHATð f Þ
¼ 1=jUsð f Þj.

In this work, it is assumed that the PSDs, Gs1;s1
ð f Þ and

Gs2;s2
ð f Þ, of the respective noise, ns1

ðtÞ and ns2
ðtÞ, are

mainly dominated by the instrument noise. It can be mea-

sured or precomputed and is, thus, considered known. The

optimal frequency weighting for whitening the instrument

noise is given by CWINð f Þ ¼ 1=ðGs1;s1
ð f ÞGs2;s2

ð f ÞÞ1=2
. The

resulting GCC-WIN can be interpreted as applying the noise

whitening filters Hs1
ð f Þ ¼ 1=ðGs1;s1

ð f ÞÞ1=2
and Hs2

ð f Þ ¼ 1=

ðGs2;s2
ð f ÞÞ1=2

to the signals ys1
ðtÞ and ys2

ðtÞ, respectively,

and subsequently performing a conventional cross-correla-

tion. A detailed discussion of the resulting GCC-WIN tech-

nique will be presented in Sec. IV.

To enhance the probability of detection, TDOA mea-

surements can be either (i) computed based on a sequence of

click trains36,41 or (ii) obtained by extracting TDOAs of

individual echolocation clicks and combining them into a

single measurement. In the presence of highly correlated

noise, the former approach is unsuitable; hence, the latter

approach is considered. It is assumed that the odontocete is

stationary over a time interval, Tm, which is longer than Tg,

i.e., Tm > Tg. (Tm is the duration of the time between the

discrete time step k of the considered tracking algorithms.)

For each sensor, TDOAs of individual echolocation clicks

are computed by finding the peaks of the GCC-WIN that are

above a certain threshold, Atdoa. The peaks of multiple

observation intervals of length Tg are then accumulated over

a time interval of duration Tm. The resulting set of TDOAs,

FIG. 1. (Color online) An example of acoustic source localization in 3-D

from TDOA measurements. The cross is the location of the acoustic source.

Each pair of dots and triangles represents a hydrophone pair that produces a

TDOA measurement. Each TDOA measurement gives rise to a hyperboloid.

The line resulting from the intersection of the two hyperboloids describes

potential source locations. To obtain a unique source location, further

hydrophone pairs are needed.
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z
ðmÞ
k;s ; where mk;s is the number of measurements at time step

k and sensor s and m 2 f1;…;mk;sg; is considered as TDOA

measurements of echolocation clicks generated by odonto-

cetes. The TDOA measurements of all of the sensors are

used as input for MTT.

III. MTT

A key challenge of MTT from sequences of measure-

ments provided by one or multiple sensors is that the origin

of measurements is typically unknown, i.e., it is not clear

which target originated which TDOA measurement. This

problem is referred to as measurement-origin uncertainty

(MOU). Moreover, because the number of targets is also

unknown, it has to be estimated directly from the data.

A. MTT with perfect measurement-to-target
associations

Assuming that the origin of each measurement is per-

fectly known, i.e., measurement-to-target associations are

either provided by a perfect human operator or a data associ-

ation algorithm, the MTT problem can be split up into multi-

ple parallel single target tracking problems. Here, a

sequential Bayesian estimation or Bayes filter53,54 is typi-

cally employed to estimate the state of each target individu-

ally and recursively. Define the target state and its

associated measurements for all ns sensors and at a discrete

time step k as random vectors xk and zk ¼ ½zT
k;1;…; zT

k;ns
�T,

respectively. The target state typically consists of the tar-

get’s position and motion-related parameters.

The objective is to estimate the target state, xk, from the

available measurements up to time k, z1:k. Given the condi-

tional PDF of the state given the measurements, f ðxkjz1:kÞ,
the minimum mean square error (MMSE) estimate of the

state of a single target, xk, can be found to be55

x̂MMSE
k ¼

ð
xk f ðxkjz1:kÞdxk: (5)

To obtain f ðxkjz1:kÞ, one could naively marginalize the

available joint PDF f ðx0:kjz1:kÞ. This approach, however,

suffers from the curse of dimensionality as the dimension of

x0:k grows with each time step. As a result, the computa-

tional complexity of naive marginalization increases expo-

nentially and becomes intractable. The Bayes filter exploits

that a first-order Markov process can describe a statistical

model of single target tracking to reduce computations. At

each time k, a prediction and ns update steps are performed,

and the resulting sequential processing schemes yields a

computational complexity that is linear with time k.53,54

MTT methods are sequential Bayesian estimation methods

that also consider MOU and the unknown number of states

to be estimated.

B. MTT with MOU and known number of targets

Consider a MTT problem with multiple sensors where

the number of targets is known but measurements are

subject to MOU. In addition, there are false positives, i.e.,

measurements that have not been generated by any target,

and missed detections, i.e., present targets may not generate

a measurement. It is assumed that there are i 2 f1;…; ntg
targets. At time k, the state of the ith target is denoted as

x
ðiÞ
k . For future reference, the notation xk¼½xð1ÞTk ;…;x

ðntÞT
k �T

is introduced. Each target state evolves independently

according to the Markovian state-transition PDF, i.e.,

f ðxkjxk�1Þ¼
Qnt

i¼1 f ðxðiÞk jx
ðiÞ
k�1Þ.

Each sensor s 2 f1;…; nsg produces mk;s TDOA mea-

surements zk;s ¼ ½zð1ÞTk;s ;…; z
ðmk;sÞT
k;s �T. It is assumed that each

measurement either originates from the target or is a false

positive, and a target generates at most one measurement at

each sensor. Measurement generation of target i at sensor s
is modeled by a Bernoulli experiment characterized by the

probability of detection, p
ðsÞ
d ðx

ðiÞ
k Þ. If the target with state

x
ðiÞ
k generates a measurement, z

ðmÞ
k;s , the measurement is dis-

tributed according to f ðzðmÞk;s jx
ðiÞ
k Þ. The number of false posi-

tives at each time step is Poisson distributed with a mean

lðsÞfp . False positives are independent of the measurements

that have originated from the targets and also independent

and identically distributed (iid) according to the PDF

f
ðsÞ
fp ðz

ðmÞ
k;s Þ.

At time k and sensor s, the unknown association

between measurements and targets is modeled by the latent

random vector, ak;s ¼ ½að1Þk;s ;…; a
ðntÞ
k;s �

T
, which is composed of

random variables, a
ðiÞ
k;s, defined as27

a
ðiÞ
k;s ¼

m 2 f1;…;mk;sg; at time k and sensor s;
target i generates

measurement m;
0; otherwise:

8>><
>>:

(6)

For future reference, the joint vectors ak ¼ ½aT
k;1;…; aT

k;ns
�T

and zk ¼ ½zT
k;1;…; zT

k;ns
�T are introduced.

The restriction that there can be at most one measure-

ment associated with a target at every time step can be

checked by the following indicator function:

wðak;sÞ ¼
0; 9i; i0 2 f1;…; ntg such that

i 6¼ i0 and a
ðiÞ
k;s ¼ a

ði0Þ
k;s 6¼ 0;

1; otherwise:

8><
>: (7)

The marginal posterior PDF, f ðxðiÞk jz1:kÞ, used for state

estimation in Eq. (5), could be found by marginalization,

i.e., f ðxðiÞk jz1:kÞ ¼
Ð P

a1:k
f ðx0:k; a1:kjz1:kÞ dx

ðiÞ
�k, where x

ðiÞ
�k is

equal to x0:k with state x
ðiÞ
k removed. However, the computa-

tional complexity of this naive marginalization would,

again, be infeasible due to the reasons discussed above. To

reduce computational complexity, one can again exploit the

fact that the posterior PDF, f ðx0:k; a1:kjz1:kÞ, follows a first-

order Markov process, i.e.,
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f ðx0:k;a1:kjz1:kÞ/ f ðx0Þ
Yk

k0¼1

f ðxk0 jxk0�1Þf ðzk0 ;ak0 jxk0 Þ

¼f ðx0Þ
Yk

k0¼1

f ðxk0 jxk0�1Þ
Yns

s¼1

f ðzk0;s;ak0;sjxk0 Þ:

(8)

Here, f ðxkjxk�1Þ is the state-transition PDF discussed above,

f ðx0Þ is an arbitrary prior at time k ¼ 0, and f ðzk;s; ak;sjxkÞ is

the conditional PDF that models the MOU measurement

generation process. The last line of Eq. (8) uses the fact that

the measurement generation given the target states is inde-

pendent across the sensors. Note that f ðzk;s; ak;sjxkÞ is a func-

tion of p
ðsÞ
d ðx

ðiÞ
k Þ; lðsÞfp ; f

ðsÞ
fp ðz

ðmÞ
k;s Þ, and f ðzðmÞk;s jx

ðiÞ
k Þ (see Ref. 27

for details). Based on the factorization of the statistical

model in Eq. (8), e.g., a sequential Bayesian estimation

approach, which is referred to as probabilistic data associa-

tion filter,27 can be developed.

C. MTT with MOU and unknown number of targets

In real-world scenarios, such as the whale tracking prob-

lem, the number of targets is time-varying and unknown. To

account for this, potential target (PT) states can be intro-

duced.32 Consider PTs with indexes j 2 f1;…; jkg, where jk is

the number of PTs at time k. A binary variable, r
ðjÞ
k 2 f0; 1g,

indicates the existence of the PT j, where r
ðjÞ
k ¼ 1 if and only

if PT j exists. The augmented state of PT j is given by

y
ðjÞ
k ¼ ½x

ðjÞT
k r

ðjÞ
k �

T
, where x

ðjÞ
k consists of the target’s position

and further motion-related parameters. There are two types of

PTs:

• New PTs represent targets that, for the first time, have

generated a measurement. Their states are denoted by

�y
ðjÞ
k;s ¼ ½�x

ðjÞT
k;s �r

ðjÞ
k;s�

T
. At time k and sensor s, a new PT is

introduced for each measurement m 2 f1;…;mk;sg; and
• legacy PTs represent targets that already have generated

at least one measurement at a previous time step k0 < k or

previous sensor s0 < s. Their states are denoted by

yðjÞ
k;s
¼ ½xðjÞTk;s r

ðjÞ
k;s�

T
.

The vectors that consist of all legacy and new PT states

are denoted by y
k

and �yk, respectively, and the vector that con-

sists of all PT states at time k is represented as yk ¼ ½yk
�yk�

T
.

At each time k, the number of targets that, for the first

time, have generated a measurement at sensors s are Poisson

distributed with mean lðsÞn . The states of these newly

detected targets are iid with the PDF f ðsÞn ðx
ðjÞ
k Þ. Newly

detected targets are statistically independent of existing tar-

gets. A PT j that existed at time k – 1 continues to exist at

time k with survival probability psuðxðjÞk Þ. All of the PTs at

time k � 1 become legacy PTs at time k.

To reduce computational complexity, one can, again,

exploit structure in the factorization of the posterior PDF

f ðy0:k; a1:kjz1:kÞ. In particular, using common Markov

assumptions,32 f ðy0:k; a1:kjz1:kÞ factorizes according to

f ðy0:k; a1:kjz1:kÞ / f ðz1:k; a1:k; y0:kÞ

¼ f ðy0Þ
Yk

k0¼1

f ðzk0 ; ak0 ; yk0 jyk0�1Þ: (9)

Upon explicitly distinguishing between the legacy and new

PTs and by exploiting the chain rule for PDFs, the condi-

tional PDF of current measurements, current association

variables, and current states given the previous states can be

expanded as

f ðzk;ak;ykjyk�1Þ¼ f ðzk;ak;yk
;�ykjyk�1Þ

¼ f ðy
k
jyk�1Þ f ðzk;ak;�ykj yk

;yk�1Þ: (10)

Now, one can use the fact that given the legacy PT states at

time k, (i) the new PT states at time k are conditionally inde-

pendent of the previous PT states at time k � 1 and (ii) the

measurements, association variables, and new PTs are statis-

tically independent across the ns sensors, i.e.,

f ðzk;ak; ykjyk�1Þ ¼ f ðy
k
jyk�1Þ f zk;ak;�ykjyk

� �
¼ f ðy

k
jyk�1Þ

Yns

s¼1

f zk;s;ak;s;�yk;sjyk;s�1

� �
;

(11)

where y
k;0
¼ y

k
and y

k;s
¼ ½yT

k;0
; �yT

k;1;…; �yT
k;s�1�

T
.

In addition, targets move in time independently; there-

fore, the state-transition PDF of the legacy PTs reads

f ðy
k
jyk�1Þ ¼

Yjk�1

j¼1

f ðyðjÞ
k
jyðjÞk�1Þ: (12)

The state-transition model f ðyðjÞk jy
ðjÞ
k�1Þ is a function of the

survival probability psuðxðjÞk Þ.
By plugging Eq. (12) into Eq. (11) and, in turn, Eq. (11)

into Eq. (9), and making use of the functional form of

f ðzk;s; ak;s; �yk;sjyk;s�1
Þ (see Ref. 32 for details), the joint pos-

terior PDF of y1:k and a1:k given an observed z1:k becomes

f ðy1:k; a1:kjz1:kÞ /
Yk

k0¼1

Yjk0�1

j0¼1

f ðyðj0Þ
k0
jyðj0Þ

k0�1
Þ

0
@

1
AYns

s¼1

wðak0;sÞ

�
Yjk0 ;s
j¼1

qðxðjÞk0;s; r
ðjÞ
k0;s; a

ðjÞ
k0;s; zk0;sÞ

0
@

1
A

�
Ymk0 ;s

m¼1

vð�xðmÞk0;s ; �r
ðmÞ
k0;s ; a

m
k0;sÞ: (13)

Here, the factors qðxðjÞk;s; r
ðjÞ
k;s; a

ðjÞ
k;s; zk;sÞ and vð�xðmÞk;s ; �r

ðmÞ
k;s ; a

m
k;sÞ

are functions of p
ðsÞ
d ðx

ðjÞ
k Þ; lðsÞfp ; f

ðsÞ
fp ðz

ðmÞ
k;s Þ, and f ðzðmÞk;s jx

ðjÞ
k Þ

(see Ref. 32 for details).

For target detection and estimation, the marginal PDFs

f ðxðjÞk ; r
ðjÞ
k jz1:kÞ ¼ f ðyðjÞk jz1:kÞ are required. In particular, target

detection is performed by introducing a threshold pth that is

J. Acoust. Soc. Am. 153 (5), May 2023 Jang et al. 2695

https://doi.org/10.1121/10.0017888

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/153/5/2690/17275427/2690_1_10.0017888.pdf

https://doi.org/10.1121/10.0017888


compared with the existence probability, pðrð jÞk ¼ 1jz1:kÞ,
i.e., a PT j 2 f1;…; jkg is declared to exist if pðrð jÞk ¼ 1jz1:kÞ
> pth. Note that pðrð jÞk ¼ 1jz1:kÞ ¼

Ð
f ðxð jÞk ; r

ð jÞ
k ¼ 1jz1:kÞdx

ð jÞ
k .

For PTs declared to exist, state estimation is performed by com-

puting the MMSE estimate55 as

x̂
ð jÞ
k ¢

ð
x
ð jÞ
k f x

ð jÞ
k jr

ð jÞ
k ¼ 1; z1:k

� �
dx
ð jÞ
k ; (14)

where

f x
ð jÞ
k jr

ð jÞ
k ¼ 1; z1:k

� �
¼

f x
ð jÞ
k ; r

ð jÞ
k ¼ 1jz1:k

� �
p r

ð jÞ
k ¼ 1jz1:k

� � : (15)

For direct computation of f ðykjz1:kÞ, one could, again, naively

marginalize the available joint PDF f ðy1:k; a1:kjz1:kÞ. Instead,

this marginalization can be performed efficiently by the

framework of factor graphs and the SPA. The complete sys-

tem model and the SPA for MTT can be found in Ref. 32.

The nonlinear measurement model and high-

dimensional state space impose further challenges to track-

ing in 3-D from TDOA measurements; therefore, a SPA that

embeds particle flow is employed. To perform the SPA

effectively, particles are migrated toward regions of high

likelihood based on the solution of a partial differential

equation. This makes it possible to obtain good target detec-

tion and tracking performance in 3-D.51

IV. THE PROPOSED DATA PROCESSING CHAIN

The proposed data processing chain performs two main

tasks: (i) signal processing and (ii) parameter estimation

(Fig. 2). In the signal processing module, prefilters are first

applied to the raw acoustic signal. Then, the GCC-WIN

technique is performed to extract time delay peaks with the

GCC-WIN amplitudes above a threshold.

The parameter estimation module estimates the loca-

tions and velocities of the echolocating odontocetes. The

odontocetes are first tracked in the TDOA domain and then

in 3-D. In both cases, the tracking algorithm based on the

SPA described in Sec. III C is applied. In the TDOA domain,

the motion and measurement models are linear. Tracking

first in the TDOA domain makes it possible to reduce signif-

icantly the number of false positives. A low number of false

positives is essential for successful tracking in 3-D. Finally,

the output of the TDOA tracker is used as input for odonto-

cete tracking in 3-D.

A. Echolocation click detection and TDOA estimates

The echolocation clicks are characterized by their short

pulse length and broad bandwidth. Depending on prior

knowledge of the noise, different adaptations of the GCC can

be used to detect the echolocation clicks and estimate the

TDOA. In this work, it is desirable to maximize the number

of detected echolocation clicks to reduce the duration and fre-

quency of data gaps in time, which can significantly hinder

the performance of the tracking algorithms. The echolocation

clicks are challenging to detect if their SNR is low. The SNR

depends on various factors such as the distance between the

source and the hydrophones, the animal orientation and its

echolocation click beam direction with respect to the

receiver, as well as the ambient or system noise.

Each GCC of length Tg corresponds to ng samples of the

discrete time signal and eventually results in a discrete tracking

time step, n. Following Eq. (1), the discrete received signals for

sensor s, at time n, and with the TDOA h are given by

y s1
n½ � ¼ x s1

n½ � þ ns1
n½ �;

y s2
n½ � ¼ ax s1

nþ h½ � þ ns2
n½ �: (16)

The discrete Fourier transform pairs of y s1
½n� and y s2

½n� are

Ys1
½l� and Ys2

½l�, respectively, where l is the discrete fre-

quency. The GCC as a function of discrete time delay, m, is

/̂s m½ � ¼
1

ng

Xng�1

l¼0

C l½ �Us l½ �ej2pml=N; (17)

where Us½l� ¼ Ys1
½l� Y�s2

½l� is the CPSD estimate of the

received signals, and C½l� is the frequency weighting of the

GCC.

In this work, it is assumed that an accurate estimate of

the PSD of the instrument noise is available and can be

used within the GCC-WIN. In particular, the CPSD esti-

mate, Us½l�, is normalized by the PSD estimates of the

known noise. Let Gs1;s1
½l� and Gs2;s2

½l� be the PSD estimates

of the noise at the respective receivers. The frequency

weighting used in the GCC-WIN then reads Cs½l� ¼ 1=
ðGs1;s1

½l�Gs2;s2
½l�Þ1=2

. In case the statistics of the noise pro-

duced by the instrument are time-varying but periodic, as

is the case for the HARP, a sequence of time-varying noise

PSD estimates is extracted from precomputed spectro-

grams of the noise signal, i.e., from portions of signals

without echolocation clicks (see the example in Fig. 3). A

concrete implementation of this procedure for acoustic

data provided by the HARP is presented in Sec. VI B 1.

FIG. 2. (Color online) The block diagram of the proposed data processing

chain for detecting and tracking odontocetes in 3-D from their echolocation

clicks. The TDOAs of echolocation clicks are extracted in the signal proc-

essing module. The three-dimensional odontocete tracks are computed in

the parameter estimation module. The parameter estimation module per-

forms sequential Bayesian estimation for MTT in two stages.
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Finally, as described in Sec. II, TDOAs extracted from

individual echolocation clicks are accumulated over a lon-

ger interval, Tm, to increase the probability of detection.

Accumulating TDOAs, however, can lead to multiple

TDOAs corresponding to one odontocete per time step k
due to noise. Hence, a clustering of measurements is neces-

sary to enforce the assumption that each odontocete gener-

ates at most one measurement. The following clustering

procedure led to the best tracking results: First, large clus-

ters are formed by finding TDOAs that are nc samples apart

and grouping. Then, within each large cluster, TDOAs are

further separated into smaller clusters based on the local

minima of the GCC-WIN amplitudes. Finally, the TDOAs

within each small cluster are weighted based on their

amplitudes and merged to generate a single TDOA mea-

surement per small cluster.

B. MTT of echolocating odontocetes

In this section, details on how the MTT framework pre-

sented in Sec. III C is applied to the odontocete tracking are

provided. In particular, the statistical models of the two

MTT stages are discussed. The first stage operates in the

TDOA domain and is applied to each hydrophone pair, i.e.,

a TDOA sensor, in parallel. The second stage operates in a

three-dimensional Cartesian coordinate system and fuses the

results provided by the first stage.

1. MTT in the TDOA domain

For the tracking in the TDOA domain, at time step k

and sensor s, the state of the odontocete j is given by d
ð jÞ
k;s

¼ ½dð jÞk;s
_d
ð jÞ
k;s �

T
, where d

ð jÞ
k;s is the true TDOA of the echoloca-

tion clicks emitted by the odontocete, and _d
ð jÞ
k;s is its rate of

change. A nearly constant velocity motion model53 is con-

sidered, i.e.,

d
ð jÞ
k;s ¼

1 Tm

0 1

� �
d
ð jÞ
k�1;s

_d
ð jÞ
k�1;s

2
4

3
5þ u

ð jÞ
k;s ; (18)

where the driving noise, u
ð jÞ
k;s 2 R2, is a zero-mean multivar-

iate Gaussian random vector with covariance matrix,

Ru ¼

T3
m

3

T2
m

2

T2
m

2
Tm

2
6664

3
7775r2

u; (19)

and driving noise standard deviation (STD) ru.

Let the TDOA measurement z
ðmÞ
k;s be originated from the

odontocete with index j at sensor s. The measurement model

then reads

z
ðmÞ
k;s ¼ d

ð jÞ
k;s þ v

ðmÞ
k;s : (20)

Here, v
ðmÞ
k;s is a zero-mean Gaussian measurement noise with

STD rv. The PDF that characterizes false positives,

f
ðsÞ
fp ðz

ðmÞ
k;s Þ, is uniform on the interval ½�Tmax

s Tmax
s �, where

Tmax
s is the maximum time delay that can be measured by

sensor s, i.e.,

Tmax
s ¼ kqs1

� qs2
k=c; (21)

where qs1
2 R3 and qs2

2 R3 are the positions of the hydro-

phone pair (s1,s2) that defines sensor s, and c is the sound

velocity.

In the considered linear MTT problem, there is MOU,

and the number of odontocetes is unknown and time-

varying. Thus, the SPA-based MTT method described in

Sec. III C is employed. The results of this first stage are sets

of TDOA estimates d̂
ð jÞ
k;s ; j 2 f1;…; jk;sg for each time step k

and each sensor s. These TDOA estimates are then used as

measurements in the three-dimensional MTT tracking stage.

In what follows, the aforementioned set of TDOA estimates

are denoted as d̂
ðmÞ
k;s ; j 2 f1;…;mk;sg to indicate that they

are now used as measurements in the second MTT stage.

For simplicity, it is assumed that the measurements provided

by different TDOA sensors are statistically independent of

each other. Note, however, that dependencies among the

measurements provided by the TDOA sensors do exist. This

is because a TDOA sensor consists of a pair of hydrophones,

and a hydrophone is involved in multiple TDOA sensors.

Thus, the acoustic data of a single hydrophone is used in the

measurements of multiple TDOA sensors.

2. MTT in 3-D

With the TDOA estimates available across all of the sen-

sors, odontocetes are tracked in 3-D. The three-dimensional

tracking method performs multisensor data association and

track initialization. At time k, the state of the odontocete j is

FIG. 3. (Color online) An example spectrogram of the instrument noise

that repeats periodically, recorded by a hydrophone on a HARP on July 1,

2018. Each column of the spectrogram serves as an estimated noise PSD

for the GCC-WIN. For each hydrophone, an individual spectrogram is

extracted.
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denoted as p
ð jÞ
k ¼ ½p

ð jÞ
k;x p

ð jÞ
k;y p

ð jÞ
k;z _p

ð jÞ
k;x _p

ð jÞ
k;y _p

ð jÞ
k;z�

T
, where p

ð jÞ
k;x; p

ð jÞ
k;y,

and p
ð jÞ
k;z are the position of the odontocete in a 3-D Cartesian

coordinate system and _p
ð jÞ
k;x, _p

ð jÞ
k;y, and _p

ð jÞ
k;z are the respective

velocities.

The motion model follows the nearly constant velocity

model such that53

p
ð jÞ
k ¼

I3 TmI3

03 I3

" #
p
ð jÞ
k�1 þ

T2
m

2
I3

TmI3

2
4

3
5w
ð jÞ
k ; (22)

where w
ð jÞ
k 2 R3 is a zero-mean Gaussian driving noise

with covariance I3r2
w and driving noise STD rw.

Suppose that the odontocete j generated the TDOA d̂
ðmÞ
k;s

at time k and sensor s. The corresponding TDOA model is

given by

d̂
ðmÞ
k;s ¼ kpð jÞk � qs1

k � kpð jÞk � qs2
k

� �
=cþ b

ðmÞ
k;s ; (23)

where b
ðmÞ
k;s is a zero-mean Gaussian measurement noise with

STD rb. The PDF that characterizes false positives,

f
ðsÞ
fp ðz

ðmÞ
k;s Þ, is again uniform on the interval ½�Tmax

s Tmax
s �.

Note that the nonlinear measurement model in Eq. (23)

is underdetermined, i.e., the position of the odontocete

is three-dimensional while the TDOA is only one-

dimensional. Therefore, for estimating the three-

dimensional position, TDOAs provided by multiple sensors

have to be fused. In particular, for a fixed TDOA, d̂
ðmÞ
k;s , Eq.

(23) describes potential odontocete locations on a hyperbo-

loid. If there were no MOU and no noise, one could estimate

the three-dimensional odontocete location by computing the

intersection of multiple hyperboloids provided by multiple

TDOA sensors. However, due to the presence of MOU and

unknown number of odontocetes, reliable state estimation

can only be performed sequentially. In particular, the MTT

approach reviewed in Sec. III C is used again. Because of

the nonlinear measurement model [Eq. (23)], a particle-

based implementation of this MTT approach is considered.

However, as the conventional particle filter suffers from

weight degeneracy resulting from the curse of dimensional-

ity56 and is, thus, only suitable for low-dimensional state

spaces, the particle flow variant recently proposed in Ref. 51

is used.

Particle flow techniques are attractive methods that

address the weight degeneracy issues.50 For each odonto-

cete j and time k, particles are migrated iteratively to the

posterior distribution. Particle motion follows a stochastic

process described by an ordinary differential equation that

expresses a Bayesian update step. The flow equations and

particles after the flow describe a proposal distribution that

can be used for importance sampling.57 By embedding par-

ticle flow into SPA-based MTT, the weight degeneracy is

avoided, and MTT in 3-D from TDOA measurements can

be performed with a reasonable number of particles and

computational complexity.51

V. SIMULATION

Intrinsic challenges of tracking marine animals with

PAM are the lack of ground truth tracks and the fact that the

manual tracks are imperfect because the data annotation pro-

cess is subjective. Therefore, the three-dimensional tracking

performance of different benchmark approaches from simu-

lations are compared to motivate the proposed 3-D tracking

approach.

Four sets of 200 Monte Carlo simulations of odontocete

tracks are generated and tracked using three different

approaches. Each set of Monte Carlo simulations has an

increasing number of simultaneously present odontocetes,

ranging from one to four. The odontocetes’ starting posi-

tions are placed uniformly on a circle of radius 1000 m on

an xy-plane and at a depth of 1000 m. TDOA measurements

are generated based on the same array geometry described

in Sec. VI A and from the model described in Eq. (23). False

positives and missed detections are also generated based on

the model discussed in Sec. VI B 2. The same hyperpara-

meters from Table I are used to generate the simulated data.

Each simulation is 85 discrete time steps long, and the time

step has a duration of 7 s. An odontocete is present for 50

time steps. In simulations with multiple odontocetes, an

odontocete is introduced every ten steps.

Three tracking approaches are simulated by: (i) an

approach based on nonsequential tracking25 (NST), (ii) a

single Bernoulli tracker58 (SBT), and (iii) the proposed

MTT approach described in Sec. IV B 2. In what follows,

the approaches (i), (ii), and (iii) will be referred to as (NST),

(SBT), and (MTT), respectively. (NST) computes odonto-

cete positions by combining the DOAs of the echolocation

clicks of the odontocete computed at each array but does not

filter the results, i.e., odontocete positions are computed at

each discrete time step individually. Moreover, the localiza-

tion and DOA computations are performed within the least

squares framework. (SBT) is a recursive Bayesian filter that

can detect and track a single target in the presence of missed

detections and false positives. (NST) and (SBT) cannot track

multiple targets in an automated way; thus, (NST) and

(SBT) are provided with the correct data association solu-

tion and applied to each odontocete track individually.

(NST) and (SBT) only use the true measurements corre-

sponding to a single odontocete subject to missed detections.

TABLE I. Hyperparameters used for the tracking of multiple Cuvier’s

beaked whales in the TDOA domain and in 3-D.

Hyperparameters TDOA domain 3-D

Detection probability, pd 0.80 0.80

Survival probability, psu 0.90 0.99

Mean number of false positives, lfp 10 1

Mean number of whale birth 1:0� 10�4 1

Measurement noise STD, rv and rb 1:0� 10�5 3:0� 10�5

Driving noise STD, ru and rw 1:5� 10�7 1:0� 10�2

Number of particles 30 000 100 000

Minimum track length 20 5
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If there is a missed detection, (NST) performs interpolation

to obtain a measurement for each odontocete at each TDOA

sensor. (SBT) relies on the same statistical model and

parameters as (MTT). On the other hand, (MTT) does not

know the correct association and, therefore, performs data

association automatically. It is provided with the TDOA

measurements generated for all present odontocetes follow-

ing the model for missed detections and false positives dis-

cussed in Sec. IV B 2. It is worth noting that the correct data

association solution is only available if TDOA measure-

ments are synthetically generated. In a real-world scenario,

the correct data association solution is unavailable and can

only be approximated by a human operator.

Each track’s root mean square error (RMSE) is com-

puted for each approach mentioned above (Fig. 4). (MTT)

and (SBT) sometimes do not detect the odontocete or have a

significant error due to false positives or missed detections.

In that case, the RMSE is set to an error value of 110 m,

which is approximately twice the average RMSE related to

(NST). Based on the simulation results, (NST) has the high-

est RMSE as it does not perform any filtering. On the other

hand, (SBT) yields the lowest RMSE because it relies on the

correct data association solution and makes use of a statisti-

cal model for measurement noise, missed detection, and

false positives. (MTT) yields a RMSE between those from

(NST) and (SBT). (MTT) makes use of the same statistical

model as does (SBT) but also has to solve the data associa-

tion problem; hence, it is expected to perform worse than

(SBT). However, since (MTT) performs filtering, it still per-

forms better than (NST). Furthermore, the RMSE of (MTT)

increases with the number of odontocetes because the pres-

ence of multiple odontocetes makes the data association

problem more challenging. Recall that (NST) and (SBT)

require manual annotations in reality where the correct data

association solution is unavailable, whereas (MTT)

performs data association in an automated manner. Thus,

(MTT) is well-suited for tracking multiple odontocetes

automatically.

Sometimes a different number of odontocete tracks are

generated by (MTT). Either a single track is broken into two

tracks, or extra tracks are generated from false positives.

The percentage of the number of simulations in which extra

numbers of tracks are generated are 0%, 1%, 11%, and 19%

for scenarios with one odontocete, two odontocetes, three

odontocetes, and four odontocetes, respectively. Additional

tracks can, indeed, be formed with the real data but in the

final stage, either a human operator or an algorithm would

join broken tracks or prune unlikely tracks.

In Fig. 5, the average RMSE over 800 tracks is shown

as a function of the time step for the scenario with four

odontocetes. The RMSE of the initialization phase of

(MTT) and (SBT) are high, but after a few steps, they con-

verge to a smaller error value compared to that of (NST).

The real data tracks are also longer than 50 time steps; there-

fore, the total error is expected to be even smaller for longer

tracks. The simulation outcome shows that the proposed

approach can generate trustworthy odontocete tracks.

VI. REAL DATA APPLICATION

The tracking capability of the proposed data processing

chain is demonstrated on acoustic datasets containing echo-

location clicks from Cuvier’s beaked whales. In the signal

processing step, their echolocation clicks are detected, and

the corresponding TDOA measurements are computed using

the GCC-WIN algorithm described in Sec. IV A. In the

parameter estimation step, the whales are tracked first in the

TDOA domain and then in the three-dimensional domain

using the implementation of the MTT framework described

in Sec. IV B. The three-dimensional tracking results are

compared to the tracks generated from hand-annotated DOA

measurements following the approach in Ref. 25.

FIG. 4. (Color online) The average tracking RMSE across 200 Monte Carlo

runs versus number of simultaneously present odontocetes for three differ-

ent three-dimensional tracking approaches. The error bars denote the 75th

percentile of the measured RMSE. While the correct data association solu-

tion is available to (NST) and (SBT), it is unknown to the proposed (MTT)

method. In real data processing, the correct association solution is unavail-

able and can only be approximated by a human operator.

FIG. 5. (Color online) The average RMSE versus time for three different

three-dimensional tracking approaches. Two hundred Monte Carlo runs of a

scenario with four odontocetes are considered. (SBT) and (MTT) perform

sequential processing and, thus, lead to reduced RMSE values over time.
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A. Data

This study uses acoustic signals measured on two

HARPs,59 each of which is equipped with four hydrophones.

The sampling frequency is 100 kHz; the corresponding

Nyquist frequency is 50 kHz, and the TDOA resolution is

10 ls. The hydrophones on the HARP are 1 m apart and

arranged in a tetrahedral shape (see Fig. 2 in Ref. 3) to form

a small-aperture array. They were deployed off of the coast

of California (32� 390 31:400 N; 119� 280 37:600W) at a depth

of �1330 m, and the arrays were approximately 1 km apart.

The arrays located east and west are referred to as HARP

EE and HARP EW, respectively, and they recorded from

March 15 to July 18, 2018.

Five encounters of Cuvier’s beaked whales are proc-

essed; in this paper, the results from processing the data

measured on June 11 and July 1 in 2018 are presented. The

encounter durations on those two dates are 52 min long and

20 min long, respectively. These encounters were detected

using the long-term spectral average (LTSA) from the

MATLAB-based program Triton.59

Because the hydrophones on each HARP share the

same clock, they are time-synchronized. The two arrays,

however, are not synchronized; therefore, the TDOA mea-

surements are extracted only from the hydrophone pairs on

the same arrays. Nonetheless, as long as the echolocation

clicks are measured on both HARPs within a time window

in which the Cuvier’s beaked whale can be considered sta-

tionary, precise synchronization is unnecessary.17,36

In addition, the considered water depth is far below the

thermocline with minimal change in the sound velocity as a

function of depth. Hence, an acoustic wave propagation

with spherical spreading in an isovelocity medium is

assumed. The sound velocity is estimated to be 1490 m s�1.

Different species of vocalizing marine animals could be

present simultaneously near the PAM instruments, and their

bioacoustic signals could interfere with one another. In such

a case, the proposed data processing chain would be

extended with classifying algorithms to discern among the

species. However, there was no interference from other

marine animals in the datasets used; hence, the classification

step was not required. When inspected manually, the echo-

location clicks followed the characteristics of those from the

Cuvier’s beaked whales described in Ref. 14.

B. Implementation

1. Signal processing

The GCC-WIN technique is used to detect the echolo-

cation clicks and estimate the corresponding TDOAs. Three

noise sources are identified: a pulse signal from the copre-

sent acoustic Doppler current profiler (ADCP), an instru-

ment noise on HARP highly correlated among hydrophone

measurements, and an ambient noise (Fig. 6). Note that the

instrument noise is harmonic and broadband thereby giving

rise to multiple high amplitude peaks at wrong time

delay locations when these signals are cross-correlated.

This would hinder the tracker’s performance significantly.

The ambient noise is dominant below 2 kHz, whereas the

instrument noise is the major source of noise above 2 kHz.

The echolocation clicks of a Cuvier’s beaked whale are

known to have center frequency at 35.9 kHz and a �10 dB

bandwidth of 10.9 kHz.14 Hence, the signals above 15 kHz

are considered for this study.

The signal is first prefiltered with a high pass filter

based on a Parks-McClellan optimal finite impulse response

filter design,60 which is applied with a zero-phase shifting

digital filter.61 The stop band frequency and passband fre-

quency are 13 kHz and 15 kHz, respectively. Then, the

ADCP signal is identified and removed. A nearby ADCP

generated a short dominant pulse recurring approximately

every 54 s, which completely flooded the acoustic measure-

ments. Its center frequency is at 75 kHz, but as the Nyquist

frequency of the instrument is 50 kHz, it is aliased and pre-

sent at 25 kHz. The ADCP signal was too powerful that it

was not fully suppressed by the anti-aliasing filter onboard.

It is, nonetheless, readily identified and nulled based on its

high energy and center frequency characteristics.

To perform the GCC-WIN, a model of the noise in the

form of a PSD is required. With the considered HARP

instrument, the PSD of the noise is time-varying but peri-

odic with a period of approximately 31 s. The spectrogram

of the noise model is referred to as the noise PSD template

(see an example in Fig. 3). The noise PSD template is esti-

mated for each hydrophone individually from 20 min long

signals before the appearance of echolocation clicks in the

data. This segment is chosen manually by inspecting the

LTSA. The 20 min long signal is further divided into shorter

segments that are 31.65 s long. Their spectrograms are then

averaged to estimate the noise PSD template. All of the

spectrograms are generated with the fast Fourier transform

FIG. 6. (Color online) An example spectrogram of acoustic data from a sin-

gle hydrophone with echolocation clicks and noise. The identified noise

sources are the ADCP, instrument noise from the data storage system, and

undersea environment. The echolocation clicks are broadband signals

whose center frequency is approximately 36 kHz. The ADCP signal is also

a broadband signal with a center frequency near 25 kHz. The instrument

noise is a harmonic narrowband signal that is repeated every 31 s. Its spec-

trogram is displayed in Fig. 3.
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(FFT) length of N ¼ 512 samples, i.e., Tg ¼ 5:12 ms (50%

overlap, Hamming window62). Separate noise PSD tem-

plates are estimated for different days of data because the

noise statistics vary throughout the deployment. The main

source of instrument noise is believed to be the mechanical

noise of the hard disks from the data storage system.

Before performing the GCC-WIN, a critical step is to

align the noise PSD template with the instrument noise of

the signals of interest. This alignment step is based on the

averaged noise template in the time domain, which is also

computed for each hydrophone individually from the 20 min

long signals used for estimating the noise PSD template.

First, any pulse-like components (e.g., echolocation clicks)

that could interfere with the alignment process are smoothed

out. Smoothing is performed by applying a moving average

filter to the signal of interest and replacing components with

amplitudes that are at least twice as large as the STD of the

moving averaged signals with the mean amplitude. Then,

the smoothed signal is cross-correlated with the noise tem-

plate in the time domain to identify the locations of the

peaks. These locations are the time steps at which the noise

PSD template is aligned with the noise in the signal of inter-

est. The peaks of the cross-correlation are expected to repeat

approximately 31 s, which is equal to the period of the noise

PSD.

Once the noise template and signals are aligned, the

GCC-WIN technique is performed as described in Sec.

IV A. The spectrogram of the signal of interest is similarly

generated using segments of N ¼ 512 samples (50% over-

lap, Hamming window). The resultant peaks from the

GCC-WIN, whose amplitudes are more significant than

Atdoa ¼ 0:15, are extracted and saved along with their

amplitude information. Note that because a low amplitude

threshold is applied to maximize the detection rate, the

instrument and white noise in the background can give rise

to multiple false positive TDOA measurements. When the

GCC-WIN peak amplitude is more than ten, i.e., a direct

echolocation click is detected, any pulse-like signals within

the next 40 ms are ignored as they are likely to be multi-

path signals.

The TDOA measurements are merged and binned with

a longer discrete time step length of Tm ¼ 7 s and clustering

distance nc ¼ 2 samples, following the method described in

Sec. IV A. Given that inter-click-intervals (ICIs) of Cuvier’s

beaked whales range between 0.3 and 0.9 s,3 the probability

of detection is increased by inspecting over a longer time

window. This also helps the tracker to be robust against the

irregular nature of the ICIs as the Cuvier’s beaked whale is

diving.3 Moreover, using a step length of 7 s instead of a

step length of 5.12 ms, which is the step length of perform-

ing one GCC-WIN, reduces the processing time by a factor

of approximately 1300. As the average speed of the

Cuvier’s beaked whale is 1.2 m s�1,3 it would have moved

approximately 8.4 m within 7 s. Assuming that the Cuvier’s

beaked whales are primarily hundreds of meters away from

the arrays, the corresponding TDOA measurements are

unlikely to change significantly during this period.

2. Parameter estimation

Details for obtaining the tracks of the Cuvier’s beaked

whales are provided. Because the TDOA is computed

between a pair of hydrophones, there are
� 4

2

�
¼ 6 TDOA

sensors per array and ns ¼ 12 sensors total. As described

earlier, the TDOA measurements are accumulated over

Tm ¼ 7 s. The Cartesian coordinate system follows the east,

north, and up (ENU) convention, where the x, y, and z axes

are positive along the ENU directions, respectively. The ori-

gin is between the two arrays and at the sea surface. The

hyperparameters used for TDOA tracking and three-

dimensional tracking are summarized in Table I. For TDOA

tracking, the birth distribution is chosen to be uniformly dis-

tributed between the minimum and maximum possible

TDOAs of a hydrophone pair. For three-dimensional track-

ing, the birth distribution is chosen to be uniformly distrib-

uted on the three-dimensional region of interest. A final

pruning step is used to remove extra and unreasonable

tracks. The average swim speed (Euclidean norm of the esti-

mated velocity) of a Cuvier’s beaked whale is 1.2 m s�1,17

and its horizontal speed could range from 1 to 3 m s�1.3

Consequently, if the median speed of the whale track is

more significant than 2 m s�1 or the track length is shorter

than five time steps, the track is discarded. Furthermore, at

every time step, if its estimated speed is faster than

3.5 m s�1, the state at that time step is ignored.

C. Results

The tracks in the TDOA and three-dimensional domains

using the datasets from two different dates are presented.

The results using the proposed method are compared to the

tracking results from hand-annotated data using the frame-

work proposed in Ref. 25, where the detected TDOAs are

used to compute the azimuth and elevation angles of the

Cuvier’s beaked whale relative to each array. They are

tracked manually in the azimuth and elevation angles

domain, whose tracks are fused between two hydrophones

to estimate their three-dimensional locations.

Two Cuvier’s beaked whales are identified and tracked

from the data recorded on June 11, 2018. While echoloca-

tion clicks from only one Cuvier’s beaked whale are

detected from the TDOA data of HARP EE, those from two

whales are detected from the TDOA data of HARP EW

(Fig. 7). Based on the three-dimensional tracks (Figs. 8 and

9), the Cuvier’s beaked whale that first appeared in the data

is far from HARP EE, resulting in the lack of its detected

echolocation clicks on HARP EE. To verify further, the cor-

responding TDOA measurements from the first Cuvier’s

beaked whale three-dimensional track are computed using

the TDOA model, and they are in accordance with the

tracked TDOA. The manual tracking method could not gen-

erate the track for the first Cuvier’s beaked whale because it

requires that the DOAs exist on both arrays simultaneously.

In the data collected on July 1, 2018, two Cuvier’s

beaked whales are observed again (Figs. 10–12). Their diving
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behaviors are detected at the initial depths of approximately

450 m. The two tracks start close to each other, but the tracker

is capable of separating them. More echolocation clicks are

detected using the GCC-WIN algorithm. As a result, the pro-

posed method yields longer three-dimensional tracks (approxi-

mately by 5 min) than the tracks from the hand-annotated data.

To verify the reliability of the results, the three-dimensional

tracker is run again with the TDOA data in the reverse time

steps. As it is easier for the tracking algorithm to identify two

Cuvier’s beaked whales if they are spatially distinct in the

beginning, the tracks from the reverse order would be more

reliable in this scenario. The reverse order tracking results are

indeed similar to the tracking presented here, verifying the cor-

rectness of the proposed tracker.

VII. DISCUSSION

A data processing chain for automatically detecting and

tracking multiple odontocetes from their echolocation clicks

is developed. It successfully tracks multiple Cuvier’s beaked

whales in 3-D from their echolocation click recordings

made on a pair of volumetric hydrophone arrays. No human

FIG. 7. (Color online) Example TDOA measurements (dots) and corre-

sponding TDOA tracking results (solid lines) from one TDOA sensor of

HARP EE (top) and one TDOA sensor of HARP EW (bottom) are shown.

Two Cuvier’s beaked whales are observed at HARP EW while only one is

observed at HARP EE. As can be seen in Fig. 8, both Cuvier’s beaked

whales are closer to HARP EW. The considered acoustic data were col-

lected on June 11, 2018.

FIG. 8. (Color online) A comparison between a track generated from the

hand-annotated data (dashed line) and estimated tracks provided by the pro-

posed MTT approach (solid lines) in 3-D. With MTT, an additional track is

extracted from the TDOA data of HARP EW, and the diving behavior of a

Cuvier’s beaked whale can be explored. The diamond and the cross indicate

each track’s start and end, respectively. The data from June 11, 2018, are

considered.

FIG. 9. (Color online) A comparison between the track generated from the

hand-annotated data (dashed line) and estimated tracks provided by the pro-

posed MTT approach (solid lines). Each axis of the three-dimensional

domain is shown individually. The data from June 11, 2018, are considered.

FIG. 10. (Color online) Example TDOA measurements (dots) and corre-

sponding TDOA tracking results (solid lines) from one TDOA sensor of

HARP EE (top) and one TDOA sensor of HARP EW (bottom) are shown.

One of the Cuvier’s beaked whales is not successfully tracked toward the

end by HARP EW because of long gaps of missing TDOA. The considered

acoustic data were collected on July 1, 2018.
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operators or heuristics are needed to initialize the tracks and

combine the TDOA measurements corresponding to the

individual Cuvier’s beaked whales. The graph-based MTT

method efficiently solves the data association problem to

fuse the TDOA measurements among missed detections and

false positives and tracks odontocetes in a computationally

tractable manner. In addition, new and more extended tracks

of the Cuvier’s beaked whales could be extracted using the

GCC-WIN algorithm, which normalizes the CPSD by the

estimated instrument noise PSD to whiten the instrument

noise.

A few factors need to be considered when adapting the

processing chain for applications with another set of bioa-

coustic data of odontocetes. Because the tracks are distin-

guished based on spatial information, the data processing

chain is species-agnostic. The preprocessing step needs

careful customization, e.g., Tg, frequency filters, etc., such

that the echolocation clicks from species of interest are

processed. A manual or automated classification step would

be desirable for scientific purposes. In addition, the GCC-

WIN technique is only recommended if the instrument noise

is dominant and can be estimated; otherwise, other GCC

adaptations, such as SCOT and PHAT, are potentially better

suited for the estimation of the TDOAs.

The data processing chain could be further extended to

yield more accurate and longer tracks of odontocetes. As

observed in the second scenario (Fig. 11), closely spaced

tracks, i.e., a track coalescence, can pose a challenge. To

mitigate, the future model in the MTT framework could

incorporate statistics of ICIs to distinguish among multiple

echolocating odontocetes. It is observed that the clustering

described in Sec. IV A to ensure the assumption of a single

measurement per target has hindered the track results under

coalescence.

Another challenge is that the model based on a constant

probability of detection is not entirely reflective of reality.

Even though the probability of detection is affected by the

SNR of the bioacoustic signal, their irregularity, i.e., occur-

rences of a burst of echolocation clicks followed by long

gaps of silence, needs to be considered. For example, there

is approximately a 2 min long gap of TDOA detections start-

ing at 40 min in HARP EW in Fig. 7 that is likely due to the

Cuvier’s beaked whale looking away from the array. With

prior information on the echolocation click directionality

and motion of the odontocetes at each given time, the detec-

tor’s performance could be modeled more accurately.

Alternatively, a time-varying detection probability could be

estimated together with the target states.63

Furthermore, although the used, nearly constant veloc-

ity motion model of the odontocetes yielded good tracking

results in this work, a tracking algorithm that selects the

most suitable motion model for the odontocete motion

during runtime is desirable. By incorporating interacting

multiple models,64 the tracker would not only capture time-

varying behaviors or motions of the odontocetes more accu-

rately but also be more suitable for tracking different species

of odontocetes.

Finally, some species of odontocetes are highly sociable

and, thus, sometimes move together in close spatial proxim-

ity.65,66 In such a case, it would be challenging to track an

individual odontocete, but subgroups could be tracked.15

The question of the feasibility of the MTT frameworks to

follow pods of odontocetes instead of individuals poses an

interesting research problem.

VIII. CONCLUSION

Tracking acoustically active marine animals using pas-

sive acoustics can provide better understanding of their

behaviors underwater, which are difficult to observe other-

wise. However, human operators are often required to

FIG. 11. (Color online) A comparison between the tracks generated from

the hand-annotated data (dashed lines) and estimated tracks provided by the

proposed MTT approach (solid lines) in 3-D. Two closely spaced Cuvier’s

beaked whales are simultaneously diving into deeper waters. The diamond

and the cross indicate each track’s start and end, respectively. The proposed

MTT approach can successfully distinguish the two individuals. The data

from July 1, 2018, are considered.

FIG. 12. (Color online) A comparison between the track generated from the

hand-annotated data (dashed line) and estimated tracks provided by the pro-

posed MTT approach (solid lines). Each axis of the three-dimensional

domain is shown individually. The data from July 1, 2018, are considered.
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annotate the bioacoustic data to associate the acoustic

recordings with the marine animals that generated the sig-

nals. With an increasing amount of available underwater

bioacoustic recordings and ultimate goal of real-time moni-

toring, tracking processes that involve human operators,

who are imperfect, are not sustainable. Hence, it is crucial to

research automated methods that are computationally tracta-

ble and accurate for passive acoustic tracking of marine ani-

mals. This will not only generate tracks that are more

objective but also facilitate scientists to study the marine

animals more efficiently.

In this paper, a data processing chain for the fully auto-

mated detection and tracking of odontocetes in 3-D from

echolocation clicks is developed. The detection rate of the

echolocation clicks is improved by using a GCC algorithm

designed to whiten the instrument noise. Multiple odonto-

cetes are detected and tracked simultaneously by applying

two stages of a graph-based tracking method that efficiently

solves the data association problem. Graph-based detection

and tracking are first performed for each hydrophone pair

individually in the TDOA domain and, subsequently, in the

three-dimensional domain. The ability to track multiple

odontocetes simultaneously without manual data selection

by a human operator is demonstrated based on real acoustic

data provided by two volumetric hydrophone arrays. In par-

ticular, tracking results in scenarios with two echolocating

Cuvier’s beaked whales (Ziphius cavirostris) are presented.

In addition, the simulation results suggest that the presented

processing chain can be used to track a larger number of

whales in a scalable manner and is, thus, particularly appeal-

ing for future PAM systems. These results show how the

proposed data processing chain can simplify scientists’ steps

to study the deep-diving echolocating odontocetes.
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NOMENCLATURE

TDOA Time-difference-of-arrival

MTT Multi-target tracking

PAM Passive acoustic monitoring

SNR Signal-to-noise ratio

GCC Generalized cross-correlation

GCC-WIN Generalized cross-correlation for whitening

instrument noise

HARP High-frequency acoustic recording package

DOA Direction-of-arrival

MHT Multiple hypothesis tracker

PHD Probabilistic hypothesis density

GM-PHD Gaussian mixture probabilistic hypothesis

density

SPA Sum-product algorithm

PDF Probability density function

PSD Power spectral density

CPSD Cross-power spectral density

SCOT Smoothed coherence transform

PHAT Phase transform

MMSE Minimum mean square error

MOU Measurement-origin uncertainty

PT Potential target

STD Standard deviation

NST Nonsequential tracking

SBT Single Bernoulli tracker

LTSA Long-term spectral average

FFT Fast Fourier transform

ADCP Acoustic Doppler current profiler

ICI Inter-click-interval
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