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ABSTRACT:
Automatic algorithms for the detection and classification of sound are essential to the analysis of acoustic datasets

with long duration. Metrics are needed to assess the performance characteristics of these algorithms. Four metrics

for performance evaluation are discussed here: receiver-operating-characteristic (ROC) curves, detection-error-

trade-off (DET) curves, precision-recall (PR) curves, and cost curves. These metrics were applied to the generalized

power law detector for blue whale D calls [Helble, Ierley, D’Spain, Roch, and Hildebrand (2012). J. Acoust. Soc.

Am. 131(4), 2682–2699] and the click-clustering neural-net algorithm for Cuvier’s beaked whale echolocation

click detection [Frasier, Roch, Soldevilla, Wiggins, Garrison, and Hildebrand (2017). PLoS Comp. Biol. 13(12),

e1005823] using data prepared for the 2015 Detection, Classification, Localization and Density Estimation

Workshop. Detection class imbalance, particularly the situation of rare occurrence, is common for long-term passive

acoustic monitoring datasets and is a factor in the performance of ROC and DET curves with regard to the impact of

false positive detections. PR curves overcome this shortcoming when calculated for individual detections and do not

rely on the reporting of true negatives. Cost curves provide additional insight on the effective operating range for the

detector based on the a priori probability of occurrence. Use of more than a single metric is helpful in understanding

the performance of a detection algorithm. VC 2022 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/10.0009270
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I. INTRODUCTION

The monitoring of marine mammals using their recorded

underwater sounds is a rapidly advancing field, with large data-

sets now available from a diverse set of locations (Au and

Lammers, 2016). Methods for detection and classification are

needed to allow processing of these large acoustic datasets for

use in ecological assessment and monitoring (Gibb et al.,
2019). Manual analysis of sound data is time consuming, sub-

ject to variation of individual analysts (Nguyen Hong Duc

et al., 2021), and impractical for long (months to years) time

periods. Segments of data with calls are often sparse (�Sirović

et al., 2014) and when calls are present, they may be obscured

by interfering sounds. Marine mammal calls can be complex

and variable (Allen et al., 2018) and evolve seasonally or annu-

ally (McDonald et al., 2009). This complexity has resulted in a

variety of approaches for detection and classification including

spectrogram correlation, neural networks, hidden Markov

models, and frequency contour tracking, among others

(Mellinger and Clark, 2000; Roch et al., 2011; Frasier et al.,

2017; Shiu et al., 2020). Test sets of annotated sounds are a

vital tool to assess the performance of these approaches

(Mellinger and Clark, 2006), and large-data test sets have

recently become available for a range of species and settings

(DCLDE, 2015, 2018). In this paper, we evaluate the metrics

used for assessment and comparison of detection and classifi-

cation algorithms, their strengths and weaknesses when applied

to detection of underwater marine mammal sounds, and areas

for their future development.

The detection and classification of marine mammal

sounds to species or call type (Bittle and Duncan, 2013), is

typically the first step in their study. Detection is the process

of deciding whether a signal, for example, an animal-made

sound, is present or absent (Helstrom, 1968). Classification

is the process of labeling detected sounds. Examples of

labels that can be applied by classification include determi-

nation of the species that produced a sound, identifying a

specific type of call, or determining information about the

caller such as the gender or behavioral state (e.g., foraging).

Detection can be considered a specialized type of classifier

that merely denotes the presence or absence of sounds for a

specific class. Detectors can be applied to broad classes of

signals, such as for any sound that was produced by a baleen

whale. It is very common to use a pair of classifiers, the first
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one detecting sounds of interest (detector) and the second

one assigning detected sounds to more refined categories

(classifier). Both the sounds themselves and the background

ocean noise against which they must be detected, are vari-

able in space and time. In practice, the sounds that marine

mammals produce are not well known in advance

(Baumann-Pickering et al., 2013), and neither is the noise

encountered in the ocean strictly stochastic (Livina et al.,
2018).

The quality of an algorithm for automatic detection and

classification of these sounds is typically evaluated by ana-

lyzing how well they perform on a labeled dataset. The pre-

dictions of the algorithm are compared to the labeled

training and testing data, and metrics are calculated for the

quality of the algorithm performance. Based on the outcome

of these metrics, a new algorithm is created and the process

is repeated until an acceptable performance level has been

obtained. The final algorithm is assessed by its ability to

classify the evaluation data, which have not been part of the

development data.

The process can entail nominal class designation, where

the predicted label is compared to the actual (true) label, or

numerical scoring where a quantitative value is available to

designate how well a particular sound belongs to a particular

class. For example, discriminant function analysis provides

only nominal predictions (Oswald et al., 2003), whereas

support vector machines (SVM) provide a numerical value

for the prediction score (Tachibana et al., 2014).

With the goal of minimizing the influence of error, the

quality of the algorithm should be evaluated, including

determining the limits imposed by statistical uncertainty

(Lehmann, 1959). In practice, detection and classification

algorithms are often assessed with a single metric, and

which metric is selected may be related to the effort invested

in the testing and training datasets, as well as lack of famil-

iarity with the range of metrics available. The goal of this

paper is to calculate multiple metrics on a set of algorithms

to compare their characteristics. We restrict our analysis to

the two class (detection) case, although the metrics pre-

sented are applicable to detections from multiclass

problems.

II. METHODS

A. Ground truth data

Datasets that are labeled for known marine mammal

sounds, present in realistic ocean noise, are essential for

training and testing of detection and classification algo-

rithms; we refer to these as ground truth. Thus far, human

analysts are needed to create ground truth datasets, primarily

due to the variability and complexity of both the marine

mammal sounds and the background ocean noise, although

unsupervised machine learning may change our ability to

produce annotated datasets in the future. Some of the factors

that lead to this variability are related to the animals that

produce these sounds including: changes in the source level,

changes due to behavioral state (e.g., foraging, traveling,

breeding), geographic variations in sound production, ani-

mals’ demographic differences (e.g., age and sex), and even

orientation of the animal with respect to the sensor (particu-

larly for high frequency echolocation clicks). Other environ-

mental factors will change the received sound including

propagation in the water column, interaction with the sea-

bed, the presence of ice, seasonal changes in these, and

changing conditions of ambient noise. In addition, the hard-

ware that is used for sound recording is important since it

may add variability such as: electronic self-noise, frequency

response and dynamic range, as well as introducing artifacts

in the sound data (e.g., sounds of moving components) that

can interfere with detection and classification of desired

sounds. These geographic, temporal and instrumental varia-

bilities require labeled datasets with enough variety that

they reflect what might be encountered in a novel dataset.

Manual examination of acoustic data is often the first

step in detection and classification of acoustic signals. For

large data sets it may be possible to only examine a small

subset of the data. However, some level of manual examina-

tion may be critical to guide future steps in the analysis.

Manual analysis allows identification of the range of acous-

tic signals present, and the potential interference from noise

sources. By manually annotating a portion of the data,

development and evaluation data are generated that allow

for creation and assessment, respectively, of automated

detection and classification methods.

The software package TRITON provides one approach to

manual data analysis and annotation, especially suited for

the analysis of large data sets (Wiggins and Hildebrand,

2007). The approach used by TRITON is to calculate a long-

term spectral average (LTSA) for the entire dataset, prior to

manual analysis. The LTSA provides a rapid means for

scanning data and selection of data subsets for more detailed

examination or annotation as spectrogram or time series. In

this way, it is possible to conduct manual analysis of large

datasets, with manual detections representing either individ-

ual calls or presence or absence of calls over a fixed time

window, for instance, in hourly bins.

Although it is tempting to assume that the manually

generated labels associated with a dataset are infallibly cor-

rect, human analysts produce classification errors as well as

machine algorithms, and a system designed to learn from

labeled data will be unlikely to perform well when provided

manual labels are of poor quality. This points out the need

for widely available datasets for performance benchmarks,

and a process for curated annotations to be improved over

time, as errors are discovered and corrected.

B. Training, testing, and evaluation

Standardized procedures are needed for training and

testing of detection and classification algorithms. When

developing detectors and classifiers that learn signal charac-

teristics from the data, it is important to separately select

those data that are used to train and test the classifier, from

those data that are used to evaluate performance. As
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mentioned earlier, both training/testing and evaluation data

should span the expected diversity of the sounds to be

detected and the variability of environments in which they

occur. Another cardinal rule is that the set of training and

test data must be disjoint from the evaluation data. This min-

imizes the possibility that the algorithm is customized for

some peculiar feature of the training/testing data that is not

present in the evaluation data, nor in a novel dataset that is

presented for analysis.

Given a labeled dataset, the available data are parti-

tioned into development data (with further train/test parti-

tioning) and evaluation data (Fig. 1). Care must be taken to

include a broad representation of the variability of signal

conditions across the training, test, and evaluation data. As

an example, data from multiple animal encounters under

varying conditions (e.g., background noise, location, record-

ing equipment) should appear in all three partitions. Care is

needed, however, to avoid placing different calls from the

same animal encounter in both the training and test sets. The

rationale for this is that such sounds are likely to artificially

improve test results due to matched conditions (e.g., the

same animals in the same behavioral state, recorded under

the same noise conditions and acoustic propagation effects)

and that such a test set is unlikely to be reflective of field

performance.

Classifier construction is typically an iterative process

where the results of experiments with development data are

used to refine the parameters of a given classification sys-

tem, with the goal of improving performance. The algorithm

is retrained with the new training parameters and reeval-

uated with the test data in a process sometimes referred to as

tuning or plowing (Fig. 1). Labeled data are partitioned into

development data, used to train and test the model and eval-

uation data, that are used for a final assessment of perfor-

mance (Campbell and Reynolds, 1999). The development

data are partitioned, perhaps multiple times, into train and

test datasets. Training data are used to create models that

then classify the test data, with application of metrics.

Analysis of errors is used to adjust the model parameters,

and a new model is trained, possibly using a different parti-

tion of the development data. This process is repeated until

an acceptable final model has been trained. The final model

is then used to classify the evaluation data, which have not

been part of the development data. We note that in some

branches of machine learning, the names for these data sets

differ; validation is used in place of test, and the evaluation

data is called the test set (Russell and Norvig, 2020).

Examples of data plowing include adjusting model

parameters such as a support vector machine’s tuning

parameter C (Shawe-Taylor and Zlicar, 2015) or modifying

the set of features that are included in the signal description

(e.g., spectra or cepstra, bandwidth, duration). This has the

side-effect of making the classifier more adapted to the spe-

cific training and test datasets and can be seen as a weak

form of training on the test data. As a consequence, system

performance should be assessed with the use of a novel data

set known as an evaluation data set. Once a classifier has

been trained from the development data, it should be

assessed against the evaluation data set to determine the

classifier’s ability to generalize to novel examples. This

helps to evaluate if a classifier is too specific, or over

trained, to the development data. In some circumstances,

there may not be enough data for a separate evaluation data-

set, but whenever possible an evaluation dataset should be

used.

A key question is, how much data are needed to train,

test, and evaluate a high-performance classifier?

Unfortunately, there is no simple answer as it depends on

factors such as the variability of signals and environments

discussed above, the size of the features extracted from the

sounds, and the complexity of the classifier itself. More

complex classifiers typically require more data, and for

complex classifiers in high-dimensional feature spaces, it is

frequently difficult to have enough data.

Insufficient data can lead to overtraining. Sometimes,

few data are available for algorithm development, and meth-

ods are needed to maximize use of the available data. One

such method is cross-validation using either a bootstrap or

an N-fold procedure. For the N-fold cross-validation

approach, the development data are split into N different

partitions. All but one partition is used for training, and the

remaining partition is used for testing. This process is

repeated, with each of the N partitions taking a turn as the

test data and the other N�1 partitions comprising the train-

ing data for that experiment (Fig. 2). When feasible, it is

recommended to have enough folds to characterize the bias

and variability in performance. Kohavi (1995) notes that

small N can lead to an underestimate of performance and

recommends N¼ 10 folds for most tasks. However, con-

structing N¼ 10 folds should not be done at the expense of

selecting appropriate partitions that prevent splitting similar

data across the train/test boundary.

FIG. 1. (Color online) Labeled data are partitioned into development data

(training and testing) and evaluation data. Data plowing is the iterative

development of an algorithm by adjusting detector parameters, partitioning

the development data into possibly varied nonoverlapping train and test sets

training, and using metrics to evaluate performance. The evaluation data

are not tested until a final algorithm has been obtained.
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The bootstrap cross-validation approach is similar to

the N-fold approach except that samples are drawn for train-

ing and testing with replacement; which is to say, once

selected the data are returned to the pool of available data

and may be selected again for either the training or testing

dataset. This approach is thought to have the advantage of

providing information on the whole sampling distribution,

rather than missing portions of the data when compared to

the N-fold procedure. For example, if there are 100 000

exemplar sounds available, 70 000 of them are selected at

random for training. As the random sample is with replace-

ment, some sounds may be selected more than once. Data

augmentation strategies are also increasingly popular, where

variations of the same exemplar sound can be used, by mov-

ing the event around within the time window, stretching or

shrinking it slightly in time or amplitude (Cui et al., 2015).

Repeating this process multiple times allows characteriza-

tion of the expected variability in the development dataset

(Gillespie et al., 2013). A modification of the bootstrap pro-

cedure may increase the variability of the development data

(Efron, 1982). Rather than taking a random sample from all

data in the development set, data are first grouped into por-

tions that should never be split, for instance, portions of data

from the same animal encounter (sounds clustered in time

and space, potentially from the same animal or a small num-

ber of animals). These un-splitable groups are then parti-

tioned into training and test data, respectively, using a

method such as cross-validation. Roch et al. (2015) illustrate

how different splitting criteria can have non-trivial effects

on overall performance.

C. Binary detection and classification

A binary classifier is one where a decision is made

about the present or absence of a single type of signal

(Chernoff and Moses, 1959; VanTrees, 1968). Is the signal

from a particular class actually present in a specified time

window, and does the algorithm predict it to be present? A

binary contingency table (confusion matrix) is used to pro-

vide a tabulation between the actual and the predicted clas-

ses. The columns of the confusion matrix represent counts

for the actual classes, while the rows represent counts for

the predicted classes (Table I). The four resulting categories

are true positive (TP), false positive (FP), false negative

(FN), and true negative (TN). Statistics are accumulated for

each of the four categories into a contingency table and the

detector performance is judged based on their combination

into quantitative metrics. Note that in statistics, a FP is

known as a type I error, and a FN is a type II error, whose

probability are called alpha and beta, respectively

(Lindgren, 1971).

An important aspect of the contingency table is whether

or not it is constructed based on finite time windows of fixed

length. If time windows are used the question becomes

whether an actual and/or a predicted event are present

within the specified time window. In this case all four poten-

tial outcomes of the confusion matrix are possible. In the

absence of a finite time window for detection, only three of

the four confusion matrix outcomes are possible (TP, FP,

and FN). To determine that a TN has occurred, a finite time

window is needed during which both the actual and the pre-

dicted detection were absent. The use or non-use of time

windows allows the confusion matrix to be calculated on

either basis, by event or by occurrence within a specified

time window, but the lack of TNs in the event-based confu-

sion matrix will limit the range of metrics that can be calcu-

lated from it, as discussed below.

Application of the confusion matrix categories to a time

series that includes a click sequence from a sperm whale

divided into one second segments is illustrated in Fig. 3.

Five clicks are present in a patterned sequence, followed by

a noise spike. Setting an amplitude threshold results in

detection of four of the five sperm whale clicks as well as

the noise spike. Dividing the time series into one-second

time windows results in one TP (the first four clicks), one

FN (the fifth click which is below the detection threshold),

one FP (the noise spike), and one TN (the period between

the clicks and the noise spike). Alternatively, using a detec-

tion framework without time windows results in four TP,

one FN and one FP, with no assessment for TN. The differ-

ence in the balance between classes is noteworthy; in the

assessment using time windows a more balanced set of out-

comes is observed (TP¼FN¼ FP¼TN) relative to the

detection-driven assessment that results in greater class

imbalance (TP> FN¼ FP). In a long acoustic time series,

we might expect only the occasional presence of sperm

whales, and most of the time windows would not contain

detections. As such, this would create a skew in the distribu-

tion of detection absent and detection present windows. As

we will show, this can be problematic for many metrics. It is

also important to recognize that different signal features

FIG. 2. Four-fold cross-validation scenario. Three different three-quarter

selections of the development data are used for model training, with the

remaining one-quarter selection used as test data to determine model

performance.

TABLE I. Confusion matrix for binary decisions. Actual classes are col-

umns and predicted classes are rows. POS is the sum of actual positive

cases detected correctly or incorrectly (TPþFN), NEG is the sum of actual

negative cases (FPþTN), PPOS is the sum of predicted positive cases,

PNEG is the sum of predicted negative cases, N is the total number of

cases.

Actual class

Positive Negative Total

Predicted class Positive TP FP PPOS

Negative FN TN PNEG

Total POS NEG N
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may be chosen to input to the detector. For instance, by fil-

tering the data in Fig. 3 it may be possible to remove the

noise spike and enhance the clicks, and by so doing improve

the outcome of the detection problem.

Different performance metrics are calculated from the

confusion matrix. A commonly used metric is the performance

accuracy, which sums the diagonal elements of the confusion

matrix (TPþTN) divided by the total number of cases (N),

Acc ¼ TPþ TN

N
: (1)

The drawback with accuracy is its poor performance for an

imbalanced dataset, those with unequal counts in the columns

of the confusion matrix. For instance, when positives (POS) are

expected only 10% of the time, a classifier that designated all

cases as negative would have a 90% accuracy. Likewise, the

accuracy metric does not allow for non-uniform assessment of

costs. The cost of missing (FN) the presence of a rare species

(e.g., the North Atlantic right whale) may be much greater than

the penalty for making a false detection (FP).

A classifier typically provides a numerical score for each

case, and cases with higher scores are seen as being more

likely to contain the target signal. Binary predictions are gen-

erated by applying a threshold to the scores. As the detector

threshold is changed, the counts for each category change,

and detector performance is plotted with respect to the

threshold. By changing the detection threshold, the propor-

tion of errors shifts, for instance, between FP and FN (Fig. 4).

The overlap between signal and noise distributions is

set both by the difference of their means and by the shape of

their distributions (Fig. 5). The final choice of operating

threshold depends upon the goals of the detection task.

Tasks that have little penalty for false positives select for a

lower detection threshold, and those with little penalty for

false negatives select for a higher threshold.

D. Receiver-operating-characteristic curves

The elements of the confusion matrix are used to calcu-

late detection error curves for visualization and quantifica-

tion of classifier performance. Among the most common is

the receiver-operating-characteristic (ROC) curve (Peterson

et al., 1954; Fawcett, 2006), which is derived from each of

the two columns of the confusion matrix (Table I). ROC

curves plot the false positive rate (FPR) on the x axis and

the true positive rate (TPR) on the y axis as follows:

FPR ¼ FP

FPþ TN
TPR ¼ TP

TPþ FN
: (2)

Values of the FPR and the TPR are plotted as the detection

threshold is varied, creating a series of points, and a curve is

drawn by linear interpolation between calculated points

(Fig. 4). Detector performance is judged to be superior when

it inhabits the upper-left-hand corner of the ROC plot, with

a high probability of TP and low probability of FP. A

detailed analysis of ROC curves for various statistics of sig-

nal and noise distributions is presented by Egan (1975).

E. Detection-error-tradeoff curve

An alternative representation of the confusion matrix is

the detection-error-tradeoff (DET) curve (Martin et al.,
1997; Auckenthaler et al., 2000), which plots false negative

rate (FNR) on the y axis against the FPR on the x axis,

expressing these values as a percentage,

FPR %ð Þ ¼ FP

FPþ TN
� 100;

FNR %ð Þ ¼ FN

FN þ TP
� 100: (3)

The lower left-hand corner of the DET plot is the region of

high performance. Unlike ROC plots, the DET scores are

FIG. 3. Confusion matrix categories applied to a sperm whale patterned

click train divided into four 1-s windows (dashed lines). The true signal

consists of five rapid clicks seen between 0 and 1.3 s. The detection thresh-

old (horizontal dotted lines) is at 50% of the maximum amplitude. In the

first 1-s period (0–1 s), clicks are correctly detected (TP); between 1 and 2 s

an actual click is present but below the level of the detection threshold

(FN); between 2 and 3 s clicks are correctly judged to be absent (TN); and

between 3 and 4 s noise is incorrectly detected as clicking (FP).

FIG. 4. (Color online) Gaussian distributions of signal (orange) and noise

(blue). Threshold (dotted line) divides them into the four categories of the

confusion matrix: TP (signal above threshold), FP (dark shaded area—noise

above the threshold), FN (light shaded area—signal below the threshold),

and TN (noise below the threshold).
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transformed prior to display. They are scaled by their stan-

dard normal deviate (sFPR and sFNR) using the inverse

error function,

sFPR ¼
ffiffiffi

2
p

erfinv FPRð Þ; sFNR ¼
ffiffiffi

2
p

erfinv FNRð Þ; (4)

which maps a uniform distribution [–1, 1] into a normal dis-

tribution [�inf, inf]. Using the inverse error function, nor-

mal distributions are estimated from the scores of each class

and the distance in standard deviations from the mean are

used as the axes of the DET curve. A consequence of this is

that normally distributed score data appear as straight lines

in the DET curve (Fig. 6).

Since DET curves are related to detection errors (FP

and FN) on their axes, they have the advantage of being able

to weight one type of error as being more important than the

other. For instance, it may be important to not miss any calls

when attempting to detect a rare species, so the detector

threshold could be set for low FN with a corresponding

increase in FP. Alternatively, it may be important to mini-

mize FP if their cost is high. In a monitoring setting, exces-

sive false alarms (FP) may result in lack of response to an

individual alarm, and in this case one may wish to make

false alarms costlier than missed detections.

F. Precision-recall curve

Precision-recall (PR) curves (Manning and Sch€utze,

1999) are constructed from the true positive rate, called the

recall (same definition as the TPR of the ROC curve), on the

x axis, and the rate at which positive predictions are correct,

called the precision, on the y axis, as follows:

Recall ¼ TP

TPþ FN
; Precision ¼ TP

TPþ FP
: (5)

A superior detector in PR curve space inhabits the upper-

right-hand corner of the plot, with high values for both the

precision and the recall (Fig. 6). Unlike DET and ROC

plots, the PR metric does not rely on the number of signal

absent (TN) cases, which can lead to advantages in some sit-

uations. It has been suggested that PR curves may be supe-

rior to ROC (and by implication DET) curves, based on

their ability to work with highly skewed (non-normally dis-

tributed) datasets (Davis and Goadrich, 2006), owing to

their lack of dependence on signal absent (TN) cases. This

type of skew is common in long-term monitoring situations

where animals are only vocalizing within detection range

over a relatively small portion of the analysis effort, and

therefore the signal is absent most of the time.

PR curves can be calculated either using the individual

detections as the trials, or they can be calculated based on

fixed-length time windows. In the former, the times for the

detections are all that is needed to determine the three ele-

ments of the confusion matrix (TP, FP, and FN). When there

is overlap between the actual and predicted signal in time,

the detection is judged to be a TP. Likewise, FP occurs

when the predicted signal has no overlap with an actual sig-

nal, and a FN occurs when a true signal is not associated

with a predicted signal. PR removes the need to construct

trials with a time window, since it makes no use of the TN

FIG. 5. (Color online) Signal (orange) and noise (blue) scores drawn from normal distributions (A, B, C) and Rayleigh distributions (D, E, F). All distribu-

tions have a mean of 100 and standard deviation of 30. Signal means are higher than noise means by one (A,D), two (B, E), or three (C, F) standard

deviations.
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parameter. Likewise, PR avoids the risk of uniform segmen-

tation periods splitting TP signals into multiple trials.

Alternatively, the PR can be assessed during defined periods

for the trials, with the same procedure used for ROC or DET

curves.

G. Cost curve

Cost curves provide a means for performance measure-

ment that can be adapted to a specified cost function

(Drummond and Holte, 2006). Cost curves are trial-based

metrics for binary classifiers (þ/� classes) that assume that

there is a cost for misclassification, and that the cost for false

positives C(þj�) and for false negatives C(�jþ) may differ.

Since it is rare for the cost of these two types of errors to be

equivalent, a performance metric is needed which takes into

account the differences. The probability cost function (PCF)

has this characteristic,

PCFðþÞ ¼ pðþÞCð�jþÞ
pðþÞCð�jþÞ þ pð�ÞCðþj�Þ (6)

and varies between [0,1] as a function of the potential mis-

classification costs [cost of negative given positive: Cð�jþÞ
and vice versa Cðþj�Þ] and the distribution of positive

[pðþÞ] and negative [pð�Þ] samples. For equal misclassifi-

cation costs, C(þ/�)¼C(�/þ), the PCF simplifies to the

percentage of positive cases in the dataset. In cost space,

PCF is plotted against the normalized expected cost (NEC),

that is, the expected cost normalized by the cost of misclas-

sifying every example,

NEC ¼
1� TPð Þ p þð ÞC �jþð Þ þ FP p �ð ÞC þj�ð Þ

p þð ÞC �jþð Þ þ p �ð ÞC þj�ð Þ : (7)

In cost curves, the x axis represents the a priori probability

that a signal is present (equal cost case) and hence varies

between [0, 1]. The y axis is the expected cost, a linear com-

bination of the false positive and false negative probabilities

weighted by the cost of each type of error with the given a
priori distribution. When misclassification costs are the

same for FP and FN, the cost curve plots TP probability on

the x axis and error rate on the y axis.

Each point in ROC space corresponds to a line in cost

curve space. These lines show how the threshold (or other

criteria used to select the operating point) varies in perfor-

mance as the a priori probability of a signal being present

varies between 0 and 1 [the probability cost (x) axis].

Consequently, the points of an ROC curve produce a set of

lines in cost curve space, and the cost curve is defined as

the lower envelope of these lines. The lower envelope has

the lowest cost for any specific a priori probability of

signal.

In the metrics discussed so far, it is assumed that data

sets will have the same percentage of positive and negative

cases. The cost curve method adapts to changes in the per-

centage of signal presence and absence, which often varies

FIG. 6. (Color online) ROC (A),

DET (B), PR (C), and cost curves

(D) for normally distributed signal

and noise from Figs. 5(A)–5(C).

Mean difference (Dl) between signal

and noise is one (blue), two (red),

and three (orange) standard

deviations.
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between the data used to develop a detector and what is

encountered in the field. For example, the development data

may be relatively balanced, with a roughly equal number of

signal present and signal absent cases. However, for species

that are only seasonally present, multi-year field data would

contain a greater number of signal absent cases. Cost curves

account for these differences by enabling performance esti-

mation over signal present/absent distributions that are best

reflective of the circumstances under which the detector will

be applied. It should be noted that the detector itself may

have performance variability due to differing conditions

(e.g., a noisier background in winter months) that are not

accounted for by any of the metrics discussed.

As the a priori signal presence probability approaches

0 or 1, there is a point where the most efficient classifier is

a trivial one that either labels everything as signal (proba-

bility!1) or as no signal (probability!0). The cost lines

associated with these two trivial classifiers are plotted as

dotted lines (Figs. 6 and 7), and when the costs of both

types of error are equal, they intersect to form an isosceles

triangle anchored at 0 cost on either end of the probability

axis. Any place that the sides of this triangle pass under the

cost curve, a trivial detector will perform better than the

detector being measured, and this defines the range over

which the detector is effective. The computation and con-

ceptualization of cost curves is more complex than the

other methods, but they provide additional insight on detec-

tor performance at a given probability of positive

occurrence.

H. Comparison of performance metrics

To illustrate differences in the performance of these

metrics, we present scores from signal and noise distribu-

tions, modeled as either normal or Rayleigh distributions,

with varying degrees of overlap (Fig. 5) along with the

ROC, DET, PR, and cost curves that result from these distri-

butions (Figs. 6 and 7).

With greater separation between signal and noise, all

the error curves show improved performance (yellow curves

in Figs. 6 and 7). Normally distributed data result in curves

that bend toward the ideal operating point for the ROC

[upper left corner of Fig. 6(A)] and for the PR [upper right

corner in Fig. 6(C)], and curves that are straight lines in the

DET [Fig. 6(B)]. Cost curves for normally distributed data

form symmetric convex arcs with greater error (expected

cost) for equal numbers of positive and negative cases

(probability¼ 0.5) than for other operating conditions.

Rayleigh distribution were selected because they reflect

the statistics that occur when two Gaussian processes are

combined. Rayleigh distributions are asymmetric with long-

tails for high values. The performance metrics for Rayleigh

distributed scores (Egan, 1975) are somewhat better than for

normally distributed scores [compare Figs. 6(A) and 7(A),

Figs. 6(B) and 7(B), and Figs. 6(C) and 7(C)]. For these

data, it is somewhat easier to judge the performance from

the DET plot given the log-scaled display, particularly for

data points near the desired operating point [lower-left-hand

corner of Figs. 6(B) and 7(B)]. For Rayleigh distributions,

the cost curve reveals that the largest errors occur when the

FIG. 7. (Color online) ROC (A),

DET (B), PR (C), and cost curves

(D) for Rayleigh distributed signal

and noise from Figs. 5(D), 5(E).

Mean difference between signal and

noise is one (blue), two (red), and

three (orange) standard deviations.
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positive probability is in the range 0.3–0.4 (negative more

likely than positive).

The above binary detection metrics are used for what is

known as monophonic sound detection, estimating the pres-

ence or absence of a sequence of non-overlapping sound

events. A more complex situation arises for polyphonic
sound event detection (Mesaros et al., 2016), where sounds

from different sources occur in overlapping segments

(Parascandolo et al., 2016). This is the case when two spe-

cies (e.g., blue and fin whale) are both present and produc-

ing calls that overlap in time. It may also be the case when

different call types are produced by the same species and

overlap in time (e.g., simultaneous blue whale B and D

calls) and it is desired to detect both call types. Metrics are

needed for polyphonic detection algorithms, and a recently

described example is the polyphonic sound detection score
(Bilen et al., 2020). The key innovation of this metric is that

a detection is taken as correct when the time overlap of a

detection and of a corresponding ground truth label exceeds

a threshold value [cf. Roch et al. (2011)]. Metrics for over-

lap metrics and multi-class situations, are then fused into a

single score. In the current study, we have not considered

polyphonic sound detection metrics, but they are a topic

worthy of future study.

III. CASE STUDY RESULTS

Case studies for the application of these performance

metrics were drawn from the Seventh International

Workshop on Detection, Classification, Localization, and

Density Estimation of Marine Mammals using Passive

Acoustics (DCLDE, 2015). These acoustic data were col-

lected off the southern and central coast of California at sev-

eral locations, spanning all four seasons. Two different

datasets were provided, one with low-frequency sampling (1

or 1.6 kHz), appropriate for study of mysticetes, and one with

high-frequency sampling (200 or 320 kHz), appropriate for

the study of odontocetes. The low-frequency dataset contains

call-level markings for blue whale (Balaenoptera musculus)
D calls (Thompson et al., 1996) and fin whale (B. physalus)
40 Hz calls (�Sirović et al., 2013). The high-frequency dataset

consists of marked time periods for encounters with echolo-

cation clicks of species commonly found along the U.S. West

Coast, including Cuvier’s (Ziphius cavirostris) and Baird’s

beaked (Mesoplodon densirostris) whales (Baumann-

Pickering et al., 2013), Risso’s (Grampus griseus) and

Pacific white-sided (Lagenorhynchus obliquidens) dolphins

(Soldevilla et al., 2008), sperm whales (Physeter macroce-
phalus), unidentified porpoises (Phocoenidae spp.) and

unidentified odontocetes, as well as click-level markings for

only Cuvier’s beaked whales that supplemented the DCLDE

(2015) dataset.

A. Blue whale D call dataset

The D calls of blue whales (Thompson et al., 1996;

Oleson et al., 2007) are typically associated with multiple

foraging animals and are less consistent in frequency and

duration than the units of song (McDonald et al., 2006) that

are made as a sequence of calls by a single animal. D calls

are typically 1–4 s in duration and have a down-swept fre-

quency modulation, typically in the range of 90–25 Hz. The

challenge for detection and classification of D calls is to

account for the variability in these calls and similar con-

founding signals (Fig. 8). The evaluation dataset for these

calls covers 908D calls produced over three week in

January, late April/early May, and November at three differ-

ent recording sites (CINMS-B, DCPP-A, DCPP-C) in 2011

and 2012. Using a 3-min window as the unit of analysis

there were �104 time-bins in the dataset and 861 positive

time windows, yielding an 8.5% a priori probability of posi-

tive occurrence.

The generalized power law (GPL) detection algorithm

of Helble et al. (2012) is designed for signals that are nar-

rowband, but may be variable within a broad range of moni-

tored frequencies, well suited to the characteristics of blue

whale D calls. Rather than a conventional energy detector

(square of the Fourier amplitude) the GPL detector uses a

higher power (6) to provide increased signal-to-noise ratio.

The GPL detector also uses detection threshold parameters

that are robust against highly varying ocean noise condi-

tions. To evaluate the performance of the GPL algorithm for

blue whale D calls, a parameter for D call slope was varied

along with the detection threshold, producing a series of

curves for each performance metric.

Performance curves were constructed for the GPL blue

whale D call detector (Fig. 9). For methods that required

reporting signal presence/absence over discrete time bins

(DET, ROC, and COST curves), we segmented the record-

ing effort into 3 min bins. If any portion of the analyst-

reported (actual) calls occurred during a bin, a detection was

expected for that bin. If the call crossed the bin boundary,

detection was expected for both bins. The same process was

repeated for the (predicted) GPL detections. This resulted in

3 min bins that could be marked as actual call present or

absent and/or detection present or absent. From these, the

count of TP, FP, TN, and FN counts were constructed and

FIG. 8. (Color online) Four blue whale D calls from the DCLDE (2015)

evaluation dataset, down swept from �55 to 38 Hz. Data were collected in

the Santa Barbara Channel (34-17.126 N, 120-01.632 W, 580 m depth) on

23 June 2012 at 01:35 UTC.
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the ROC, DET, and PR curves generated. PR curves were

also computed by examining analyst and GPL detection

time labels, where TP resulted from intersecting labels, FP

were detection labels that did not overlap analyst labels, and

FN were the analyst detection labels that did not overlap

GPL detection labels. Cost curves were derived from the

ROC curves as discussed above.

The ROC curve for the GPL algorithm [Fig. 9(A)] sug-

gests moderate performance for D call detection. The point

on the ROC curve closest to the upper-left hand corner of

the plot (TP¼ 1, FP¼ 0) provided a 72% true positive per-

formance with a 26% false positive rate. The detector had

its best performance for call slope thresholds of �0.3 Hz/s.

Likewise, the DET curve [Fig. 9(B)] shows an equal error

rate (FN¼ FP) at �27% for call slope of 0.2 Hz/s and only

slightly weaker performance for slope of 0.3 Hz/s. These

performance rates are not greatly different than those of nor-

mally distributed synthetic data, with a 1-r signal-to-noise

ratio (Fig. 7). The PR curve [Fig. 9(C)] can be assessed both

for individual call performance and for 3 min time window

performance. Both have relatively low equal precision and

recall operating points at 32% and 40%, respectively. The

impact of the slope parameter is clearly shown in the spread

of precision at a given threshold, with improved precision at

higher slope (0.4 Hz/s) with little loss of recall. The cost

curve [Fig. 9(D)] suggests that below 10% or above 75% a

priori probability of signal presence (probability cost) the

GPL algorithm performs more poorly than assignment of all

calls to be false or true (respectively). Operating at equal

probability cost (0.5), the expected cost of the algorithm

(0.25) appears to be about half that of random guessing

(0.5). It is worth noting that in Helble et al. (2012) the proc-

essing chain involves a human analyst to review the detec-

tions, which would have greatly reduced false positives had

that been implemented here.

B. Cuvier’s beaked whale echolocation click dataset

The DCLDE (2015) evaluation dataset was also used to

study detection of Cuvier’s beaked whale’s echolocation

clicks. The beaked whale clicks in the manually annotated

dataset conform to previously reported characteristics for

Cuvier’s beaked echolocation clicks (Zimmer et al., 2005;

Hildebrand et al., 2015); they are short (200 ls) frequency-

upswept (35–45 kHz) signals, with a regular inter-click-

interval (0.4–0.5 s; Fig. 10). The rapidly produced (<0.15 s

inter-click-interval) buzz pulses that Cuvier’s beaked whales

are also known to produce while foraging (Zimmer et al.,
2005) were excluded from this analysis.

The DCLDE (2015) evaluation dataset for Cuvier’s

beaked whales contained three week of data recorded in

January 2009, August 2010, and March 2013, from three

FIG. 9. (Color online) ROC (A), DET (B), PR (C), and cost curves (D) for the GPL algorithm for blue whale D call detections with varying parameters for

call slope (line color) and detection threshold (1–5). PR curves are both for individual detections (dashed lines) and binned detection (solid lines).
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different recording sites (SOCAL-E, SOCAL-R, DCPP-C,

respectively) offshore from Southern California, at depths of

1000–1300 m (DCLDE, 2015). The time of individual

Cuvier’s beaked whale echolocation clicks was manually

determined as follows. A filter was applied to all the data

(fourth order elliptical bandpass filter with 0.1 dB bandpass

ripple, 40 dB stop band attenuation, bandpass edges of 10

and 95 kHz). The filtered signal was then rectified, and

whenever signal energy exceeding a threshold value

(121 dBpp re: 1 lPa) was observed, a 1 ms segment of data

centered around each detection was saved. A 30 ms lockout

period, where no further detections were allowed, followed

each detection to prevent detection of multiple reflections or

reverberant signals. This procedure resulted in 8� 106

potential echolocation clicks. These detected data were fur-

ther manually examined (Roch et al., 2021) using custom

software (Solsona-Berga et al., 2020) that allows encounter-

level visualization of data and elimination of incorrectly

classified clicks to remove false (non-beaked whale) detec-

tions. The Cuvier’s beaked whale echolocation detections

remaining after this procedure (total of 43 034 clicks) were

used as the manually annotated dataset. Using a one-hour

window as the unit of analysis there were 504 time-bins in

the dataset and 95 positive time windows, yielding a �19%

a priori probability of positive occurrence.

We evaluated a Cuvier’s beaked whale automated click

detection method against the manual detection dataset

described above. The automated method began with the full

range of echolocation click detections output from the filtered

raw acoustic data, as described above. A two stage unsuper-

vised learning (clustering) algorithm (Frasier et al., 2017)

then identified recurrent signal types across all detections

based on spectral features and modal inter-click intervals. In

the first phase of the analysis, the algorithm reviewed echolo-

cation clicks in five-minute time windows, computing mean

spectra and ICI distributions for one or more detection types

within each time window containing sufficient numbers of

events (at least 50 detections). In the second phase, unsuper-

vised clustering was used to identify a common set of

consistent detection types across all sites based on the mean

spectra and inter-click-interval distributions.

Seven signal categories were identified by the clustering

algorithm, attributed by an analyst to Cuvier’s beaked

whale, Risso’s dolphin, ships, echosounders, and three

unidentified delphinid click types. A random subset of

442 000 detections were used to train a deep neural network

to identify the seven signal types based on waveforms and

spectra. The network, implemented in KERAS and

TENSORFLOW, consisted of four dense hidden layers and a

SOFTMAX output layer (Frasier, 2021). Once trained, the net-

work was used to classify the 8� 106 detections. For each

event, the classifier returned a classification label (1–7) and

a probability of belonging to the selected class (scale of

0–1). The majority (57%) of detections labeled as Cuvier’s

beaked whales were given a high probability (>95%) of

belonging to that class. Probabilities as low as 30% were

retained in the analysis, about twice the probability

(14%¼ 1/7th) for random class selection. The data were

analyzed into hourly time bins by segmenting the effort

period by hour, and hourly bins with at least one click were

set as predicted positive and those without clicks as pre-

dicted negative.

The beaked whale detector performance curves (Fig. 11)

reveal an ROC curve with a �90% true positive rate and a

3%–5% false positive rate, with little variation due to the

probability of class assignment. The DET curve shows simi-

lar results with a 9%–10% false negative, or detection miss,

rate. The precise rates are somewhat easier to discern in the

DET curve due to the non-linear scale. The PR curve is plot-

ted for both hourly-bin performance (squares) and individual

detection performance (circles) in Fig. 11. The two ways of

assessing the PR performance show contrasting behaviors.

The metric based on hourly bins shows declining precision at

lower class probability thresholds, with little gain in recall,

suggesting that lower probability detections add FP bins

faster than additional correct detections (as might be

expected). However, the individual detection PR curve (dot-

ted line) shows that inclusion of lower probability detections

FIG. 10. (Color online) Cuvier’s beaked whale click parameters for the manually annotated dataset. (A) Center-frequency, (B) �3 db bandwidth, (C) dura-

tion, and (D) inter-click-interval. Parameters for clicks with well-defined duration, N¼ 38 296 except inter-click-interval with N¼ 29 985. See Baumann-

Pickering et al. (2013) for signal processing parameters.
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increases the recall performance with little impact on the pre-

cision. This is presumably due to many correctly detected

beaked whale clicks being added which would have been

counted as single detections in the binned metric. It can also

be seen that the recall is much lower, as the binned detections

have multiple opportunities to detect a single click. The cost

curve reveals that the beaked whale detector performance for

50% probability cost, the case where true and false detections

are equally likely, has an error of about 5% and that the

detector is only inferior to guessing when the signal is known

to be present in >93% of the observation windows.

IV. DISCUSSION

For the case of marine mammal calls, the presence of a

call is often a relatively rare event, which can result in class-

imbalance (large differences in the occupancy of cells

within the confusion matrix), particularly for TN time bins.

The selection of short periods (e.g., 3 min) for time bins will

result in a large number of TN events, which will inherently

reduce the false-positive-rate used in the ROC and DET

metrics. Longer time bins may result in better detector per-

formance but at the expense of temporal resolution.

However, longer time periods can obscure problems with

the detector by aggregating periods with good and poor per-

formance. Although various approaches have been proposed

to account for class imbalance it is still a significant problem

for signal classification. For the ROC curve, when the data

are highly imbalanced towards the signal absent case,

changes in the TP counts are more easily reflected in the

true positive rate than changes in the FP count are reflected

in the false positive rate. The problem is somewhat

addressed in the DET curve by using both FN and FP rates

and a non-linear scaling of the axes, but for both ROC and

DET curves the false positive rate may appear to suggest

low numbers of FP detections, when in reality there is a dis-

tortion based on a large percentage of TN.

PR has a clear advantage in not requiring discrete time-

binning of the data, and therefore may be less subject to the

issue of class imbalance described above. For the GPL blue

whale D call case study (Fig. 9), the PR curve which

depends upon individual detections (dotted lines), rather

than binned data (solid lines), suggests a weaker perfor-

mance for the algorithm than what is observed for the ROC

and DET curves. The GPL algorithm is designed for high

recall but typically produces low precision, and to alleviate

this it includes a pass by an analyst using a review tool to

discard false positives, although this final step of manual

editing was omitted for this test case. The PR curves based

on a 3 min time window suggest that the GPL detector can

achieve high recall (>90%) when the detector threshold is

low, but with only 50%–70% recall for individual calls. The

difference in PR based on individual call and time windows

also reveals that the choice of detector slope has an impact,

but only for high detector threshold with associated low

recall rates, which is typically not the way that this algo-

rithm is applied. The cost curve for the GPL algorithm pro-

vides additional insight, revealing that the algorithm is

effective for a range of a priori detection probabilities

(10%–75%). The selected 3 min time window provided an

FIG. 11. (Color online) ROC (A),

DET (B), PR (C), and cost curves

(D) for the Cuvier’s beaked whale

detections. Data are plotted for all

detections with >30% and >95%

probability of belonging to the class.

PR plot shows both for one-hour

time bins (square) and individual

detections (circle).
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8.5% detection probability, which is outside the range of

effectiveness revealed by the cost curve, suggesting that a

longer time window would be appropriate for this classifier

without the manual review step. The GPL detector also

illustrates the challenge of having a detector operate at a

particular performance point while dealing with the multiple

detector settings: detection threshold, call length, noise

baseline, and power-law. All these settings are subject to

adjustment—and knowing how to jointly adjust them is a

general issue when operating with more than one detector

parameter, one that we have not addressed here.

For the Cuvier’s beaked whale case study (Fig. 11),

even using a one-hour time window resulted in class imbal-

ance due to the rarity of this species. The ROC and DET

curves show exceptionally low false positive rates (3%–5%)

but by making reference to the PR curve we learn that the

precision is 60%–70% suggestive of high impact from the

FP count. The PR based on individual calls gives confidence

in the use of low score calls (>0.3) since they improve the

recall significantly (80%) with little or no impact on preci-

sion (75%). The cost curve for the beaked whale study sug-

gests low error across a broad range of operating conditions.

Recent studies of right whales calls (Kirsebom et al.,
2020; Shiu et al., 2020) used both PR and a curve that

showed FPR/h versus recall. This is hybrid precision-recall

plot where the precision is translated into a count of false

positives per unit time period. These plots do not provide

additional information but do provide a human interpretable

insight into the nuisance factor of false alarms. In many

cases, a human analyst quality checks the detections, and

high false positive rates make the use of an automated sys-

tem cost prohibitive.

V. CONCLUSION

The use of multiple metrics can be helpful in understand-

ing the performance of a detection algorithm. Visualization

of two performance metrics, for instance, ROC or DET as

well as PR, provides insight that cannot be obtained from a

single metric alone. Likewise, calculation of PR both for indi-

vidual call and for a time window allows assessment of how

the choice of window length has impacted the assessment.

Cost curves require some effort to understand, but they pro-

vide fresh insight into the range of operating conditions under

which a detector is effective. Likewise, they provide the flexi-

bility to specify the cost of different kinds of error, which is

often an important consideration in an operational setting.

A drawback of all of the performance metrics discussed

here is that they present curves representing the results of

changing a single tunable parameter, typically a threshold.

When the algorithm has a multidimensional parameter space,

the interaction between these parameters becomes more diffi-

cult to represent and should be the topic of future work.
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