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Acoustic behavior of melon-headed whales varies on a diel cycle
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Abstract Many terrestrial and marine species have a diel ac-
tivity pattern, and their acoustic signaling follows their current
behavioral state. Whistles and echolocation clicks on long-
term recordings produced by melon-headed whales
(Peponocephala electra) at Palmyra Atoll indicated that these
signals were used selectively during different phases of the
day, strengthening the idea of nighttime foraging and daytime
resting with afternoon socializing for this species. Spectral
features of their echolocation clicks changed from day to
night, shifting the median center frequency up. Additionally,
click received levels increased with increasing ambient noise
during both day and night. Ambient noise over a wide fre-
quency band was on average higher at night. The diel adjust-
ment of click features might be a reaction to acoustic masking
caused by these nighttime sounds. Similar adaptations have
been documented for numerous taxa in response to noise. Or it
could be, unrelated, an increase in biosonar source levels and
with it a shift in center frequency to enhance detection dis-
tances during foraging at night. Call modifications in intensity,
directionality, frequency, and duration according to

echolocation task are well established for bats. This finding
indicates that melon-headed whales have flexibility in their
acoustic behavior, and they collectively and repeatedly adapt
their signals from day- to nighttime circumstances.
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Introduction

Many organisms, from invertebrates to vertebrates, both in
marine and terrestrial environments, have diel behavioral ac-
tivity patterns, often observed with corresponding changes in
the acoustic behavior. This has been documented, to name a
few, for the dawn chorus of birds, nighttime echolocation of
bats, nighttime calls of moths, crepuscular chorus of fish, and
dusk calling of frogs (Griffin 1958; Kamimura and Tatsuki
1993; Staicer et al. 1996; Bridges and Dorcas 2000; Širović
et al. 2009). A number of cetacean species show diel behavior
that may be regulated by an internal circadian clock or may be
linked to daily cycles in prey behavior (Klinowska 1986). Diel
acoustic behavior has been shown in some baleen whale spe-
cies using autonomous acoustic monitoring techniques (Au
et al. 2000; Wiggins et al. 2005; Oleson et al. 2007; Munger
et al. 2008; Matthews et al. 2014). Traditionally, descriptions
of diel behavior of many dolphin species were based on day-
light visual observations, and nighttime foraging was inferred
from evening foraging activity or stomach content analysis
(Würsig and Würsig 1979; Norris and Dohl 1980; Amano
et al. 1998). Toothed whale echolocation clicks, which gener-
ally are used to detect, characterize, and localize a target for
spatial orientation or feeding (Au 1993), have been shown to
increase in number and repetition rates at night for harbor
porpoise (Phocoena phocoena), spinner dolphins (Stenella
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longirostris), and Risso’s dolphins (Grampus griseus) (Norris
et al. 1994; Carlström 2005; Todd et al. 2009; Soldevilla et al.
2010a). Also, spinner dolphin acoustic activity typically is
low in the morning hours during resting and increased whis-
tling occurs during socializing in the afternoon (Norris et al.
1994). Two different Pacific white-sided dolphin
(Lagenorhynchus obliquidens) click types, possibly from
two distinct populations with different foraging strategies, ex-
hibit diel patterns with one type being dominant during day-
time hours and the other at night (Soldevilla et al. 2010b).

Most acoustically active species are capable of collectively
adapting their signals to optimize communication dependent on
their behavior and environment (Bradbury and Vehrencamp
1998). For example, bird populations have been found to adapt
song modulation rates in forest versus open-country environ-
ments to overcome propagation challenges (Krebs and Davies
1993). Adaptations in the acoustic behavior are often associated
with changes in the environment; for example, many
echolocating bats shorten their signal duration and increase their
bandwidth as they navigate closer to vegetation (e.g., Schaub and
Schnitzler 2007). Adaptive acoustic behavior to changes in the
soundscape has been a more recent focus, particularly in the
context of anthropogenic noise and its impact (e.g., Brumm
2013). Soundscapes are shaped by geophonies (e.g., wind,
waves, volcanic eruptions, earthquakes), biophonies (e.g., chorus
of birds, stridulation of insects, spawning chorus of fish), and
anthropophonies (e.g., vehicle motor noise, seismic surveys, ex-
plosions) (Farina 2014). With increased sounds, an acoustic sig-
nal may be masked, evoking compensating modifications in the
acoustic properties of signals. Most commonly, animals increase
their signal amplitude to improve the signal-to-noise ratio and
therefore detectability. Initially observed and described for
humans as the Lombard response (Lombard 1911), it has since
been found in many terrestrial species (e.g., frogs, primates, bats,
and songbirds; Sinnott et al. 1975; Schmidt and Joermann 1986;
Cynx et al. 1998; Brumm and Todt 2002; Pytte et al. 2003;
Brumm 2004; Penna et al. 2005; Tressler and Smotherman
2009). Beyond an increase in amplitude, other signal changes
include extending duration (e.g., Penna et al. 2005; Bermudez-
Cuamatzin et al. 2011), increasing repetition rate (e.g., Potvin
et al. 2011), shifting the dominant frequency to a band unaffected
by the noise (e.g., Lopez et al. 1988; Feng et al. 2006; Bermudez-
Cuamatzin et al. 2011; Potvin et al. 2011), or a combination of
these (e.g., Lopez et al. 1988; Tressler and Smotherman 2009).

Changes in the acoustic behavior in response to noise have
also been shown for cetacean species. North Atlantic right
whales (Eubalaena glacialis), killer whales (Orcinus orca),
and beluga whales (Delphinapterus leucas) adjust the call
structure of their tonal signals and pulsed-tone calls in re-
sponse to natural or anthropogenic noise. Right whales in-
crease their calling amplitude with increasing ambient noise
(Parks et al. 2011). In the presence of anthropogenic noise,
beluga whales may reduce their calling rate, change the

occurrence of specific calls, increase their dominant call fre-
quency (Lesage et al. 1999), and increase the signal amplitude
(Scheifele et al. 2005). Killer whales have been shown to
respond to vessel noise with an increase in call amplitude
(Holt et al. 2009, 2011) and an increase in call duration (Wie-
land et al. 2010). Low frequency wind noise resulted in an
upward shift in call frequency of offshore killer whales (Foote
and Nystuen 2008).

Few studies of captive animals have shown adaptations of
echolocation clicks in response to noise. A captive beluga
whale increased the source level and peak frequency of its
echolocation clicks when moved from the quieter San Diego
Bay to the noisier Kaneohe Bay, Hawaii (Au et al. 1985). Au
(1993) concluded from findings in two studies (Thomas et al.
1988; Thomas and Turl 1990) that false killer whales
(Pseudorca crassidens) also shift their frequencies and in-
crease their call amplitudes when confronted with a noisy
environment. However, findings in studies with captive ani-
mals may not be reflective of what can be expected in field
studies when animals may be operating at the limits of their
sound production system. In contrast, Cuvier’s beaked whales
reduce their overall echolocation click rates in the presence of
ship noise (Aguilar Soto et al. 2006).

Melon-headed whales (Peponocephala electra) are regu-
larly observed around Palmyra Atoll. They are pelagic dol-
phins that occur worldwide in tropical and subtropical oceanic
waters (40° N–35° S) (Jefferson et al. 2008; Perryman 2009).
They are mostly observed offshore in deep water and are a
highly social species with 100–500 animals (up to 2000) per
group (Jefferson et al. 2008). Melon-headed whales use day-
time hours for resting and socializing, and feed during the
night on mesopelagic prey (Brownell Jr. et al. 2009). Whistles
of melon-headed whales are described as relatively simple up
and down sweeps, as well as sinusoidal signals (Watkins et al.
1997; Frankel and Yin 2010). Echolocation clicks of melon-
headed whales recorded during daytime hours have been
shown to have species-specific properties allowing them to
be classified (Baumann-Pickering et al. 2010).

In this study, we investigated the diel acoustic activity pat-
tern of melon-headed whales from a year-long survey and the
animals’ acoustic adaptations in correlation with changes in
ambient sound. We tested the hypothesis that melon-headed
whale acoustic activity changed with their diel behavioral pat-
tern, comparable to that of spinner dolphins given their shared
preferred prey and similar behavioral diel pattern.

Materials and methods

Data collection

An autonomous high-frequency acoustic recording package
(HARP) was placed on the steep slope off Palmyra Atoll’s
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western terrace to investigate cetacean acoustic behavior. The
HARP design differed from what was described in Wiggins
and Hildebrand (2007) as it was in a mooring configuration
with the hydrophone floating 20 m above the seafloor. It re-
corded from October 19, 2006 until March 23, 2007 and from
April 9, 2007 until September 18, 2007. The recording gap of
16 days between the two deployments corresponded to servic-
ing of batteries and hard drives. During the first deployment,
the HARP was located at 5° 51.85′ N, 162° 09.91′ W, and
650m deep. It was then deployed about 1 km east of the initial
location at 5° 51.88′ N, 162° 09.36′ W, and 550 m deep
(Fig. 1). The recorder was set to a sampling frequency of
200 kHzwith 16-bit quantization and scheduled with a record-
ing sequence of 5 continuous minutes every 20 min. The
HARP used an omni-directional transducer (ITC-1042, Inter-
national Transducer Corporation, Santa Barbara, CA), which
had an approximately flat (±2 dB) hydrophone sensitivity
from 10 to 100 kHz of −200 dB re V/μPa. It was connected
to a custom-built preamplifier board with band-pass filter. The
preamplifiers were designed to flatten the frequency response
of the ambient ocean noise, which provided greater gain at
higher frequencies where ambient noise levels are lower and
sound attenuation is higher (Wiggins and Hildebrand 2007).
The calibrated system response was corrected for during
analysis.

Signal processing

Signal processing was performed using the MATLAB
(Mathworks, Natick, MA) based custom software program
Triton (Wiggins and Hildebrand 2007) and other custom
MATLAB routines. Melon-headed whale whistles in the
HARP data were identified manually by a trained analyst
(SBP). Long-term spectral averages (LTSAs, Wiggins and
Hildebrand 2007) were calculated for visual analysis of the
long-term recordings. LTSAs are time compressed

spectrograms created using the Welch algorithm (Welch
1967). Each 5-s time bin of the LTSA consists of the average
of 500 non-overlapped Hann-windowed spectra. The bins of
averaged spectra were then aligned over time resulting in
long-term spectrograms with a temporo-spectral resolution
of 5 s×100 Hz. The averaging process preserved short dura-
tion spectral features that would be lost in the Fourier trans-
form of a 5-s window. The year’s data were manually ana-
lyzed through LTSAs (Fig. 2a, c).Whenwhistles were notable
in the LTSA, the sequence was inspected more closely with
spectrograms typically of 5-s lengths, 3000-point DFTs, 80 %
overlap, Hann window, and a frequency range of 0–30 kHz
(Fig. 2b, d). Start and end times of these sequences were noted
if the whistles were manually classified to originate from
melon-headedwhales, which were substantially different from
whistles of other dolphins frequently encountered at Palmyra
Atoll (e.g., bottlenose dolphins (Tursiops truncatus), Fig. 2c,
2d). These manual analyst decisions were based on differ-
ences in the signals, with melon-headed whale whistles being
lower in frequency, shorter in duration, with less modulation
than those of other delphinids commonly encountered in these
waters (see BSupplementary Material 1^: Fig. S1, Table S1,
and Table S2, as well as values from literature (Watkins et al.
1997; Frankel and Yin 2010)). To classify echolocation clicks
as originating from melon-headed whales, we relied on the
assumption that in a segment with whistles from this species
the co-occurring clicks were produced by the same species.
Only those echolocation sequences were used in further anal-
ysis that had several distinct whistles allowing for a confident
analyst decision on the origin of these signals. However,
occasional mixed species recordings within segments
classified to have melon-headed whale signals cannot
be ruled out.

Echolocation clicks were automatically detected within the
HARP long-term data using a two-step approach as described
in Soldevilla et al. (2008). During the first step, clicks were
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detected using a frequency energy detector. Spectral frames
(1024 FFT, 50 % overlap, Hann window) were assumed to
contain echolocation clicks when 12.5% of the frequency bins
between 15 and 85 kHz exceeded a threshold of 10 dB. Indi-
vidual echolocation clicks were identified within these regions
using a Teager energy operator (Kaiser 1990; Kandia and
Stylianou 2006) applied to the time-series waveform as de-
scribed in Roch et al. (2011). The recording sequences with
detected clicks were digitally filtered with a 10-pole
Butterworth band-pass filter. The low frequency cutoff was
set to 5 kHz to minimize the influence of low frequency noise
from boats and weather. The high-frequency cutoff was set to
95 kHz. Filtering was done on 800 samples. Spectra of each
detected signal were calculated using 2.56 ms of data and a
512-point Hann window centered on the click. A calibrated
transfer function was applied to account for the frequency
dependent instrument response. Peak frequency was extracted
as the frequency with the highest level within each click spec-
trum. Click received levels were computed from waveform
peak-to-peak signal amplitudes and adjusted for the system
response at center frequency of each click. The HARP raw
data format used 75-s segments, making this a convenient
analysis length. To ensure statistical independence of data
points, only the first 75-s segment per 20 min was used in
further analysis. All clicks within each segment with peak-
to-peak received levels less than 130 dB re 1 μPa were

discarded to allow only strong clicks well above the noise
level in both nighttime as well as daytime situations. Segments
with less than 20 clicks detected within a 75-s interval were
not included into the analysis. To reduce variability in click
data and to find species-specific features, medians over all
click features of each 75-s segment were computed. To pro-
duce a dataset comparable to the published daytime data
(Baumann-Pickering et al. 2010), a second set of medians
per segment was calculated omitting clicks with peak frequen-
cy less than 20 kHz.

Diel analysis

Sunrise and sunset data for Palmyra Atoll were acquired from
the U.S. Naval Observatory website (http://aa.usno.navy.mil/
data/docs/RS_OneYear.php). Sunrise occurred between 06:33
and 07:06, sunset between 18:29 and 19:01. These differences
in sunrise and sunset were not considered substantial, so full
hours of the day were pooled in the diel analysis. Hours
between 07:00 and 19:00 were defined as daytime. Presence
and absence data were calculated for 75-s HARP recording
segments to count segments with whistles in each hour of the
day using all manually identified acoustic encounters, present-
ed as a histogram. Numbers of clicks per 75-s segment in each
hour of the day were extracted from the reduced number of
independent segments and presented as boxplot distributions.

Fig. 2 Example whistles and
clicks on long-term recordings at
Palmyra Atoll. a, b Signals from
melon-headed whales, and c, d
signals from bottlenose dolphins.
Top: long-term spectral average
(LTSA) showing several hours of
recording. 2000-points FFT, 5 s
average, 0 % overlap. Bottom:
spectrogram showing 5 s of
recording. 3000-points FFT, 80%
overlap. Graphs are not adjusted
for system response
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Two sample t tests with unequal variance were used to evalu-
ate whether or not differences in measurements of click char-
acteristics varied between day and night time echolocation
click medians. The validity of the equal variance condition
was evaluated through their F-ratios.

For the calculation of ambient noise levels, each 75-s seg-
ment within the first 30 min of each hour was, like the click
data, filtered between 5 and 95 kHz with a 10-pole
Butterworth band-pass filter. Root mean square (RMS) levels
were calculated for the quietest segment of each hour when
melon-headed whale whistles were present. Median RMS
levels were calculated to compare daytime versus nighttime
noise levels. The relationship of click peak-to-peak received
levels and ambient noise RMS received levels was tested with
a linear regression for day- and nighttime segments separately.
Noise spectra were computed over the quietest segment using
a 2048-point DFTand theWelch algorithm (Welch 1967) with
no overlap over one exemplary week. Spectral levels were
extracted for each hour at 5, 10, 30, and 50 kHz. Spectral
levels of each of these frequencies were normalized to the
lowest value within each frequency.

Results

Analyst-based study of high-frequency acoustic recording
package (HARP) data revealed 176 encounters of melon-

headed whale whistle sequences throughout one year of re-
cording. This resulted in 2528 segments of 75-s duration with
confirmed melon-headed whale signals. After reducing the
dataset to achieve independent samples to one segment every
20 min (duty cycle interval), the analysis was carried out on
627 segments (390 day, 237 night). The automatic click de-
tector found 186,870 echolocation clicks during the day and
243,349 clicks during the night within these segments. Most
segments with melon-headed whale whistles were detected in
the late afternoon (Fig. 3a). During that period, echolocation
click activity was low but increasing towards sunset (Fig. 3b).
Fewer segments with melon-headed whale whistles and lower
whistling activity in those segments were found during the
night. Echolocation click rates were higher throughout the
night than during the day (Fig. 3b, Table 1) with a decrease
towards sunrise.

The spectral content of echolocation clicks shifted to over-
all higher frequencies at night. As a result of this, median peak
and center echolocation click frequencies shifted between day
and night from 23 to 32 kHz and 22 to 28 kHz, respectively,
based on a 0.4-kHz frequency resolution (Fig. 4, Fig. 5, Ta-
ble 1). With an increase in click frequency occurred an in-
crease of click peak-to-peak received levels. This relationship
was stable up to approximately 145 dB re 1 μPa. At higher
received levels, center frequency decreased (Fig. 5). Concur-
rently, a distinct pattern of day and night ambient noise was
noted (Fig. 6). This broadband ambient sound pattern
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appeared to be unique to Palmyra Atoll, and a similar pattern
has not been detected at these high levels elsewhere. The
detailed origin of the ambient sound was undeterminable,
but it resulted in an increase in broadband noise up to about
70 kHz starting at sunset and lasting until sunrise (Fig. 6).
Additionally, between about 20:00 and 22:00 local time, there
was a distinct recurring noise with a peak at around 5 kHz.
RMS received level noise measurements over the full band-
width resulted in an average 4 dB increase during the night.

The increase of peak-to-peak echolocation click received
levels was positively related with an increase in ambient
sound (Fig. 7) at a rate of 0.45 and 0.34 dB increased click
received level per one dB increase in ambient sound day and
night, respectively.

Discussion

Long-term passive acoustic monitoring at Palmyra Atoll re-
vealed diel acoustic behavior of melon-headed whales. Click
rates increased in the late afternoon and continued to be high
during the night, decreased towards sunrise, and had their
lowest values late in the morning and around noon. Echolo-
cation clicks are used by the animals to detect, characterize,
and localize a target for spatial orientation or feeding (Au
1993). There is evidence for particularly high rates of echolo-
cation during periods of foraging (e.g., Van Parijs and
Corkeron 2001; Nowacek 2005). Detections of segments with
melon-headed whale whistles had a strong peak in the after-
noon until shortly before sunset, a steep drop-off at the begin-
ning of the night and the lowest detections before sunrise.
Whistles have been shown to be important for socializing
(Herman and Tavolga 1980; Norris et al. 1994; Janik and
Slater 1998; Janik 2000; Lammers et al. 2006). This compar-
ison indicated that whistles and clicks were used selectively
during different phases of the day. Variability in hourly detec-
tion rates of both whistles and clicks were likely a result of
changing animal densities within the detection range of the
recorder as well as variability in their behavior.

Melon-headed whales have a diel migratory and behavioral
pattern at Palmyra Atoll (Brownell et al. 2009). They rest and
socialize along the reef edge near the atoll over shallower
water (70 m minimum sighted depth, Fig. 1b) in the morning

Table 1 Spectral and temporal characterization of echolocation clicks partitioned by day and night. In each case, characteristics are given for all
echolocation clicks, and only those that have peak frequencies (pf) above 20 kHz

Day all clicks
n=390

Night all clicks
n-237

Day pf >20 kHz
n=390

Night pf >20 kHz
n=237

Two sample t-test with
unequal variance
(tested on all clicks)

Unit median median t d.f. p

Peak frequency kHz 22.7 (18.3, 29.5) 32.0 (28.5, 39.8) 28.1 (23.4, 39.4) 33.6 (29.7, 40.6) −20.3 541 <0.0001

Center frequency kHz 21.7 (18.0, 25.9) 28.2 (21.5, 33.5) 24.7 (20.7, 28.9) 28.8 (24.0, 33.6) −16.2 392 <0.0001

−3 dB bandwidth kHz 2.7 (2.3, 5.0) 3.5 (2.6, 5.1) 3.9 (2.7, 6.6) 3.9 (3.1, 5.4) −6.7 494 <0.0001

−10 dB bandwidth kHz 16.0 (5.8, 26.1) 19.8 (11.3, 28.0) 22.4 (11.5, 31.2) 22.2 (14.8, 29.2) −7.0 560 <0.0001

Duration μs 240 (19, 330) 270 (211, 370) 256 (205, 370) 279 (220, 377) −4.9 578 <0.0001

Received level
(peak-to-peak)

dB re 1 μPa 133 (132, 136) 136 (133, 140) 133 (130, 136) 136 (133, 140) −11.5 417 <0.0001

Click counts per segment # 189 (44, 931) 735 (84, 2151) 116 (22, 556) 578 (73, 2028) −9.8 332 <0.0001

Medians are reported as well as the 10th and 90th percentiles (in parentheses). Student t-test provides the significance of diel difference based on
segments with all clicks
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and early afternoon, with active whistling and low click rates.
In the early evening, they move towards deep water to feed on
mesopelagic prey (Brownell et al. 2009) and the vocalization
pattern reverses with high click rates and less whistling. This
is consistent with behavior exhibited by other delphinid spe-
cies that prey on vertical migrators from the mesopelagic
boundary layer during the night (Weilgart and Whitehead
1990; Norris et al. 1994; Nowacek 2005; Benoit-Bird and
Au 2009). High rates of nighttime echolocation for melon-
headed whales are likely related to diel patterns in prey migra-
tion similar to the echolocation behavior of spinner dolphins
(Benoit-Bird and Au 2003; Benoit-Bird et al. 2004). Mesope-
lagic biomass communities undergo a vertical and horizontal
migration from deep waters during the day to surface waters at
night, with a peak density near the surface around midnight
(Enright and Hamner 1967). The diel whistle and click rate
pattern of melon-headed whales at Palmyra Atoll supports the
hypothesis of nighttime foraging and daytime resting and

socializing for this species. Echolocating bats show the most
closely related acoustic behavior in the terrestrial environ-
ment. They use echolocation at night to forage (Griffin
1958) but also produce social calls under certain circum-
stances, some of which are related to a diel or seasonal pattern.
These social calls are known to occur during mating, to
communicate with animals in the roost, to recruit con-
specifics, or to defend foraging patches (Bradbury 1977;
Rydell 1986; Wilkinson and Wenrick Boughman 1998;
Davidson and Wilkinson 2004; Chaverri et al. 2010;
Arnold and Wilkinson 2011).

Median values of echolocation click parameters reported
here for melon-headed whales are not directly comparable to
values derived exclusively from assumed on-axis click mea-
surements. All values were calculated over on- as well as off-
axis clicks within a 75-s time segment, and likely, only a small
minority of these clicks was on-axis. While on-axis clicks
have energy beyond the 100-kHz bandwidth of the HARP,
towed array recordings in close vicinity to melon-headed
whales with sampling frequency up to 480 kHz show only a
3-kHz increase in median center frequency when grouping
more than 50 random on- or off-axis clicks (Baumann-Pick-
ering et al. 2010). This is likely an effect of a dominance of
off-axis click in the average spectra and demonstrates its sta-
bility across sampling schemes.

Spectral features of melon-headed whale clicks received at
the HARP were different from day to night with the entire
broadband energy shifted to higher frequency and stronger
amplitude at night. The energy started at about 15 kHz during
the day and at about 20 kHz during the night. Median center
frequency was at 22 kHz during the day at 28 kHz during the
night. The higher frequency and stronger amplitude of the
recorded clicks could be a result of (1) animals being closer
to the HARP and pointing their echolocation beam towards
the recorder during nighttime periods of foraging or (2) effort
to improve target detectability through an increase of biosonar
source level and changes in other click characteristics, such as
frequency, are a by-product.

With melon-headed whales moving offshore and to greater
depth at night to prey on the mesopelagic boundary layer, one
might assume the animals to be closer to the HARP location
and more likely to point their echolocation beam downwards
towards the hydrophone when possibly diving deeper than
during the day. A movement towards the HARP would in-
crease the received level and center frequency due to reduced
absorption and geometric spreading loss. Furthermore,
directing the echolocation beam downwards during foraging
would result in more on-axis clicks, which tend to have a
higher received level and higher center frequency.

A number of factors weaken this most parsimonious expla-
nation. Daytime sightings of melon-headed whales were in
water depths that would place the animals typically within
300–500 m of the HARPs bathymetry line. Morning sightings
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were in depths ranging from 70 to 300 m, afternoon sightings
in 300–400 m, and one evening sighting in 1300 m. While no
night time observations were possible, the tendency towards
deeper water as the day moved on coupled with a diet of
mesopelagic prey would suggest that the animals were likely
offshore of the HARPs’ bathymetry line during the night. The
southern reef edge extends over many nautical miles. There is

no indication for the probability of echolocating melon-
headed whales to be closer to the HARP during the night than
during the day.

Furthermore, daytime array recordings (Baumann-Picker-
ing et al. 2010) from groups of up to 1000 animals were made
at distances varying from adjacent to the hydrophone to
~2000 m away. The interest of melon-headed whales in these
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boat and towed array surveys resulted in many strong click
trains that were oriented towards the array hydrophone. The
median center frequency of these encounters was 31 kHz. The
closest the animals were observed to the HARP during a day-
time visual encounter was a perpendicular surface distance of
about 500 m with a resulting diagonal distance to depth of
800 m. Center frequencies recorded on the HARP during that
visual encounter were reported as 30 kHz. Daytime HARP-
recorded values presented in this article using the method in
Baumann-Pickering et al. (2010), excluding clicks with peak
frequencies below 20 kHz, were a median of 29 kHz. This
indicates that the change to higher amplitude and higher fre-
quency at night are unlikely a result of the animals being
closer to the HARP or pointing their echolocation beam more
towards it.

During foraging at night, an echolocation signal with a
higher source level should increase prey detection by either
increasing the detection range for prey or overcoming, in this
particular situation, the increased ambient noise at Palmyra
Atoll, or possibly a combination of both. An increased biosonar
source level would improve signal detectability based on a
higher signal-to-noise ratio. Strong upward frequency shifts
together with higher level echolocation clicks were reported
for captive beluga and false killer whales in response to noise
(Au et al. 1985; Thomas et al. 1988; Thomas and Turl 1990;
Turl et al. 1991). Captive bottlenose dolphins are capable of
adjusting their echolocation click amplitude yet have more dif-
ficulties in precise modification of the frequency structure of
their clicks (Moore and Pawloski 1990). The positive relation-
ship of click received levels and ambient noise levels suggests
that at least some of the observed amplitude adjustment at night
might be a Lombard response (Lombard 1911), and the alter-
ation of other click features, such as higher center frequency,
may be a result of the production of higher amplitude clicks.

Bats have been shown to use their echolocation signals in a
highly adaptive way depending on the current task and in
reaction to changes in the environment. Signal parameters,
such as frequency, duration, intensity, and beamwidth, are
being adjusted to shape a signal appropriate for the situation
(Jakobsen et al. 2013). It is well established that bats adapt the
time-frequency structure of their echolocation pulses to the
acoustic limits of their habitat and foraging circumstances,
which results in the concept of bat guilds (e.g., Neuweiler
1989; Schnitzler et al. 2003; Denzinger and Schnitzler
2013). More recently, levels of intensity and changes in beam
width have been investigated. Bats are capable of adjusting
their echolocation pulse intensity to overcome frequency de-
pendent attenuation resulting in similar detection ranges for
prey across species (Surlykke and Kalko 2008). Additionally,
bats are not only adapting the time-frequency components of
their signals as they search and approach prey (e.g., Melcón
et al. 2007), but they also adjust their signal strength and
beamwidth to suit the task (e.g., Koblitz et al. 2011).

Conclusions

A long-term, collective diel adaptation in free-ranging
odontocetes’ biosonar source levels and spectral content either
as an adjustment for larger detection distances of prey or to
overcome diel changes in ambient sound was discussed. The
results show that in the field, just as in captivity, the structure
of echolocation clicks is not a rigid entity but changes in
response to environmental or situational stimuli.

Future research should test further in the field, how echo-
location click structures are modified as a result of increased
detection range, as animals change their focal behavior from
navigation to foraging, and in the presence of natural or an-
thropogenic noise. In relation to adjustments due to noise, it
seems relevant at what point masking is becoming a disadvan-
tage for equal foraging success and what effect additional
energy expenditure due to prolonged foraging has on the ecol-
ogy of echolocating species.
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