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ABSTRACT
Species distribution models (SDMs) have been developed for multiple cetacean species within the California Current Ecosystem 
(CCE) from shipboard survey data collected by the Southwest Fisheries Science Center (SWFSC) in summer and fall, thus limiting 
the ability to inform management decisions in cool seasons when abundance and distribution patterns are substantially different. 
Winter and spring SDMs have been developed for a few species using California Cooperative Oceanic Fisheries Investigations 
(CalCOFI) shipboard survey data, but model predictions are limited to the waters off southern and central California. In this 
study, winter and spring density estimates for the entire CCE study area were made from SWFSC summer and fall model predic-
tions (temporal extrapolation) and CalCOFI winter and spring model predictions (spatial extrapolation) for short-beaked common 
dolphin (Delphinus delphis delphis), Pacific white-sided dolphin (Lagenorhynchus obliquidens), Dall's porpoise (Phocoenoides 
dalli), and fin whale (Balaenoptera physalus). The performance of the models was compared based on available abundance es-
timates and documented distribution patterns in the cool seasons. Results reveal species-specific ecological factors to consider 
when extrapolating model predictions temporally or spatially, including whether a given study area includes a species “core hab-
itat”, and whether static variables should be included when a species exhibits temporal distribution shifts.

1   |   Introduction

Effective marine species management and conservation mea-
sures require spatially- and temporally-explicit predictions of 
species abundance and distribution. Species distribution mod-
els (SDMs) have been established as important tools for marine 

conservation and management because they can be used to 
predict abundance and distribution patterns of seabirds, fish, 
sea turtles, cetaceans, and other species (Abrahms et al. 2019; 
Becker et al. 2016, 2022; Eguchi et al.  2017; Gilles et al.  2011; 
Hammond et al. 2013; Hazen et al. 2017, 2018; Louzao et al. 2006; 
Oppel et al. 2012; Redfern et al. 2013; Torres et al. 2015; Welch 
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et al. 2019). Habitat-based density models, which integrate en-
vironmental data into SDMs, are particularly useful in the ma-
rine environment where many species exhibit dynamic changes 
in abundance and distribution in response to changing oce-
anic conditions within a given region (Becker et al. 2014, 2017, 
2018; Cañadas and Hammond 2008; Gilles et al. 2016; Roberts 
et al. 2016).

Ideally, SDMs would be developed based on data specific to 
each area and season of interest; however, financial and lo-
gistical constraints often limit data collection to a subset of 
regions or time periods. Extrapolation of model predictions, 
either spatially or temporally, may be necessary to support 
management decisions when no alternatives are available 
(Mannocci et al. 2015; Roberts et al. 2016; Wang et al. 2021). 
Such extrapolated predictions, when applied with care from 
solidly developed SDMs, are often considered superior to 
having no information to support conservation or manage-
ment decisions (Bouchet et al. 2019; Forbes and Calow 2002; 
Mannocci et al. 2017; Miller et al. 2004).

As human populations and their impacts on marine species 
grow, conservation demands will likely increase the interest 
in extrapolating SDMs to novel regions and time periods; how-
ever, model transferability has only been assessed for a few 
marine species (e.g., Mannocci et al. 2017; Redfern et al. 2017; 
Torres et  al.  2015). Torres et  al.  (2015) evaluated extrapo-
lated predictions of gray petrel (Procellaria cinerea) habitat 
use across the Southern Hemisphere and found that in novel 
ecosystems the SDMs could identify potential distributions 
(where a species could live) but were not able to predict real-
ized distributions (where a species actually occurs relative to 
available habitat). Redfern et al. (2017) evaluated the transfer-
ability of blue whale (Balaenoptera musculus) SDMs from two 
well-sampled ecosystems to a data-poor ecosystem and found 
that ecosystem-specific models were not transferable, while 
models developed using data from two diverse ecosystems 
performed better. Most of the marine studies to date have fo-
cused on extrapolations from well surveyed regions to poorly 
surveyed regions that are separated geographically from one 
another, rather than temporal or spatial extrapolations within 
a specific ecosystem (e.g., Mannocci et  al.  2015; Redfern 
et  al.  2017). In ecosystems that exhibit substantial temporal 
and spatial variability in oceanic conditions, it is important 
to assess the accuracy of both temporal and spatial extrapo-
lations, particularly where extrapolation is required to meet 
critical management needs.

In the California Current Ecosystem (CCE), a long history 
of studies has documented dynamic changes in cetacean 
abundance and distribution associated with seasonal and 
interannual variability in oceanic conditions throughout the 
region (Becker et al. 2014, 2017, 2018, 2020; Boyd et al. 2018; 
Campbell et  al.  2015; Dohl et  al.  1978; Douglas et  al.  2014; 
Forney and Barlow 1998; Hazen et al. 2017). SDMs have been 
developed for many cetacean species in the CCE using system-
atic survey data collected by the Southwest Fisheries Science 
Center (SWFSC) off the U.S. West Coast since 1991 (Barlow 
et al. 2009; Becker et al. 2010, 2012, 2016, 2020; Forney 2000; 
Forney et  al.  2012; Redfern et  al.  2013). The majority of the 
1991–2018 SWFSC survey effort (Figure  1) has been limited 

to the summer and fall months, because weather conditions 
during winter and spring are too rough for ship-based sur-
veys. Density predictions based on SDMs developed from 
summer and fall survey data have been used for multiple 
management applications, for example, to assess ship-strike 
risk for large whales (Redfern et  al.  2013, 2019; Rockwood 
et al. 2017); to evaluate the risk of chronic shipping noise on 
cetaceans in Southern California (Redfern et  al.  2017); and 
to evaluate potential impacts to cetaceans from conducting 
Navy at-sea training and testing activities (Becker et al. 2016, 
2018, 2020, 2022; Forney et al. 2012; U.S. Department of the 
Navy  2015, 2017). These SDMs allow the assessment of an-
thropogenic activities during summer and fall, but potential 
impacts during winter and spring are not adequately cap-
tured. Becker et  al.  (2014) evaluated seasonal extrapolations 
for three cetacean species and showed that such extrapola-
tions can be informative for some species, particularly when 
the range of covariates used to construct the model is similar 
to that observed in the alternate season. However, the study 
also illustrated the risk of extrapolating outside of the mod-
eled covariate space, underscoring the need for further studies 
to assess when and how extrapolations can be made reliably 
across space and time.

In the present study, we compare the performance of tem-
porally extrapolated cetacean SDM predictions (from sum-
mer and fall to winter and spring seasons) to those that are 
spatially extrapolated within a season from one portion of 
the CCE study area to the entire CCE region. For simplic-
ity, “warm season” refers to summer and fall while “cool 
season” refers to winter and spring (U.S. Department of the 
Navy  1977). Our comparison uses two sets of cetacean sur-
veys: (1) the 1991–2018 CCE-wide summer and fall surveys 
conducted by SWFSC that have formed the basis for the 
SDMs described in Becker et  al.  (2012, 2014, 2016, 2020), 
and (2) the 2005–2020 marine mammal surveys conducted 
during quarterly California Cooperative Oceanic Fisheries 
Investigations (CalCOFI) cruises off southern and central 
California (Campbell et al. 2015; Douglas et al. 2014). A subset 
of the latter data (2005 to 2015) was previously used to develop 
winter and spring SDMs for short-beaked common dolphin 
(Delphinus delphis delphis), Dall's porpoise (Phocoenoides 
dalli), and humpback whale (Megaptera novaeangliae) (Becker 
et al. 2017). Those results provided the first spatially explicit 
density predictions for these species off central and south-
ern California during the cool seasons and confirmed that 
abundance and distribution patterns differed markedly from 
those documented for summer and fall. However, since the 
CalCOFI study area covers only a portion of the CCE study 
area (Figure 1), seasonal variability in species abundance and 
distribution patterns north of 38° N was not captured.

The analysis presented below examines whether temporal or 
spatial extrapolations can be used to provide seasonally resolved 
SDMs for the entire CCE region, filling a data gap that is increas-
ingly important for management of anthropogenic activities 
along the U.S. West Coast. Sample sizes were sufficient to com-
pare extrapolated model results for four taxonomically and eco-
logically diverse species: short-beaked common dolphin, Pacific 
white-sided dolphin (Lagenorhynchus obliquidens), Dall's por-
poise, and fin whale (Balaenoptera physalus).
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1.1   |   Species Overview

Below is a brief summary of information on what is currently 
known about the distribution, abundance, and trends of the 
four species examined, to provide ecological context for this 
analysis.

1.1.1   |   Short-Beaked Common Dolphin

During the late 1970s and early 1980s along the U.S. West 
Coast, short-beaked common dolphins were sighted primar-
ily south of Point Conception (Dohl et al. 1983), but since the 
early 2000s they have been commonly encountered as far 
north as 42° N (Hamilton et al. 2009), and occasionally as far 
north as 48° N (Forney 2007). Seasonal distribution shifts are 
pronounced, with a significant southerly shift south of Point 
Arguello in the winter (Becker et  al.  2014; Campbell et  al. 
2015; Forney and Barlow  1998). Short-beaked common dol-
phins are a warm temperate to tropical species, and based on 
habitat models developed using line-transect survey data off 
the U.S. West Coast from 1991 to 2018, densities are great-
est when waters are warmest (Barlow et  al.  2009; Becker 

et al. 2010, 2016, 2014, 2018, 2020; Forney and Barlow 1998). 
Barlow (2016) noted a nearly monotonic increase in the abun-
dance of short-beaked common dolphins from 1991 to 2014 
off the U.S. West Coast in summer and fall. Predictions from 
habitat-based density models indicate a similar increase in 
summer and fall short-beaked dolphin abundance off the U.S. 
West Coast from 1996 to 2018, with the most recent (2018) 
abundance estimate of 1,056,308 (CV = 0.207) (Barlow  2016; 
Becker et al. 2020; Carretta et al. 2023). However, the increase 
in short-beaked common dolphin abundance could be due to a 
northward movement of animals from waters off Mexico, and 
additional analyses are required to better assess potential pop-
ulation trends (Barlow 2016; Becker et al. 2022).

1.1.2   |   Pacific White-Sided Dolphin

Pacific white-sided dolphins are found in cold temperate waters 
across the northern rim of the Pacific Ocean as far north as the 
southern Bering Sea and as far south as the Gulf of California 
off Mexico (Jefferson et  al.  2015). Forney and Barlow  (1998) 
found significant north/south shifts in the seasonal distribu-
tion of Pacific white-sided dolphins off California, with animals 

FIGURE 1    |    The Southwest Fisheries Science Center California Current Ecosystem (CCE) approximate 1,141,800 km2 study area off the U.S. 
West Coast and on-effort tracklines completed during the 1991–2018 surveys (dark blue lines). The smaller California Cooperative Oceanic Fisheries 
Investigations (CalCOFI) approximate 385,460 km2 study area encompasses the CalCOFI sampling stations (yellow and orange triangles); surveys 
are conducted along the southwest to northeast parallel lines running between the sampling stations. The main six southern CalCOFI transect lines 
are surveyed quarterly, and an additional five northern lines are surveyed less frequently and only during the winter and spring (refer to Table 2).
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moving north into Oregon and Washington waters during 
summer and showing increased abundance in the Southern 
California Bight during winter. During the unusually warm 
water conditions present in 2014, there were few sightings of 
Pacific white-sided dolphins off central and southern California 
(Barlow 2016). There is considerable seasonal and annual vari-
ability in the abundance and distribution of Pacific white-sided 
dolphins off the U.S. West Coast, and no long-term population 
trends have been identified (Carretta et al. 2023). Based on data 
collected in summer and fall, the most recent (2018) abundance 
estimate for Pacific white-sided dolphins off California, Oregon, 
and Washington is 34,999 (CV = 0.222) (Becker et  al.  2020; 
Carretta et al. 2023).

1.1.3   |   Dall's Porpoise

Dall's porpoises are one of the most common odontocete species 
in North Pacific waters, occurring primarily between 30° N and 
62° N, although during unusually cool water periods they occur 
as far south as 28° N (Jefferson et al. 2015). The distribution of 
Dall's porpoises off the U.S. West Coast is highly variable between 
years, most likely due to changes in oceanographic conditions 
(Barlow et al. 2009; Becker et al. 2016, 2018, 2020; Forney 2000; 
Forney et  al.  2012). North–south movements in California, 
Oregon, and Washington have been observed, with Dall's por-
poises shifting their distribution southward during cooler-water 
periods on both interannual and seasonal time scales (Becker 
et  al.  2014, 2018; Boyd et  al.  2018; Forney and Barlow  1998). 
Based on habitat models developed using 1991–2018 survey data 
collected in waters off the U.S. West Coast during summer and 
fall, Dall's porpoise density was greatest in shelf and slope wa-
ters, and decreased substantially in waters warmer than approx-
imately 17°C (Barlow et al. 2009; Becker et al. 2020, 2016, 2020; 
Forney et al. 2012). During ship surveys conducted quarterly off 
southern California from 2004 to 2008, Dall's porpoises were 
encountered year-round, with highest encounters during the 
cold-water months (Douglas et al. 2014). Given the substantial 
variability in the abundance and distribution of Dall's porpoises 
off the U.S. West Coast, no long-term population trends have 
been identified (Carretta et al. 2023). Based on data collected in 
summer and fall, the most recent (2018) abundance estimate for 
Dall's porpoises off California, Oregon, and Washington is 16,498 
animals (CV = 0.608) (Becker et al. 2020; Carretta et al. 2023).

1.1.4   |   Fin Whale

Fin whales exhibit complex movement patterns within the 
California Current Ecosystem, and do not appear to follow 
the typical baleen whale migration model. Satellite tracking 
shows that the movements of fin whales off the U.S. West 
Coast are highly variable, exhibiting both long-range move-
ments along the entire coast as well as short seasonal trips 
in spring and fall (Falcone and Schorr 2014; Mate et al. 2015; 
Scales et al. 2017). In summer and fall, fin whales are broadly 
distributed in relatively high densities off the U.S. West Coast, 
with aggregations of fin whales present year-round in southern 
and central California (Barlow et al. 2009; Becker et al. 2016, 
2018, 2020; Calambokidis et  al.  2024; Campbell et  al.  2015; 
Dohl et al. 1983; Douglas et al. 2014; Forney and Barlow 1998; 

Scales et al. 2017). Sightings from year-round surveys off south-
ern California from 2004 to 2013 show fin whales farther off-
shore in summer and fall and closer to shore in winter and 
spring (Campbell et al. 2015; Douglas et al. 2014). Analysis of 
long-term photo identification data suggests that two overlap-
ping populations of fin whales occur off the U.S. West Coast, 
a transient population with broad seasonal movements that 
range from the Southern California Bight north to waters off 
Washington and a year-round resident population within the 
Southern California Bight that exhibits seasonal inshore and 
offshore shifts in distribution (Falcone et  al.  2022). Analyses 
of line-transect survey data collected during summer and fall 
between 1991 and 2018, including design-based estimates, 
habitat-based density models, and Bayesian trend analyses, 
indicate that fin whale abundance in the California Current 
increased during this period (Becker et  al.  2020; Moore and 
Barlow 2011; Nadeem et al. 2016). Based on data collected in 
summer and fall, the most recent (2018) abundance estimate 
for fin whales off California, Oregon, and Washington is 11,065 
(CV = 0.405) (Becker et al. 2020; Carretta et al. 2023).

2   |   Material and Methods

2.1   |   Study Area and Field Methods

The California Current Ecosystem (CCE) study area includes 
waters off the U.S. West Coast out to approximately 555 km 
offshore, while the CalCOFI study area is approximately one 
third the size of the CCE study area, encompassing 11 tran-
sect lines that run roughly perpendicular to the coast be-
tween sampling stations off southern and central California 
(Figure 1). Cetacean sighting data collected by the Southwest 
Fisheries Science Center (SWFSC) during systematic ship sur-
veys within waters of the CCE from 1991 to 2018 (Table 1) were 
used to develop summer and fall SDMs, following the methods 
of Becker et al.  (2020), but with a different set of covariates, 
as described below. The winter and spring SDMs were devel-
oped using cetacean sighting data collected during quarterly 
CalCOFI cruises conducted from 2005 to 2020 (Table 2), fol-
lowing the methods of Becker et al. (2017), again with a differ-
ent set of covariates. While there was some temporal variation 
in the timing of the cruises, winter surveys were generally 
conducted in January and February, and spring surveys in 
March and April. The CalCOFI cruises were conducted along 
six main transect lines located off Southern California, with 
lines increasing in length from north to south (470–700 km; 
Figure 1). There are five additional transect lines located off 
central California that were surveyed less frequently (Figure 1, 
Table 2). Cetacean sighting data collected on all the lines were 
included in this study to capture the broadest possible range 
of habitat types in the models. Both the SWFSC summer and 
fall and CalCOFI winter and spring surveys were conducted 
using line-transect methods (Buckland et al. 2001), although 
protocols varied somewhat as summarized below.

2.1.1   |   SWFSC Summer and Fall Surveys

Each survey used a NOAA research vessel and a team of six ex-
perienced visual observers. For each rotation, three observers 
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stationed on the flying bridge of the ship visually searched for 
and recorded cetacean sightings between 0° and 90° to port and 
starboard using standard line-transect protocols. The height of 
the flying bridge varied between the four vessels used on these 
surveys, but this was found to be the least important factor af-
fecting perpendicular sighting distances on SWFSC shipboard 
line-transect surveys (Barlow et  al.  2001). Port and starboard 
observers searched with pedestal-mounted 25 × 150 binoculars, 
and a center-stationed third observer searched by eye or with 
handheld 7 × 50 binoculars. Sightings were recorded along with 
distance and direction from the vessel, from which perpendic-
ular sighting distance was calculated. For sightings that were 
within three nautical miles (5.6 km) perpendicular of the tran-
sect, the ship would typically divert “off-effort” to approach the 
animals for species identification and group size estimation. All 
observers independently provided best, high, and low group size 
estimates and percentages of each species identified within the 
group. For each observer, the best estimate was multiplied by 
the estimated percentage of each species, and the resulting num-
bers were averaged across all observers (i.e., arithmetic mean) 
to obtain a single group size estimate for each sighting. The sur-
vey protocols were the same for all years and are described in 
more detail elsewhere (e.g., Barlow and Forney  2007; Kinzey 
et al. 2000).

2.1.2   |   CalCOFI Winter and Spring Surveys

Six different research vessels were used during the 2005–2020 
survey period, but Douglas et al.  (2014) found no significant 
difference in perpendicular sighting distances for vessels with 
varying platform height. All surveys were conducted in pass-
ing mode (i.e., the vessel was not diverted for species identi-
fication or group size enumeration following a sighting) with 
two dedicated observers searching for cetaceans using the un-
aided eye and 7 × 50 handheld binoculars. Sighting, group size 
estimates, effort, and weather data were systematically logged 
and entered into an electronic record. We included only sight-
ings made when two observers were on effort on the standard 

CalCOFI lines, excluding transits. Detailed descriptions of 
the survey protocol can be found in Douglas et al. (2014) and 
Campbell et al. (2015).

2.2   |   Data Processing and Habitat Variables

To create samples for both the SWFSC summer and fall and 
CalCOFI winter and spring SDMs, continuous portions of on-
effort survey tracklines were divided into approximate 5-km 
segments using methods described by Becker et al. (2010). The 
5-km segment length was selected to be fine enough to capture 
finer-scale changes in habitat conditions in the CCE study area 
(e.g., bathymetry), and coarse enough to reduce the number of 
segments with no sightings (Barlow et al. 2009). Only on-effort 
data collected in Beaufort sea state conditions ≤ 5 within the 
CCE study area were used in model development. The total 
number of species-specific sightings and associated average 
group size estimates were assigned to each segment, and habi-
tat covariates were derived based on the segment's geographical 
midpoint.

Environmental variables from a data-assimilative CCE imple-
mentation of the Regional Ocean Modeling System (ROMS), 
produced by the University of California Santa Cruz Ocean 
Modeling and Data Assimilation group (Moore et  al.  2011), 
were used as dynamic predictors, as they have proven effec-
tive in SDMs for this study area (Abrahms et al. 2019; Becker 
et al. 2016, 2017, 2018, 2020; Hazen et al. 2018; Lezama-Ochoa 
et al. 2024). Daily averages for each variable at the approximate 
10 km × 10 km pixel (i.e., picture element) resolution of the 
ROMS output were used in the models. The suite of potential 
dynamic predictors included sea surface temperature (SST) and 
its standard deviation (SSTsd; calculated for a 3 × 3-pixel box 
around the modeling segment midpoint), mixed layer depth 
(MLD, defined by a 0.5°C deviation from the SST), sea surface 
height (SSH), and the standard deviation of sea surface height 
(SSHsd; also calculated for a 3 × 3-pixel box around the mod-
eling segment midpoint). Water depth was also included as a 

TABLE 1    |    Cetacean and ecosystem assessment surveys conducted during 1991–2018 and used to develop the summer and fall habitat-based 
density models for the California Current Ecosystem study area.

Survey Dates Effort (km) Regions Source

CAMMS91 Jul–Nov 1991 10,353.60 California Hill and Barlow (1992)

PODS93 Jul–Nov 1993 6437.40 California/Baja Mangels and Gerrodette (1994)

ORCAWALE96 Jul–Nov 1996 15,530.80 WA, OR, CA von Saunder and Barlow (1999)

ORCAWALE01 Jul–Dec 2001 10,343.40 WA, OR, CA Appler et al. (2004)

CSCAPE05 Jul–Dec 2005 10,221.90 WA, OR, CA Forney (2007)

ORCAWALE08 Jul–Nov 2008 12,242.30 WA, OR, CA Barlow et al. (2010)

DELPHINUS09 Sept–Dec 2009 4389.10 CenCA, SoCA, Baja Chivers et al. (2010)

CalCurCEAS14 Aug–Dec 2014 10,205.40 WA, OR, CA Barlow (2016)

CCES18 June–Dec 2018 9554.70 Canada. WA, OR, CA, Baja Henry et al. (2020)

Total 89,278.60

Note: Regions covered within the study area: WA, Washington; OR, Oregon; CA, California; CenCA, Central California; SoCA, Southern California; Baja, Baja 
California, Mexico.
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potential predictor, derived from the ETOPO1 1-arc-min global 
relief model (Amante and Eakins  2009). All covariate values 
were obtained for the midpoint of each transect segment.

Unlike previous SDMs developed using the same SWFSC CCE 
survey data (e.g., Becker et al. 2020), none of the models were 
offered spatial (latitude, longitude) or temporal (year) covari-
ates because these terms can limit a model's forecasting ability 
(Becker et  al.  2018). For example, if latitude was included in 

the CalCOFI winter and spring models, it would preclude mak-
ing predictions outside of that original spatial domain into the 
broader CCE study area. Further, year can act as a proxy for a 
dynamic variable, which in this case could confound the spatial 
and seasonal extrapolations.

2.3   |   Modeling Methods

2.3.1   |   General Approach

To provide temporal extrapolations, we developed habitat-based 
models of cetacean density using sighting data collected from 
SWFSC surveys conducted throughout the CCE study area in 
summer and fall between 1991 and 2018 (Table  1). Given that 
the CalCOFI surveys are conducted quarterly, we initially in-
vestigated the potential for combining the SWFSC and CalCOFI 
summer and fall data into a single model, using the summer and 
fall sighting data to evaluate performance. We found that the 
summer and fall distribution patterns predicted from the com-
bined model results were not as accurate as models built only 
with the SWFSC data. Since the CalCOFI survey data provided a 
relatively minor contribution to the sample sizes available from 
the SWFSC data, and predictive power did not increase using 
a combined model, we developed the summer and fall models 
using only the SWFSC data. For the spatial extrapolations, we 
built models from 29 CalCOFI shipboard surveys conducted 
during winter and spring between 2005 and 2020 (Table 2).

Using a well-established Generalized Additive Modeling (GAM; 
Wood  2017) framework based on distance sampling (Buckland 
et al. 2001), models were fit for four species with sufficient sample 
sizes available in both datasets for modeling (Table 3): short-beaked 
common dolphin, Pacific white-sided dolphin, Dall's porpoise, 
and fin whale. Habitat variables included both static and dynamic 
predictors shown to be important in previous SDMs (e.g., Becker 
et al. 2014, 2016; Hazen et al. 2017). We thus produced two sets 
of models for each species: (1) a summer and fall model that cov-
ered the entire CCE study area, and (2) a winter and spring model 
that only covered the more limited CalCOFI study area off cen-
tral/southern California (Figure 1). Both the SWFSC summer and 
fall models and the CalCOFI winter and spring models were then 
used to predict on habitat conditions from December to February 
(“winter”) and March to May (“spring”) for waters throughout the 
CCE study area from 2017 to 2021 using techniques designed to re-
duce or avoid spatial and temporal extrapolation artifacts (Bouchet 
et al. 2019). The resulting models provided a comparison of tem-
poral (seasonal) extrapolations from the SWFSC summer and fall 
models and spatial extrapolations from the CalCOFI winter and 
spring models. Spatial distribution patterns and study area abun-
dance estimates derived from the two sets of model predictions 
were evaluated based on what is currently known about species 
occurrence off the U.S. West Coast in the cool seasons.

2.3.2   |   Detection Parameters

Two detection parameters are required to estimate density from 
line-transect surveys: (1) the effective strip width (ESW), which 
provides a measure of the distance from the trackline at which 
species were seen based on the probability detection function, 

TABLE 2    |    Cetacean survey data used to develop the winter and 
spring habitat-based density models for the California Cooperative 
Oceanic Fisheries Investigations (CalCOFI) study area.

Year Dates Region

2005 Jan 4–19 South

Apr 15–30

2006 Feb 4–25 Full

Apr 1–17

2007 Jan 12−Feb 2 Full

Mar 28−Apr 16

2008 Jan 8–24 South

Mar 25−Apr 6

2009 Jan 8–22 South

Mar 7–21

2010 Jan 13−Feb 4 Full

2011 Jan 12−Feb 6 Full

2012 Jan 27−Feb 3 South

Mar 26−Apr 3

2013 Jan 11–31 Full

Apr 6–29

2014 Jan 29−Feb 4 South

Mar 28−Apr 17

2015 Jan 15−Feb 7 Full

Apr 4–19

2016 Jan 7–24 Full

Apr 1–21

2017 Jan 5–19 Full

Mar 28−Apr 19

2018 Feb 1–9 Full

Apr 5–26

2019 Feb 6–12 South

Apr 2–17

2020 Jan 4–21 South

Note: Entries under “Region” indicate if there was effort on only the six main 
CalCOFI southern transect lines (“South”) or on all 11 transect lines, including 
the five northern CalCOFI transect lines (“Full”; see Figure 1).
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and (2) g(0), the probability of detection directly on the transect 
line. Following the methods of Becker et  al.  (2016), species-
specific and segment-specific estimates of both ESW and g(0) 
were incorporated into the summer and fall models based on 
the recorded detection conditions on that segment and using 
coefficients estimated specifically for the CCE dataset based on 
methods of Barlow et al. (2011) for ESW and Barlow (2015) for 
g(0). For those segments where the average Beaufort sea state 
was 0 (< 1% of the segments), g(0) was assumed to be 1, that is, 
that all animals directly on the transect line were detected.

Only data from winter and spring were used to fit the winter and 
spring models; however, detection functions were fit to the full 
(year-round) 2005–2020 CalCOFI sighting data following meth-
ods of Becker et al.  (2017) to increase the sample size for fitting 
the detection functions. The summer and fall CalCOFI data pro-
vided an additional 196 short-beaked common dolphin, 28 Pacific 
white-sided dolphin, 7 Dall's porpoise, and 180 fin whale sightings. 
Both half-normal and hazard-rate key functions with no adjust-
ment terms were fit, and Akaike's information criterion (AIC; 
Akaike 1973) and visual inspection of the detection plots (Thomas 
et al. 2010) were used to select the best model. Given the influ-
ence of Beaufort sea state on detectability (Barlow 2015; Barlow 
et al. 2001, 2011), there is potential for heterogeneity in detection 
functions to bias results (Rexstad et al. 2023); therefore, detection 
functions were generated with Beaufort sea state as a covariate 
(Buckland et al. 2001; Marques et al. 2007) using the R packages 
mrds (v. 2.2.3) and Distance (v. 1.0.2). Species-specific and segment-
specific estimates of ESW were then incorporated into the models 
based on the recorded sea state conditions on that segment.

The segment-specific estimates of g(0) derived specifically for 
the SWFSC CCE dataset and based on methods of Barlow (2015) 
were also applied to the winter and spring CalCOFI dataset. 
These g(0) estimates are expected to be minimum corrections 
(i.e., likely underestimate density) for the two-person observer 
team during CalCOFI surveys, because the estimates based on 
Barlow (2015) were for a 3-person observer team including two 
observers searching with pedestal-mounted 25 × 150 binoculars.

2.3.3   |   Additional Correction Factors

Conducting surveys in passing mode limits the ability of observ-
ers to positively identify species, resulting in a large number of 

unidentified large whales and unidentified common dolphins 
(either D. delphis delphis or D. delphis bairdii). All of the CalCOFI 
winter and spring surveys were conducted in passing mode, as 
was some of the effort on the summer and fall 2018 SWFSC sur-
vey. Omitting these “unidentified large whale” and “unidentified 
common dolphin” sightings from the modeling datasets would 
have resulted in an underestimation of animal density for fin 
whales and short-beaked common dolphins. To reduce this po-
tential downward bias, species-specific correction factors were 
applied to all CalCOFI segments and to passing-mode segments 
of the SWFSC 2018 survey to account for unidentified animals, 
using the methods described in Becker et al. (2017) and Becker 
et al. (2020).

For both the large whale and common dolphin groups, the cor-
rection factor c was estimated from the sighting data according 
to the simplified formula:

where ttgt is the number of individuals identified as the target spe-
cies, toth is the number of individuals identified as other species 
within the broader species group, and tunid is the number of un-
identified individuals in that species group. Due to the potential 
effect of Beaufort sea state on detectability (Barlow 2015; Barlow 
et al. 2001, 2011), the correction factors were evaluated to deter-
mine if they varied by sea state. If so, separate correction factors 
were developed by sea state; otherwise, a single correction factor 
was applied. The correction factors were applied to the numbers 
of animals estimated per segment in the SDMs for short-beaked 
common dolphins and fin whales (see Equation 2 below).

2.3.4   |   Habitat Models

Modeling methods largely followed those described in Becker 
et  al.  (2020) for the summer and fall models and Becker 
et al. (2017) for the winter and spring models. For both sets of 
models, GAMs were developed in R (v. 4.0.2; R Core Team 2022) 
using the package “mgcv” (v. 1.8–31; Wood  2011). Restricted 
maximum likelihood (REML) was used to obtain parameter 
estimates (Marra and Wood 2011). The shrinkage approach of 
Marra and Wood (2011) was used to potentially remove terms 
from each model by modifying the smoothing penalty, allowing 

(1)c = 1 +
tunid

ttgt + toth

TABLE 3    |    Number of sightings (# sights) and average group size (Avg. GS) of cetacean species observed during the Southwest Fisheries Science 
Center (SWFSC) 1991–2018 summer/fall and California Cooperative Oceanic Fisheries Investigations (CalCOFI) 2005–2020 winter/spring shipboard 
surveys for which habitat-based density models were developed.

SWFSC Summer/Fall
CalCOFI Winter/

Spring

Common name Taxonomic name # Sights Avg. GS # Sights Avg. GS

Short-beaked common dolphin Delphinus delphis delphis 1034 155.73 256 81.73

Pacific white-sided dolphin Lagenorhynchus obliquidens 296 54.7 48 34.72

Dall's porpoise Phocoenoides dalli 678 3.72 88 6.35

Fin whale Balaenoptera physalus 558 2.06 39 1.64

Note: All sightings were made while on systematic effort in Beaufort sea states ≤ 5 within the species-specific truncation distances (see text for details).
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the smooth effect to be shrunk to zero. Additionally, to avoid 
overfitting, an iterative forwards/backwards selection process 
was used to remove variables that had p-values > 0.05 (Redfern 
et al. 2017; Roberts et al. 2016).

Two different species-specific modeling frameworks were used, 
depending on group size characteristics. For all species except 
the short-beaked common dolphin, GAMs were fit using the 
number of individuals of the given species per transect seg-
ment as the response variable using all transect segments and 
a Tweedie distribution to account for overdispersion. For the 
short-beaked common dolphin, a species that has very large 
and variable group sizes (e.g., 1 to 2000 animals per sighting), a 
separate group encounter rate model was developed. The group 
encounter rate model was built using all transect segments, re-
gardless of whether they included sightings, using the groups 
sighted per segment as the response variable and a Tweedie dis-
tribution to account for overdispersion (Miller et al. 2013). The 
expected group size based on the size bias regression method 
(Buckland et al. 2001; Thomas et al. 2010) was then used in the 
density equation (see Equation 2 below). The full suite of poten-
tial habitat predictors was offered to both the group encounter 
rate and single response GAMs.

Predictions from the final models were incorporated into the 
standard line-transect equation (Buckland et  al.  2001) to esti-
mate density (D; number of animals per km2):

where i is the segment, n is the number of sightings on segment i, 
s is the average group size (i.e., number of a given species present 
in a group) on segment i, c is the species-specific correction fac-
tor for unidentified common dolphins or large whales (derived 
in Equation 1 and assumed to be 1 for all other species) based 
on sea state conditions on segment i, and A is the effective area 
searched for segment i:

where Li is the length of the effort segment i, ESWi is the effec-
tive strip half-width, and g(0)i is the probability of detection on 
the transect line.

Model performance was evaluated using established metrics, in-
cluding the percentage of explained deviance, the area under the 
receiver operating characteristic curve (AUC; Fawcett  2006), 
the true skill statistic (TSS; Allouche et  al.  2006), and visual 
inspection of predicted and observed distributions during the 
1991–2018 summer and fall and 2005–2020 winter and spring 
cetacean surveys (Barlow et al. 2009; Becker et al. 2016, 2017; 
Forney et al. 2012). AUC measures the accuracy of predicting ob-
served presences and absences; values range from 0 to 1, where a 
score > 0.5 indicates better than random skill. TSS accounts for 
both false negative and false positive errors and ranges from −1 
to +1, where +1 indicates perfect agreement and values of zero 
or less indicate a performance no better than random. To calcu-
late TSS, the sensitivity-specificity sum maximization approach 
(Liu et al. 2005) was used to define thresholds for transforming 
species densities to presence/absence.

In addition, the model-based abundance estimates for the re-
spective summer and fall and winter and spring study areas 
based on the sum of individual modeling segment predictions 
were compared to standard line-transect estimates derived from 
the same dataset used for modeling in order to assess potential 
bias in the habitat-based model predictions (Becker et al. 2022). 
The standard line-transect estimates were derived from the sur-
vey data using Equations (2) and (3) above, but without the in-
clusion of habitat predictors (i.e., observed rather than predicted 
densities).

For each species, the final models were used to predict density 
in each cell of a 10 × 10 km grid throughout the CCE study area 
for distinct daily averages of environmental conditions in win-
ter (December–February) and spring (March–May) for the last 
5 years (2017–2021). While the survey data do not cover this 
exact time period, we selected the most recent 5 years for pre-
dictions since they are most relevant for management purposes 
and previous work has demonstrated that the models are able 
to capture interannual variability within the study area (Becker 
et al. 2018). Prior to making the predictions, the extrapolation 
detection tool in the R package “dsmextra” (Bouchet et al. 2020) 
was used to assess the source and extent of extrapolation in the 
winter and spring predictions for both sets of models. Pixels with 
habitat covariates outside the space of the data used to build the 
respective models were then eliminated from each of the daily 
surfaces, as this is a simple and effective method for avoiding 
extrapolation (Bouchet et al. 2019).

The separate daily 10-km resolution grid predictions were av-
eraged to produce spatially-explicit grids of mean winter and 
spring species density and measures of uncertainty. For each 
of the four species there were thus two separate predictions 
for each seasonal period based on predictions from either the 
SWFSC summer and fall model (hereafter “seasonally extrap-
olated models”) and the CalCOFI winter and spring models 
(hereafter “spatially extrapolated models”).

As an initial validation step, we used data from the four most re-
cent winter and spring CalCOFI surveys (2017–2020; data were 
not available for 2021) to evaluate the seasonal extrapolation of 
the SWFSC summer and fall models within the CalCOFI study 
area. For each species, both the seasonally and spatially extrap-
olated models were used to estimate abundance specifically for 
the CalCOFI study area, and ratios of the yearly estimates were 
computed. In addition, sightings from the 2017–2020 CalCOFI 
surveys were overlaid on the seasonally extrapolated density 
surfaces to compare predicted and observed distributions for 
each year.

2.3.5   |   Model Uncertainty

Variation in environmental conditions has been one of the great-
est sources of uncertainty when predicting density as a function 
of habitat variables in highly dynamic ecosystems such as the 
California Current, and this variation has been used in previ-
ous publications to provide spatially explicit variance measures 
for SWFSC summer and fall and CalCOFI winter and spring 
model predictions (Barlow et al. 2009; Becker et al. 2016, 2017, 
2020; Forney et al. 2012). Miller et al. (2022) recently developed 

(2)Di =
ni ∙ si ∙ ci

Ai

(3)Ai = 2 ∙ Li ∙ ESWi ∙ g(0)i
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techniques for deriving more comprehensive measures of uncer-
tainty in GAM predictions that account for the combined un-
certainty from environmental variability, the GAM coefficients, 
ESW, and g(0). These techniques include generating multiple 
daily density surfaces (for covariate rasters at each time slice) 
accounting for model parameter uncertainty (via posterior sam-
pling from the model parameters) and providing a range of pos-
sible density estimates from which variance can be calculated. 
For this study, the Miller et al. (2022) methods were applied to 
estimate spatially explicit measures of variance that accounted 
for these combined sources of uncertainty.

The estimates of g(0) developed by Barlow (2015) and used for 
model development are based on segment-specific Beaufort sea 
state conditions, which are currently not compatible with the 
Miller et al. (2022) methods for estimating variance. Therefore, 
to incorporate the variance of g(0) into the pixel-specific esti-
mates, an overall estimate of uncertainty in g(0) was derived 
using the variance estimates for this parameter weighted by 
the proportion of survey effort conducted within each of the 
Beaufort sea state categories for the respective SWFSC summer 
and fall and CalCOFI winter and spring surveys, and estimated 
based on 10,000 bootstrap values. The Barlow  (2015) g(0) es-
timate for Pacific white-sided dolphin was considered an out-
lier (i.e., 1 for all sea states), possibly because of small sample 
sizes, so for this species the g(0) estimates for common dolphins 
were used because they have similar sighting characteristics 
(Jefferson et al. 2015).

For short-beaked common dolphins, pixel-based uncertainty es-
timates were based on the group encounter rate model, which 
does not include uncertainty in group size estimates because 
the expected group size was incorporated into the density equa-
tion (Equation  2) as a constant based on the size bias regres-
sion method. Therefore, the pixel-based variance estimates for 
this species are under-estimated to a small degree. However, 
our analysis includes the dominant sources of uncertainty 
to a greater extent than previous similar studies (e.g., Becker 
et al. 2017, 2020).

2.3.6   |   Model Comparison

Differences in the two sets of model-predicted spatial distribu-
tion and estimated species abundance in the study area were 
evaluated relative to current knowledge about species occur-
rence off the U.S. West Coast in the cool seasons. This included 
analyses of systematic survey data collected in different re-
gions of the CCE study area between 1975 and 1992, including 
ship and aerial surveys conducted in the Southern California 
Bight (Dohl et al. 1978), aerial surveys conducted in nearshore 
waters off the California coast (Dohl et  al.  1983; Forney and 
Barlow 1998), and ship and aerial surveys conducted off Oregon 
and Washington (Green et al. 1992). More recent data used to 
evaluate model performance included predictions of relative 
cetacean density off the coast of Washington based on multiple 
data sources (Menza et al. 2016), habitat suitability predictions 
for fin whale in the California Current based on tag data (Scales 
et  al.  2017), and species distribution models for rorquals off 
Oregon (Derville et al. 2022). In addition, previous design- and 
model-based estimates of cetacean density based on the 2005 to 

2015 CalCOFI ship surveys off southern and central California 
(Becker et al. 2017; Campbell et al. 2015) were also used for cross 
validation purposes.

For each species, the winter and spring model-based abundance 
estimates for the CCE study area were calculated as the sum of 
the individual grid cell abundance estimates, which were de-
rived by multiplying the cell area (in km2) by the predicted grid 
cell density, exclusive of any portions of the cells located out-
side the study area or on land. Area calculations were completed 
using the R packages geosphere and gpclib in R (version 2.15.0). 
Uncertainty for the CCE study area abundance estimates was 
estimated using the Miller et  al.  (2022) techniques described 
above and thus accounted for the combined uncertainty from 
environmental variability, the GAM coefficients, ESW, and g(0). 
For short-beaked common dolphins, group size uncertainty from 
the size bias regression estimates was combined into the study 
area variance estimates using the delta method (Seber 1982).

3   |   Results

A total of 89,279 km of on-effort survey data collected on 9 
SWFSC surveys from July to November between 1991 and 2018 
within the CCE study area was used to develop the summer 
and fall models. The number of sightings within the species-
specific truncation distances and available for modeling ranged 
from 296 to 1034 (Table 3). A total of 33,995 km of on-effort data 
from 29 CalCOFI surveys conducted during January to April in 
2005–2020 was used to develop the winter and spring models. 
The number of sightings used for modeling was much lower 
than those available from the summer and fall surveys, ranging 
from 39 to 256 (Table 3).

There were six additional species for which there were sight-
ings in both sets of surveys but not enough sightings in the 
CalCOFI winter and spring dataset to support spatially extrap-
olated model development, including striped dolphin (Stenella 
coeruleoalba), long-beaked common dolphin (Delphinus del-
phis bairdii), common bottlenose dolphin (Tursiops truncatus), 
Risso's dolphin (Grampus griseus), northern right whale dolphin 
(Lissodelphis borealis), and minke whale (Balaenoptera acuto-
rostrata). Seasonally extrapolated models were developed for 
these species from the SWFSC summer and fall models. For 
completeness, model results for these species are presented in 
the Supporting Information S.3.

The range of covariate values included in the SWFSC summer 
and fall modeling dataset was generally larger than that of the 
CalCOFI winter and spring dataset, which is not surprising 
given the much greater span of latitude included within the full 
SWFSC CCE study area (Table  4). However, the extent of ex-
trapolation in the daily winter and spring prediction surfaces 
was generally greater for the SWFSC summer and fall model-
ing dataset, although only univariate extrapolation (vs. combi-
natorial extrapolation) was evident for both modeling datasets 
(Supporting Information  S.1). To avoid extrapolation artifacts, 
pixels with covariates outside the range of the respective mod-
eling datasets were discarded from the daily density surfaces 
prior to making predictions from the models. The percentage of 
pixels omitted across all years ranged from 3.4% (short-beaked 
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common dolphin CalCOFI winter and spring model) to 14.7% 
(fin whale summer and fall SWFSC model) from a total of 
10,942,021 potential pixel values across all years (12,011 pixels 
per density surface and 911 daily surfaces).

3.1   |   Detection Functions

For the CalCOFI winter and spring data, a half-normal model 
with Beaufort sea state as a covariate provided the best fit to 
the perpendicular distance data for all four species. The trun-
cation distance for common dolphins was 1.5 km, eliminat-
ing 18% of the most distant sightings. This is higher than the 
recommended percentage of 5%–15% (Buckland et  al.  2001), 
but in passing mode the group size estimates decreased with 

increasing distance, suggesting estimation bias at larger dis-
tances. Excluding a greater percentage of sightings thus re-
duced the potential bias in group size estimation. Further, a 
size bias regression method was used to estimate the expected 
mean group size within this truncation distance. Truncation 
distances for the other species were 1.2 km for Pacific white-
sided dolphin (eliminating 11% of the most distant sightings), 
1.3 km for Dall's porpoise (eliminating 13% of the most distant 
sightings) and 3.6 km for large whales (eliminating 14% of the 
most distant sightings).

3.2   |   Correction Factors

To account for unidentified animals on the 2018 SWFSC survey, 
correction factors for unidentified large whales were applied 
separately by Beaufort sea state category to the fin whale sight-
ings, because the proportion of unidentified whales increased 
with increasing sea state. These correction factors were 1.04, 
1.08, 1.10, 1.30, and 1.46 for sea states 0–1, 2, 3, 4, and 5, respec-
tively. For the common dolphin group, larger multipliers were 
not associated with greater sea states, so a uniform correction 
factor of 1.71 was applied across all sea states for the 2018 survey 
sightings of short-beaked common dolphins.

Similar to the SWFSC CCE data, correction factors estimated 
from CalCOFI winter and spring data for fin whale varied by sea 
state, as the proportion of unidentified large whales increased 
with increasing sea state, resulting in correction factors of 1.09, 
1.45, 1.54, 1.95, and 2.12 for Beaufort sea states 0–1, 2, 3, 4, and 
5, respectively. For the common dolphin group, the multiplier 
was greater in lower sea states—likely because of a confounding 
effect of larger estimated group sizes in lower sea states when in 
passing mode; therefore, a uniform correction factor of 1.33 was 
used across all sea states.

3.3   |   Model Metrics and Explanatory Performance

The expected group size for short-beaked common dolphins 
based on the size bias regression method and used in the respec-
tive density equations (see Equation 2) was 108.16 (CV = 0.061) 
for the SWFSC summer and fall data and 47.06 (CV = 0.076) for 
the CalCOFI winter and spring data.

Explanatory performance was similar to those of past SDMs 
developed for these species in the CCE study area (Becker 
et al. 2017, 2018, 2020), with explained deviance ranging from 
approximately 10% to 39%, AUC values from 0.66 to 0.87, TSS 
values from 0.24 to 0.58, and observed: predicted density ra-
tios greater than 0.79, with the majority greater than 0.93, in-
dicating that model-predicted absolute abundance estimates in 
the respective study areas were similar to values derived from 
design-based line-transect methods (Table 5). The key predictor 
variables (i.e., those with the most influence on the model) were 
similar for both sets of models, although the SWFSC summer 
and fall models consistently included more covariates than the 
CalCOFI winter and spring models (Table 5) because of the larger 
geographic range and greater sample sizes of the SWFSC sur-
veys. The functional forms of the predictor variables were gener-
ally similar between datasets within the same range of covariate 

TABLE 4    |    Covariate values used to develop the species distribution 
models based on the Southwest Fisheries Science Center (SWFSC) 
1991–2018 summer and fall and the California Cooperative Oceanic 
Fisheries Investigations (CalCOFI) 2005–2020 winter and spring 
shipboard surveys.

Variable

SWFSC 
summer 
and fall

CalCOFI 
winter 

and 
spring

Prediction 
surfaces

SST (°C) Mean 16.76 14.68 12.81

Min 9.96 9.17 6.39

Max 23.18 18.92 22.41

SSH (cm) Mean 0.13 0.14 0.13

Min −0.09 −0.07 −0.02

Max 0.4 0.36 0.59

MLD (m) Mean 22.46 46.91 46.1

Min 0.21 0.42 0.18

Max 102.67 170.8 315.11

SSTsd Mean 0.21 0.18 0.14

Min 0.006 0.01 0.0005

Max 2.16 1.69 4.22

SSHsd Mean 0.01 0.009 0.01

Min 0.0003 0.0003 0.0000007

Max 0.05 0.04 0.11

Depth (m) Mean −2914 −2783 −3187.97

Min −5036 −4787 −5060

Max −15 −13 0

Note: Values include the mean, minimum (min), and maximum (max) values 
observed during the respective surveys based on the Regional Ocean Modeling 
System (ROMS) values for all modeling segments from the respective surveys. 
Also shown are the covariate values for all of the ROMS-based daily surfaces 
used to make the full California Current Ecosystem study area winter and 
spring predictions (habitat covariates outside the space of the data used to 
build the respective models were eliminated prior to making the predictions). 
Covariates include sea surface temperature (SST), sea surface height (SSH), 
mixed layer depth (MLD), bathymetric depth (depth), and the standard deviation 
(sd) of both SST and SSH (see text for details).
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values, with the exception of depth for short-beaked common 
dolphin and SSHsd for Dall's porpoise (Figure 2). In winter and 
spring, short-beaked common dolphins are associated with the 
deepest waters within the CalCOFI study area, while in summer 
and fall within the entire CCE study area, the functional form 
indicates a bimodal distribution, with the greatest number of 
dolphins found in waters approximately 500 m deep, or offshore 
in waters approximately 4000 m deep (Figure 2a). Based on the 
SWFSC summer and fall model, greater numbers of Dall's por-
poise are found in waters with highest variability in SSH (i.e., 
frontal regions), while in the CalCOFI study area in winter and 
spring, Dall's porpoise are associated with waters with little to 
no variability in SSH (Figure 2c).

3.4   |   Predictive Performance and Model Validation

Predictive performance varied by species and model type, and 
data available to validate the model predictions also varied by 
species and location within the CCE study area. Therefore, the 
models' ability to predict winter and spring distribution pat-
terns and estimate absolute abundance for the CCE study area 
are discussed separately for each species below. In addition to 
previously published data that were used for cross validation, 
the 2017–2020 CalCOFI cool season data used to develop the 
spatially extrapolated models were also used to evaluate the 
seasonal extrapolation of the SWFSC summer and fall models 
within the CalCOFI study area. With the exception of short-
beaked common dolphin, there were too few yearly sightings 
to provide a meaningful visual comparison of cool season ob-
servations to predicted density patterns from the seasonally 
extrapolated models, but the 2017–2020 yearly abundance esti-
mates derived for the smaller CalCOFI region provided an addi-
tional cross validation dataset for this portion of the study area 
(Supporting Information S.2).

3.4.1   |   Short-Beaked Common Dolphin

Abundance. The seasonally and spatially extrapolated mod-
els both yielded greater numbers of short-beaked common dol-
phins within the CCE study area during winter versus spring 
(Figure  3; Table  6), consistent with previous seasonal design-
based estimates for waters off Southern California (Campbell 
et al. 2015). Both models also exhibited similar patterns of in-
terannual variability in abundance. For example, both models 
predicted greatest winter and spring abundance in 2018 and 
substantial decreases in the numbers of short-beaked com-
mon dolphins present in the CCE study area in 2020 and 2021 
(Figure 4, Table 6).

The winter and spring abundance estimates for short-beaked 
common dolphin predicted from the two models were quite 
different, however, as the spatially extrapolated 2017–2021 
average estimates were about four times greater than those 
predicted by the seasonally extrapolated model for the full 
CCE study area (Table 6), and up to three times greater for the 
smaller CalCOFI study area (Supporting Information S.2). The 
short-beaked common dolphin is a warm temperate species 
whose distribution generally shifts northward into the CCE 
study area when ocean conditions are warm and southward 
into waters off Mexico when conditions are cool (Barlow 2016; 
Becker et  al.  2014, 2018, 2022; Dohl et  al.  1986; Forney and 
Barlow 1998; Heyning and Perrin 1994). Fewer short-beaked 
common dolphins are thus expected within the CCE study 
area during winter and spring than during summer and fall; 
however, the abundance predicted by the seasonally extrapo-
lated model (121,114, CV = 0.439) was lower than a previous 
design-based winter estimate for Southern California waters 
only (225,949, CV = 0.32; Campbell et al. 2015), and less than 
one eighth of the model-based summer and fall abundance 
estimate of 1,056,308 (CV = 0.207) for the CCE study area 

TABLE 5    |    Summary of the Southwest Fisheries Science Center (SWFSC) summer and fall and the California Cooperative Oceanic Fisheries 
Investigations (CalCOFI) winter and spring species distribution models.

Species Predictor variables Expl. Dev. AUC TSS Obs:Pred

Short-beaked common dolphin

SWFSC SST + depth + SSH + SSHsd 9.88 0.73 0.36 0.99

CalCOFI SST + depth + MLD 10.80 0.71 0.35 0.98

Pacific white-sided dolphin

SWFSC Depth + SSH + SST + MLD + SSHsd 39.30 0.82 0.51 0.79

CalCOFI MLD + SST + SSTsd 39.40 0.76 0.50 1.10

Dall's porpoise

SWFSC SSH + SST + depth + SSHsd + SSTsd 27.40 0.87 0.58 0.94

CalCOFI SST + SSH + SSHsd 19.70 0.78 0.47 0.93

Fin whale

SWFSC SSH + SST + depth + MLD + SSTsd 13.20 0.66 0.24 0.87

CalCOFI Depth + SSH + SST 20.10 0.84 0.57 1.03

Note: Variables are listed in the order of their significance, and abbreviations are as follows: depth, bathymetric depth; MLD, mixed layer depth; SSH, sea surface 
height; SSHsd, standard deviation of SSH; SST, sea surface temperature; SSTsd, standard deviation of SST. All models were corrected for effort with an offset for the 
effective area searched (see text for details). Comparative performance metrics included percentage of explained deviance (Exp.Dev.), the area under the receiver 
operating characteristic curve (AUC), the true skill statistic (TSS), and the ratio of observed to predicted density for the study area (Obs:Pred).
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(Becker et al. 2020). Conversely, the average of the 2017–2021 
winter and spring estimates from the spatially extrapolated 
model (365,744 dolphins; Table 6) was similar to an abundance 

estimate of 305,694 (CV = 0.340) common dolphins made 
for nearshore waters off California based on aerial survey 
data collected between February and April in 1991 and 1992 

FIGURE 2    |     Legend on next page.
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(Forney and Barlow 1998). Given the documented increase in 
the abundance of short-beaked common dolphins in the CCE 
during the last two decades (Barlow 2016; Becker et al. 2018), 
the spatially extrapolated model predictions appear to be more 
accurate than the seasonally extrapolated predictions.

Distribution. Both models predicted the greatest densities of 
short-beaked common dolphins within the southern portion of the 
study area during winter and spring (Figure 3), consistent with ex-
pected southern shifts during the cool water periods (Barlow 2016; 
Becker et  al.  2014, 2018, 2022; Dohl et  al.  1986; Forney and 
Barlow  1998; Heyning and Perrin  1994). The spatially extrapo-
lated model identified a band of low densities extending southeast 
from Point Conception (34.45° N), separating high-density areas 
in the southwest portion of the study area from moderate density 

regions within the Southern California Bight (Figure  3b). This 
area is encompassed within the boundaries of the CalCOFI survey 
data used for model building (i.e., the model is not extrapolating in 
this region), and these distribution patterns were similar to those 
previously identified in other studies (Becker et al. 2017; Campbell 
et al. 2015; Forney and Barlow 1998).

The seasonally extrapolated model predicted high densities 
throughout much of the Southern California Bight and also 
captured a similar band of low density; however, densities near 
shore were predicted to be higher than documented during 
prior studies, which identified the greatest densities in offshore 
waters during the cool seasons (Becker et  al.  2017; Campbell 
et  al.  2015). Further, a comparison of the seasonally extrapo-
lated predicted densities to actual sightings from the 2017–2020 

FIGURE 2    |    Functional forms for variables included in the final Southwest Fisheries Science Center (SWFSC) summer and fall and California 
Cooperative Oceanic Fisheries Investigations (CalCOFI) winter and spring species distribution models for (a) short-beaked common dolphin, (b) 
Pacific white-sided dolphin, (c) Dall's porpoise, and (d) fin whale. Predictor variables included: SST, sea surface temperature; SSTsd, standard devia-
tion of SST; MLD, mixed layer depth; SSH, sea surface height; SSHsd, standard deviation of SSH; and depth, bathymetric depth. The y-axes represent 
the term's (linear or spline) function, with the degrees of freedom shown in parentheses on the y-axis (linear terms are represented by a single degree 
of freedom). Zero on the y-axes corresponds to no effect of the predictor variable on the estimated response variable. Scaling of y-axis varies among 
predictor variables to emphasize model fit. The shading reflects 2× standard error bands (i.e., 95% confidence interval); tick marks (‘rug plot’) above 
the X-axis show data values.

FIGURE 3    |    Predicted short-beaked common dolphin winter and spring density (top panels) and coefficient of variation (CV; bottom panels) es-
timates from (a) the seasonally extrapolated Southwest Fisheries Science Center summer and fall species distribution model, and (b) the spatially 
extrapolated California Cooperative Oceanic Fisheries Investigations winter and spring species distribution model; the “*” indicates which model 
exhibited better performance. The density estimates are the multi-year average (2017–2021) values based on predicted daily cetacean species densities 
covering winter (December–February) and spring (March–May). Density ranges are presented in quantiles based on the combined winter and spring 
predictions for the respective models in order to show differences between seasons and years (see Figure 4). Predictions are shown for the California 
Current Ecosystem study area (1,141,800 km2).
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CalCOFI cool season surveys shows the model underestimated 
density in the offshore areas where the majority of sightings oc-
curred (Supporting Information S.2).

Based on the seasonally extrapolated model's apparent under-
estimation of abundance and failure to capture the offshore 
distribution shift of short-beaked common dolphins in the cool 
seasons, the spatially extrapolated model exhibited better per-
formance in this study area.

3.4.2   |   Pacific White-Sided Dolphin

Abundance. Both models predicted substantially greater 
numbers of Pacific white-sided dolphins in the CCE study area 
during spring versus winter (Figure 5, Table 6). These results are 
consistent with the seasonal design-based abundance estimates 
of Campbell et al. (2015), and with results from aerial surveys 
conducted off Oregon and Washington between April 1989 and 
September 1990 that documented the greatest densities during 
late spring and early summer and the lowest densities during 
winter (Green et al. 1992). Interannual variability in abundance 
was also apparent for both sets of models (Table 6).

There was, however, an order-of-magnitude difference in pre-
dicted abundance between the seasonally extrapolated and 
spatially extrapolated models (Table  6). The lowest spatially 
extrapolated model predictions for the entire CCE study area 
during winter and spring were 15 to 44 times higher than the 

previously published model-based summer and fall 2018 esti-
mate of 39,999 (CV = 0.222; Becker et al. 2020). The abundance 
of this cool-temperate species is expected to increase in the CCE 
study area during cool seasons (Becker et  al.  2014; Campbell 
et al. 2015; Forney and Barlow 1998; Green et al. 1992); how-
ever, the magnitude of the increase predicted by the spatially 
extrapolated model is much too large to be accounted for by 
distribution shifts or potential increases in population. The 
2017–2021 average spring abundance estimate from the spa-
tially extrapolated model was 1,102,541 (CV = 0.775), which is 
approximately 8% higher than a prior range-wide estimate of 
931,000 (CV = 0.90) Pacific white-sided dolphins within the en-
tire North Pacific (Buckland  1993). Abundance estimates de-
rived from the spatially extrapolated model thus appear to be 
ecologically implausible.

The average 2017–2020 abundance estimate from both the sea-
sonally extrapolated model and the spatially extrapolated model 
for the smaller CalCOFI study area (the area where the latter 
model is not extrapolating) compared well to the Campbell 
et  al.  (2015) design-based estimates for winter (16,718) and 
spring (23,983) for the southern portion of the CalCOFI study 
area (Supporting Information S.2). This suggests that the sub-
stantial CCE-wide abundance estimates derived from the 
spatially extrapolated model are primarily due to model extrap-
olation in the northern portion of the study area.

Distribution. Both models predicted greatest Pacific white-
sided dolphin densities throughout waters off Washington and 

FIGURE 4    |    Predicted short-beaked common dolphin annual 2017–2021 density (top panels) and coefficient of variation (CV; bottom panels) 
estimates from (a) the seasonally extrapolated Southwest Fisheries Science Center summer and fall species distribution model, and (b) the spatially 
extrapolated California Cooperative Oceanic Fisheries Investigations winter and spring species distribution model; the “*” indicates which model 
exhibited better performance. The annual density estimates reflect the combined cool season (December–May) averages from predicted daily ceta-
cean species densities for each respective year. The density ranges are presented in quantiles based on the combined winter and spring predictions 
for the respective models to show differences between years and seasons (see Figure 3). Predictions are shown for the California Current Ecosystem 
study area (1,141,800 km2).
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Oregon (i.e., north of 42° N) and extending southward along a 
narrow coast band to Point Conception (Figure 5). The season-
ally extrapolated model predicted a distinct region of lower den-
sity along most of the U.S. West Coast, which is consistent with 
previous studies that documented most Pacific white-sided dol-
phins within slope and offshore waters rather than in shallower 
shelf waters (Forney and Barlow 1998; Green et al. 1992). These 
differences in coastal distribution patterns were also evident in 
the predicted annual 2017–2021 combined cool season distri-
bution patterns (Figure  6). The seasonally extrapolated model 
also predicted relatively high to mid-range densities through-
out the Southern California Bight, consistent with documented 
southerly movements and multiple sightings of this species in 
waters south of Point Conception in the cool seasons (Becker 
et al. 2014; Campbell et al. 2015; Forney and Barlow 1998; Green 
et al. 1992).

Based on the unrealistically high estimates of abundance 
predicted by the spatially extrapolated model, and the mis-
match in predicted distribution patterns along the coast, we 
consider the seasonally extrapolated model to have exhibited 
better performance for Pacific white-sided dolphins in this 
study area.

3.4.3   |   Dall's Porpoise

Abundance. Seasonal abundance results from the two Dall's 
porpoise models were inconsistent. The spatially extrapolated 
model indicated substantially greater numbers of Dall's porpoise 
within the CCE study area during spring than during winter, 
while the seasonally extrapolated model showed less variabil-
ity between the winter and spring periods, although abundance 
was generally predicted to be greater in winter (Table 6). Similar 
to the results for Pacific white-sided dolphin, the model-based 
absolute abundance estimates for the entire CCE study area 
were substantially different between the two datasets, with the 
spatially extrapolated model predicting an order-of-magnitude 
more Dall's porpoise during winter and spring than the season-
ally extrapolated model (Table 6). Based on previous studies that 
yielded abundance estimates of 16,498 (CV = 0.608) during sum-
mer and fall 2018 (Becker et al. 2020) and 26,111 (CV = 0.296) 
during winter and spring 1991–1992 (Forney and Barlow 1998), 
the spatially extrapolated total abundance estimate averaging 
261,600 porpoises during winter and spring (Table 6) is likely bi-
ased high, particularly in the northern portion of the study area 
where density estimates were as high as 1.12 porpoises km−2 
(Figure 7b).

FIGURE 5    |    Predicted Pacific white-sided dolphin winter and spring density (top panels) and coefficient of variation (CV; bottom panels) esti-
mates from (a) the seasonally extrapolated Southwest Fisheries Science Center summer and fall species distribution model, and (b) the spatially 
extrapolated California Cooperative Oceanic Fisheries Investigations winter and spring species distribution model; the “*” indicates which model 
exhibited better performance. The density estimates are the multi-year average (2017–2021) values based on predicted daily cetacean species densities 
covering winter (December–February) and spring (March–May). Density ranges are presented in quantiles based on the combined winter and spring 
predictions for the respective models in order to show differences between seasons and years (see Figure 6). Predictions are shown for the California 
Current Ecosystem study area (1,141,800 km2).
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The annual 2017–2020 abundance estimates for the smaller 
CalCOFI study area were similar for the seasonally extrapolated 
model and the spatially extrapolated model, with average esti-
mates of 12,907 and 17,502 porpoises, respectively (Supporting 
Information S.2). Thus, the markedly greater CCE-wide estimate 
of abundance for the spatially-extrapolated model (Table 6) can 
be attributed to model extrapolation in the northern portion of 
the study area.

Distribution. The winter and spring distribution patterns 
predicted by the two models were generally similar, with 
greatest densities predicted for the northern portions of the 
study area and lowest densities in the southwest, with mid- 
to higher-level densities extending south along the nearshore 
regions into the Southern California Bight (Figure  7). Both 
models also showed lower density regions along the coast of 
Washington and Oregon, consistent with winter and spring 
sighting data and relative density model predictions that in-
dicate that most Dall's porpoise are observed in slope and 
offshore waters, and fewest on the shelf (Green et  al.  1992; 
Menza et al. 2016). Interestingly, the distribution patterns pre-
dicted by the seasonally extrapolated model for the study area 
south of 38° N were very similar to those derived from a pre-
vious winter and spring SDM developed with a subset of the 
CalCOFI sighting data used here (Becker et al. 2017).

The predicted annual 2017–2021 combined cool season distri-
bution patterns for Dall's porpoise were similar to those de-
scribed above, with interannual variability apparent for both 

sets of models (Figure 8). For the combined cool season, both 
models predict lowest numbers of Dall's porpoise present in the 
CCE study area during 2021 as compared to the previous 4 years 
(Figure 8, Table 6).

Based on the extreme abundance estimates predicted by the 
spatially extrapolated model, particularly in the northern por-
tion of the study area, the seasonally extrapolated model ap-
peared to exhibit better performance for Dall's porpoise in this 
study area.

3.4.4   |   Fin Whale

Abundance. Fin whales occur year-round in the Southern 
California Bight, although they are significantly more abun-
dant during summer and fall (Campbell et  al.  2015; Carretta 
et  al.  1995; Dohl et  al.  1978, 1983; Forney and Barlow  1998). 
Both model-predicted abundance estimates were consistent 
with this seasonal pattern, as the winter and spring abundance 
estimates were substantially lower than a recent summer and 
fall fin whale abundance estimate of 11,065 whales for the CCE 
study area (Becker et al. 2020). However, the seasonally extrap-
olated model predicted three to four times greater numbers of 
fin whales in the CCE study area during the cool seasons than 
the spatially extrapolated model (Table 6), and about four times 
more fin whales within the CalCOFI study area (Supporting 
Information S.2). The average 2017–2020 abundance estimate of 
980 fin whales derived from the spatially extrapolated model for 

FIGURE 6    |    Predicted Pacific white-sided dolphin annual 2017–2021 density (top panels) and coefficient of variation (CV; bottom panels) es-
timates from (a) the seasonally extrapolated Southwest Fisheries Science Center summer and fall species distribution model, and (b) the spatially 
extrapolated California Cooperative Oceanic Fisheries Investigations winter and spring species distribution model; the “*” indicates which model 
exhibited better performance. The annual density estimates reflect the combined cool season (December–May) averages from predicted daily ceta-
cean species densities for each respective year. The density ranges are presented in quantiles based on the combined winter and spring predictions 
for the respective models to show differences between years and seasons (see Figure 5). Predictions are shown for the California Current Ecosystem 
study area (1,141,800 km2).
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the CalCOFI study area (where there is no extrapolation) is more 
consistent with design-based estimates for the southern portion 
of the CalCOFI study area (155 for winter and 432 for spring; 
Campbell et al. 2015) than that derived from the seasonally ex-
trapolated model (4031 fin whales). These comparisons suggest 
that the seasonally extrapolated model produced biased-high 
abundance estimates for the study area.

Distribution. Both models predicted highest fin whale densities 
south of Point Conception (34.45° N) during winter and spring, 
consistent with their established year-round residency patterns 
off Southern California (Figure 9; Campbell et al. 2015; Carretta 
et al. 1995; Dohl et al. 1978, 1983; Falcone et al. 2022; Forney 
and Barlow 1998). The distribution pattern predicted by the spa-
tially extrapolated model more closely matched the occurrence 
patterns that have been described for this species in past studies, 
with the majority of winter and spring sightings in nearshore 
waters and over the continental shelf (Figure  9b; Campbell 
et al. 2015, Falcone et al. 2022; Forney and Barlow 1998; Scales 
et al. 2017). During summer and fall, fin whales tend to be more 
dispersed offshore and their distribution expands further north; 
however, high densities have not been documented for the 
southwest portion of the study area (Becker et al. 2020; Scales 
et al. 2017), where the seasonally extrapolated model predicted 
highest densities. Both models also predicted some moderate 

densities off Washington and Oregon, consistent with previous 
models of habitat suitability and other sighting data (Derville 
et al. 2022; Green et al. 1992; Scales et al. 2017).

Similar to the models for the other three species, the annual 
2017–2021 combined cool season distribution patterns for fin 
whale were generally similar to those described above for the 
individual seasonal models, with interannual variability in 
abundance exhibited by both model predictions (Figure  10, 
Table 6). Both models predicted substantially fewer fin whales 
in the CCE study area in 2021, particularly off Washington and 
Oregon, and the greatest number of whales in 2018 (Figure 10, 
Table 6).

Based on the apparent biased-high abundance estimates derived 
from the seasonally extrapolated model, and the mismatch in 
predicted distribution patterns in the Southern California Bight, 
we consider the spatially extrapolated model to have exhibited 
better performance for fin whales in this study area.

4   |   Discussion

The use of extrapolations for marine SDMs has been the topic of sev-
eral studies that illustrated the challenges involved. Extrapolations 

FIGURE 7    |    Predicted Dall's porpoise winter and spring density (top panels) and coefficient of variation (CV; bottom panels) estimates from 
(a) the seasonally extrapolated Southwest Fisheries Science Center summer and fall species distribution model, and (b) the spatially extrapolated 
California Cooperative Oceanic Fisheries Investigations winter and spring species distribution model; the “*” indicates which model exhibited better 
performance. The density estimates are the multi-year average (2017–2021) values based on predicted daily cetacean species densities covering win-
ter (December–February) and spring (March–May). Density ranges are presented in quantiles based on the combined winter and spring predictions 
for the respective models in order to show differences between seasons and years (see Figure 8). Predictions are shown for the California Current 
Ecosystem study area (1,141,800 km2).
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may be inaccurate if they are done across ecosystems (Mannocci 
et  al.  2020; Redfern et  al.  2017), but when done with care and 
within similar ecoregions they can provide much-needed informa-
tion for marine species management and conservation. When time 
and location-specific data are unavailable, careful extrapolations 
can inform management decisions that would otherwise be made 
in the absence of any information on species distribution and den-
sity (Mannocci et al. 2017). However, it is important to understand 
when and under what circumstances extrapolations are accept-
able versus unacceptably biased, and which methods produce the 
most reliable results. In the present study we compared spatially 
extrapolated and seasonally extrapolated model predictions for 
four species within a highly dynamic ecosystem to increase our 
understanding and improve future application of extrapolated 
SDM predictions.

Given increasing demands to use SDMs to make predictions for 
insufficiently sampled geographic regions and during novel time 
periods, tools have been developed to assess the magnitude of the 
extrapolated predictions, reduce or eliminate extrapolation to the 
extent possible, cross-validate model predictions if data are avail-
able, and transparently present uncertainty in the predictions 
(Conn et al. 2015; Mannocci et al. 2017; Sequeira et al. 2018). In 
this study, a simple yet often effective avoidance measure was used 
to evaluate and discard any model predictions that were made out-
side the multivariate space of the data used to develop the orig-
inal models (Bouchet et  al.  2019). Model predictions were then 
cross-validated to the degree possible using available data within 
the study area, and uncertainty was characterized using recently 

developed techniques for deriving comprehensive measures of 
variance in GAM predictions (Miller et al. 2022).

A continuous year term was included as a covariate in previ-
ous SDMs developed using the same SWFSC CCE survey data, 
and successfully captured the population trends for both short-
beaked common dolphin and fin whale whose abundance in 
summer and fall has increased substantially during the 1991 to 
2018 time period. Year was specifically not offered to the models 
in this study because year can act as a proxy for a dynamic vari-
able, which in this case could confound the spatial and seasonal 
extrapolations. The potential “noise” that a year term would 
introduce into the already complex extrapolation process was 
not considered appropriate for this analysis. For the two species 
with documented increases in population within the study area 
in summer and fall, if there have been similar increases in win-
ter and spring, the resulting density estimates may be biased low.

To increase the predictive ability of SDMs, previous studies 
have combined disparate data sets to build a single combined 
model in an attempt to capture the strengths of the individ-
ual datasets (e.g., Redfern et al. 2017). This strategy was not 
considered appropriate in this case given the documented dy-
namic seasonal changes in cetacean abundance and distribu-
tion in the CCE, particularly within the Southern California 
Bight. Combining the summer and fall and winter and spring 
datasets inherently assumes that the functional forms of 
the habitat variables will be consistent between the SWFSC 
CCE-wide summer and fall and the CalCOFI Southern 

FIGURE 8    |    Predicted Dall's porpoise annual 2017–2021 density (top panels) and coefficient of variation (CV; bottom panels) estimates from (a) the 
seasonally extrapolated Southwest Fisheries Science Center summer and fall species distribution model, and (b) the spatially extrapolated California 
Cooperative Oceanic Fisheries Investigations winter and spring species distribution model; the “*” indicates which model exhibited better perfor-
mance. The annual density estimates reflect the combined cool season (December–May) averages from predicted daily cetacean species densities for 
each respective year. The density ranges are presented in quantiles based on the combined winter and spring predictions for the respective models to 
show differences between years and seasons (see Figure 7). Predictions are shown for the California Current Ecosystem study area (1,141,800 km2).
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California-specific winter and spring datasets (which as 
shown for both short-beaked common dolphin and fin whale, 
were very different for the depth variable). In addition, the 
SWFSC data have substantially more sightings and would 
dominate the signal in the models. Pedersen et al. (2019) pres-
ent an integrated hierarchical modeling approach that could, 
in theory, allow the SWFSC summer and fall and CalCOFI 
winter and spring surveys to be included in a single model. 
However, this approach was not deemed appropriate for our 
analyses because this would increase model complexity be-
yond what is supported by the limited sample sizes during the 
CalCOFI surveys. Further, there are marked oceanographic 
and ecological differences between the CalCOFI study area 
and the broader CCE (e.g., Daily et al. 1993; Miller 2023) that 
could confound such an approach. Finally, combining the 
datasets would not allow for a comparison of seasonal versus 
spatial extrapolation.

Based on our analysis, spatially-extrapolated predictions were 
better for short-beaked common dolphin and fin whale, while 
seasonally-extrapolated model predictions were better for Pacific 
white-sided dolphin and Dall's porpoise. Given the variability in 
these results, it is important to consider what species-specific or 
study-area specific characteristics may have affected this out-
come. Two main factors were apparent: (1) the degree to which 

a model captures the species core habitat, that is, whether the 
functional curves of the covariates capture a peak; and (2) the 
effect of static predictors (e.g., depth, distance to shore, distance 
to an isobath, etc.) anchoring a species in geographic space and 
preventing the identification of distribution shifts in the novel 
space or time period. These are described in more detail below.

4.1   |   Core Habitat

Core habitat for both short-beaked common dolphin and fin 
whale within the CCE study area is the Southern California 
Bight (Becker et  al.  2022; Scales et  al.  2017), which is well-
sampled by the CalCOFI surveys. Conversely, the core distribu-
tion of both the cool temperate Pacific white-sided dolphin and 
Dall's porpoise is well north of the CalCOFI survey area, with 
the southern California Current Ecosystem representing their 
southern range limit within the eastern North Pacific (see e.g., 
Hamilton et al. 2009). The CalCOFI models for these two cool-
temperate species are thus based on the southern portion of their 
habitat, with the functional forms reflecting only a small part of 
their larger habitat range (i.e., the tails of each species' optimum 
habitat). For example, the SST functional form in the CalCOFI 
models for both Pacific white-sided dolphin and Dall's porpoise 
was negative linear, with highest numbers of dolphins/porpoises 

FIGURE 9    |    Predicted fin whale winter and spring density (top panels) and coefficient of variation (CV; bottom panels) estimates from (a) the 
seasonally extrapolated Southwest Fisheries Science Center summer and fall species distribution model, and (b) the spatially extrapolated California 
Cooperative Oceanic Fisheries Investigations winter and spring species distribution model; the “*” indicates which model exhibited better perfor-
mance. The density estimates are the multi-year average (2017–2021) values based on predicted daily cetacean species densities covering winter 
(December–February) and spring (March–May). Density ranges are presented in quantiles based on the combined winter and spring predictions 
for the respective models in order to show differences between seasons and years (see Figure 10). Predictions are shown for the California Current 
Ecosystem study area (1,141,800 km2).
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found in the coolest waters of the study area (Figure 2b,c). When 
these models were used to predict on winter and spring condi-
tions throughout the CCE study area, the widespread occur-
rence of cold water off Washington and Oregon likely caused the 
extreme density predictions in the northern portion of the study 
area (Figures 5b and 7b). The linear effect reflected only the por-
tion of the functional plot from ~10°C to 18°C, rather than the 
unimodal relationship captured by the SWFSC summer and fall 
models that included temperatures from ~10°C to 23°C.

The SWFSC models included the core habitat for Pacific white-
sided dolphin and Dall's porpoise in the northern waters of 
the study area, albeit in summer and fall, but the dataset had 
sufficient samples in the coolest waters for these seasons and 
the functional curves for SST showed a decrease (Pacific white-
sided dolphin) and monotonic response (Dall's porpoise) in 
density within waters cooler than about 13°C (Figure  2b,c). 
The lowest SST values sampled were not substantially different 
between the two datasets (9.96°C for the SWFSC model versus 
9.17°C for the CalCOFI model; Table 4), and both were warmer 
than the coolest waters typically encountered off Washington 
in the winter (e.g., approximately 8°C, given interannual vari-
ability; Legaard et al. 2006; Venegas et al. 2008). However, al-
though the CalCOFI dataset included cooler SST values than the 
SWFSC dataset, the more unimodal relationships captured by 
the SWFSC summer and fall models were able to better define 
the SST-species habitat relationships in these species core habi-
tat within the CCE study area. The seasonally extrapolated pre-
dictions for both these species produced reasonable abundance 

estimates and spatial distribution patterns that were consistent 
with those documented for these species in the cool seasons 
(Forney and Barlow 1998; Green et al. 1992; Menza et al. 2016).

This result powerfully illustrates that, even when using trun-
cation as the primary method for eliminating or reducing the 
potential for extrapolation artifacts, resulting predictions can 
be extremely biased. The avoidance method used in this study 
discarded predictions made outside of the covariate ranges used 
to develop the CalCOFI models (i.e., in the above example any 
pixels with water temperatures < 9.17°C were not used; Table 4); 
however, the resulting density estimates from the spatially ex-
trapolated models for both Pacific white-sided dolphin and 
Dall's porpoise were still substantially biased-high.

4.2   |   Static Predictors

Bathymetry has proven to be an effective predictor in ceta-
cean SDMs in the CCE study area (Abrahms et al. 2019; Becker 
et  al.  2016, 2020; Forney  2000; Forney et  al.  2012, Hazen 
et al. 2017), and depth was offered as a potential covariate in this 
study, similar to the approach taken by Mannocci et al. (2017). 
Depth was also included in previous SDMs (Becker et al. 2018) 
for eight cetacean species (including the four species addressed 
in this study) that were successfully used to predict substantial 
distribution shifts during a novel anomalously warm year in the 
CCE study area. This approach assumes that a species' preferred 
“depth habitat” will remain fairly constant over time and space. 

FIGURE 10    |    Predicted fin whale annual 2017–2021 density (top panels) and coefficient of variation (CV; bottom panels) estimates from (a) the 
seasonally extrapolated Southwest Fisheries Science Center summer and fall species distribution model, and (b) the spatially extrapolated California 
Cooperative Oceanic Fisheries Investigations winter and spring species distribution model; the “*” indicates which model exhibited better perfor-
mance. The annual density estimates reflect the combined cool season (December–May) averages from predicted daily cetacean species densities for 
each respective year. The density ranges are presented in quantiles based on the combined winter and spring predictions for the respective models to 
show differences between years and seasons (see Figure 9). Predictions are shown for the California Current Ecosystem study area (1,141,800 km2).
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As demonstrated here, however, the inclusion of depth can hin-
der novel predictions if a species shifts distribution to waters 
with notably different bathymetry in the novel space or time pe-
riod. For both short-beaked common dolphin and fin whale, the 
functional form of depth in the SWFSC summer and fall models 
resulted in some mismatched distribution patterns predicted for 
winter and spring, particularly in their core habitat within the 
Southern California Bight, an area characterized by complex ba-
thymetry (Hickey 1979).

In summer and fall within the CCE study area, short-beaked 
common dolphins exhibit a bimodal depth distribution, with 
highest densities occurring in relatively shallow waters through-
out the Southern California Bight and also in deep waters (ap-
proximately 4000 m deep) off central and northern California 
(Becker et al. 2016, 2018, 2020). A significant southerly shift in 
short-beaked common dolphin distribution occurs in winter and 
spring, which was successfully captured by the SWFSC model 
predictions (Figure 3a). In the Southern California Bight, there 
is also a distinct shift in short-beaked common dolphin distri-
bution offshore to pelagic waters in the southwestern portion of 
the CCE study area (Becker et al. 2017; Campbell et al. 2015). 
The shift away from waters over the continental shelf was not 
captured in the winter and spring predictions from the SWFSC 
summer and fall model, likely due to the inclusion of the bi-
modal depth function that resulted in higher predictions near-
shore (Figure 2a).

A similar situation occurred for fin whale, a species that occurs 
year-round in the Southern California Bight but has a more 
widespread distribution in summer and fall (Becker et al. 2022; 
Forney and Barlow  1998; Scales et  al.  2017). Similar to short-
beaked common dolphin, the SWFSC summer and fall model 
included a bimodal depth function (Figure 2d), which resulted 
in high density predictions offshore for winter and spring, in-
consistent with their cool season distribution in nearshore wa-
ters over the continental shelf (Campbell et  al.  2015; Falcone 
et al. 2022; Forney and Barlow 1998; Scales et al. 2017).

4.3   |   Seasonally Extrapolated vs. Spatially 
Extrapolated Models

Based on the results of this study, the best winter and spring 
predictions were generated by the spatially extrapolated models 
for short-beaked common dolphin and fin whale, and by the sea-
sonally extrapolated models for Pacific white-sided dolphin and 
Dall's porpoise. These model predictions were able to capture 
seasonally variable differences in abundance and distribution 
that are consistent with known or suspected patterns. The se-
lected model predictions for these four species provide spatially 
explicit density predictions that are quite different from summer 
and fall, and can inform management needs for cool seasons in 
the CCE study area. Despite greater uncertainty, these models 
are preferable to the alternative of using the summer and fall 
models to reflect annual abundance and distribution patterns. 
Until cool season specific SDMs can be developed, and with ap-
plication of caution, these models provide a tool for assessing 
risk and developing mitigation measures for these species in the 
CCE study area in winter and spring.

4.4   |   Future Studies

In order to reduce potential bias from extrapolations, we used 
truncation, that is, we discarded any model predictions that 
were made outside the multivariate space of the data used to de-
velop the original models (Bouchet et al. 2019). This approach 
was selected because previous modeling studies using a subset of 
the SWFSC CCE data resulted in unreasonably high predictions 
from unconstrained predictions (Becker et  al.  2012). Further, 
since the goal of this study was to compare seasonal versus spa-
tial extrapolation, we wanted to use a consistent method that 
could be applied to both sets of models rather than applying 
model-specific approaches that could confound the results.

The truncation method eliminates pixels from the final average 
density surfaces, and thus the averages are based only on the 
other, in-range time slices. Depending on the percentage of pix-
els eliminated and the extent to which they are grouped together 
spatially or temporally, this could introduce bias in the predic-
tions. Alternative methods for dealing with extrapolation in 
SDM predictions include “clamping” or “bounding” the covari-
ate values to their sampled extremes (Bouchet et al. 2019), which 
would retain all the prediction pixels. However, the clamping or 
bounding approach is dependent on assessing the directionality 
of each response curve at the truncation point (Guevara et al. 
2018), and would complicate the interpretation of results in this 
study introduced by using variable model-specific extrapolation 
approaches. The best method for dealing with extrapolation 
likely depends on how much of a (presumed) unimodal relation-
ship has been captured. For linear relationships, this likely is 
only one side of a unimodal curve, so clamping may be better; 
however, if the functional plot captures the majority of a uni-
modal relationship, then allowing the extrapolation may be bet-
ter (e.g., Guevara et al. 2018). Evaluating alternative methods for 
dealing with extrapolation, such as clamping, will be the focus 
of future analyses in this study area.

5   |   Conclusions

SDMs are now firmly established as effective conservation 
and management tools, and the use of extrapolated model pre-
dictions for data-poor regions and time periods is expected to 
increase in the future. This study has shown that there are 
species-specific and study-area-specific factors to consider 
when making extrapolated model predictions. First, spatial 
extrapolation is likely to produce extremely biased predictions 
when the SDMs are developed outside of core habitat areas (i.e., 
at the tails of a species optimum covariate values). Even when 
limiting predictions to the univariate and multivariate space 
used to build the models, patterns can be exaggerated in core 
habitat. When a species is known or suspected to exhibit tem-
poral shifts in distribution, static variables should be carefully 
evaluated prior to model inclusion. In all cases, extrapolations 
should always be interpreted with caution, even when methods 
have been used to control predictions. As additional data are 
collected within this study area during the cool seasons, more 
comprehensive cross-validation should be performed to provide 
additional insight into the future use and application of extrap-
olated SDM predictions.
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