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ABSTRACT OF THE DISSERTATION

Density estimation of delphinids using passive acoustics:
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John A. Hildebrand, Chair

Dolphin populations are often considered an indicator of ocean health, yet they

have historically been difficult to monitor. These animals live in remote, variable

environments, and spend much of their time out of sight, below the sea surface. Passive

acoustic monitoring (PAM) has become a viable method for gathering data on marine

mammals. Instruments can be placed on the seafloor for long periods, recording animal

sounds in the environment, regardless of oceanographic conditions, time of day and site

accessibility.

The lingering challenge is in translating acoustic detections into quantitative

xx



population density estimates. Density estimation techniques using PAM have been

developed for and applied to marine mammals, but they have rarely been used for long

term studies using single sensors, or applied to dolphins.

The Deepwater Horizon (DWH) oil spill event and its unknown impacts on

offshore marine mammals provided an impetus for collecting a long term PAM dataset

aimed at monitoring offshore marine mammals in the Gulf of Mexico (GOM). In this

work I develop a framework for long-term, high resolution, quantitative monitoring of

dolphin populations using this dataset, which stretches over three years at five sites.

Delphinid density estimation involves a series of steps: First, the probability

of detecting delphinid cues using PAM is estimated, accounting for variability by site,

species and season. Cues are then detected in the acoustic recordings, using methods

consistent with the constraints of the detection probability estimation process, and

classified to species. Finally, density estimates are produced by bringing together the

detection counts, probabilities, and species-specific behavioral parameters.

We find distinct annual cycles in animal density in the northern GOM with peaks

for most species in spring and summer months. Long-term increases in local densities

were seen for Stenellid dolphins and pilot whales at sites east of the DWH site, which are

not seen at sites to the south and east.

This work represents significant progress toward the goal of monitoring dolphin

populations with minimal impact, high temporal resolution, and improved accuracy.

These methods are broadly applicable to PAM efforts. As peripheral data are improved

and expanded, estimates can be refined using this framework.
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Chapter 1

Introduction

1.1 Passive acoustic monitoring of marine mammals

Underwater acoustic recording packages are widely used to passively monitor

oceanic dolphins (delphinids) and other cetaceans by recording the sounds that they

produce. These sounds can be interpreted as an indicator of animal presence. Passive

acoustic monitoring (PAM) devices are useful for long-term, non-invasive monitoring and

can operate continuously regardless of weather, visibility or site accessibility (Mellinger

et al., 2007). These methods can be used as a complement to visual surveys to understand

patterns of habitat use and population trends in marine mammals. Short term PAM

technologies include sonobuoys and towed arrays, while long term monitoring typically

involves seafloor-mounted recording devices or cabled arrays (e.g. Tiemann et al., 2004;

Nosal and Frazer, 2007).

Technological limitations on non-permanent PAM devices constrain bandwidth

and storage capacity (Diercks et al., 1973; Madsen and Wahlberg, 2007). Until recently,

this limited the types of marine mammal signals that could be monitored over long

time periods to the low frequency vocalizations of mysticetes (baleen whales) and

1
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sperm whales (e.g. McDonald and Fox, 1999; Širović et al., 2004; Stafford et al., 2007).

Sampling rates above 50 kHz (sometimes up to 500 kHz), and ample data storage are

required to record the high-frequency vocalizations of smaller odontocetes (toothed

whales, including dolphins). Recent technological advances have made this increasingly

feasible (Mellinger and Heimlich, 2013). This study uses High-Frequency Acoustic

Recording Packages (HARPs), which have the sampling capabilities and storage capacity

to continuously record high frequency delphinid echolocation clicks for extended periods

of time (many months to more than a year) (Wiggins and Hildebrand, 2007).

While increasing the number of questions that can be addressed with passive

acoustics, advances in underwater recording technologies have also led to a dramatic

increase in the quantity of acoustic data being collected. Historically marine mammal

vocalizations are manually detected and classified by trained analysts. Increasingly,

however, acoustic data sets are becoming too large for pure manual analysis to be

practical. For instance, a standard 6-month HARP deployment currently yields 2

terabytes of data, which might require multiple weeks to analyze manually for presence

of a single species, and much longer for more detailed and/or multispecies analyses. A

major focus in the PAM community is therefore on the development of efficient, robust,

automated tools capable of detection, classification and localization of recorded signals

(Mellinger and Heimlich, 2013).

In order to monitor marine mammal populations quantitatively using PAM devices,

detections of the species of interest need to be converted into a measure of local density

or abundance. Density estimation is an active area of research in PAM, because many

factors influence the relationship between animal densities, and the number of signals

or cues detected. In order to quantitatively monitor populations, to compare monitoring

locations, or to estimate trends over time, these variables need to be accounted for.

Factors that influence the relationship between detection events and actual animal
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densities include cue rate, animal behavior, acoustic characteristics of the propagation

in the environment, and monitoring effort (Helble et al., 2013a; Marques et al., 2009;

McDonald and Fox, 1999). Other factors specific to the processes of detection and

classification must also be considered, including false detections, missed detections, and

detection range limitations (Buckland et al., 2001, 2007). As a result, quantitative passive

acoustic population monitoring requires a combination of advanced marine technology,

robust data analysis, and specialized statistical methods.

1.2 Echolocation Clicks: Structure and Function

Delphinids produce two main types of sound: (1) Echolocation clicks, which are

short duration, broadband, directional pulses, and (2) whistles, which are longer duration,

frequency-modulated, omnidirectional tonal signals. Pulsed calls, consisting of many

clicks in rapid succession, are also produced.

Echolocation clicks are produced by all known delphinids. These signals are

produced by a structure adjacent to the blowhole known as the monkeylips (Cranford

et al., 1996; Madsen et al., 2003). The signal passes through a fatty body in the animal’s

head, known as the melon, which focuses the sound into a narrow beam (Aroyan et al.,

1992; Norris, 1968). This forward-directed beam of sound leaves the animal, bounces off

a target, and returns to the animal, which obtains information about the target from the

reflected signal (Au, 1993).

The directional nature of echolocation clicks gives them unique acoustic

properties (Au, 1993). When a dolphin orients its beam of sound directly at a target

sensor, the received signal amplitude at the sensor is high. In this scenario, a click

is termed "on-axis" with respect to the sensor. However, if the same animal, at the

same location points its transmitting beam elsewhere, the received click amplitude at the
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sensor will be low. In this case, the echolocation click is "off-axis" with respect to the

sensor. Specifics of delphinid transmission beams, including beam width, source level,

and amplitude difference between on and off-axis clicks, vary between species (Au and

Benoit-Bird, 2003; Au et al., 2009; Roch et al., 2011; Soldevilla et al., 2008) and may be

related to animal morphology, behavior, prey preferences and/or habitat (Akamatsu et al.,

2007; Henderson et al., 2011; Jensen et al., 2009, 2013; Madsen et al., 2004a).

Echolocation click parameters, and directionality in particular, impact density

estimation efforts because signal detectabilty depends on animal orientation relative to

the recording device (Hildebrand et al., 2015; Küsel et al., 2011; Marques et al., 2009).

At close range, an animal’s echolocation clicks may be detectable even if it’s beam is

off-axis relative to the sensor. As range increases, however, only on-axis clicks will be

detectable. Further, given a low amplitude echolocation click, it is currently not possible

to determine whether the signal was produced close to the sensor but off-axis, or at a

distance but on-axis. This leads to added complexity in click-based density estimation

efforts, compared with estimates based on omnidirectional signals.

1.3 Delphinids in the Gulf of Mexico

The Gulf of Mexico (GOM) is home to at least fourteen species of delphinids

(Fritts et al., 1983; Mullin and Fulling, 2004; Mullin, 2007). Twelve of these are primarily

pelagic, living entirely in deep waters beyond the continental shelf, and are the focus of

the research presented here.

Listed in order of expected abundance these species are:

1. Pantropical spotted dolphin (Stenella attenuata),

2. Spinner dolphin (Stenella longirostris),
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3. Pilot whale (Globicephala macrorhynchus),

4. Melon-headed whale (Peponocephala electra),

5. Risso’s dolphin (Grampus griseus),

6. Striped dolphin (Stenella coeruleoalba),

7. False killer whale (Pseudorca crassidens),

8. Rough-toothed dolphin (Steno bredanensis),

9. Clymene dolphin (Stenella clymene),

10. Pygmy killer whale (Feresa attenuata),

11. Killer whale (Orcinus Orca).

12. Fraser’s dolphin (Lagenodelphis hosei),

These pelagic species are typically found beyond the shelf break in waters

more than 200 meters deep (Mullin and Fulling, 2004). Abundances are computed

by aggregating data from periodic summer visual surveys by NMFS NOAA and can vary

considerably between estimates, due to survey limitations. Pantropical spotted dolphin is

consistently reported as the most abundant delphinid in the Northern GOM, with most

recent population size estimates around 50,000 animals in 2009, CV = 0.27 (but as many

as 90,000, CV = 0.16, estimated in 2001). Large fluctuations in population size estimates

(Ê) are also seen for species like Clymene dolphin (Ê = 17,000, CV = 0.65, in 2001

vs. Ê = 129, CV = 1, in 2009), and Fraser’s dolphin (Ê = 723, CV = 0.70, in 2001

vs. Ê = 0 in 2009 ; Mullin and Fulling 2004; Mullin 2007). Population estimates are

more consistent for other species including, melon-headed whale and Risso’s dolphin at

roughly 2000-3000 animals, and killer whales between 20 and 100 animals (Mullin and
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Fulling, 2004; Mullin, 2007). This variability highlights a need for alternative strategies

to complement summer visual survey efforts in order to improve population estimates

and to resolve long term trends.

Pelagic delphinid home ranges in the GOM overlap spatially, but several species’

distributions are linked to mobile oceanographic features including sea surface height

anomalies, eddies and temperature gradients (Davis et al., 2002). Pilot whales and Risso’s

dolphins are deep divers (Baird, 2002; Heide-Jørgensen et al., 2002; Wells et al., 2009),

feeding primarily on squid (Clarke and Pascoe, 1985; Würtz et al., 1992). Both species

are large, with body lengths up to four meters in Risso’s dolphin and up to six meters

for adult pilot whales (Baird, 2002; Olson and Reilly, 2002). Risso’s dolphins are often

found along strong, productive thermal gradients, and both species are associated with

steep bathymetry where vertical mixing supports elevated primary productivity and prey

aggregation (Davis et al., 1998; Baumgartner, 1997).

Most of the pelagic dolphins of the genus Stenella (Stenellid dolphins include

pantropical, Clymene, spinner and striped dolphins and the more coastal Atlantic spotted

dolphin) are found beyond the continental shelf (Davis et al., 2002). Although they

live in deep water, these relatively small animals (approx. 2m in length; Archer and

Perrin 1999; Perrin and Hohn 1994), are not considered deep divers, and use only the

top few hundred meters of the water column (Hastie et al., 2006). Evidence suggests

that offshore Stenellid dolphins feed nocturnally on myctophid fish and small squid that

migrate toward the sea surface as part of the deep scattering layer (Baird et al., 2001;

Fitch and Brownell Jr, 1968; Miyazaki et al., 1973).

Pelagic Stenellid dolphins are often associated with cyclonic cold core eddies,

which aggregate their prey (Davis et al., 2002). However some habitat differences have

been reported between the various Stenellid species. Pantropical spotted dolphins are

generally found in warmer waters (Perrin, 2001), and have been shown to vary their
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range in order to follow preferred habitat as it shifts geographically over seasons or years

(Fiedler and Reilly, 1994; Reilly, 1990).

Fraser’s dolphin is similar in size to the Stenellid dolphins, and associated with

deep tropical and subtropical oceans worldwide (Perrin and Hohn, 1994). This is thought

to be a deep diving species that may be more oceanic, and prey on slightly larger items

than the Stenellid dolphins (Dolar, 2002).

Rough-toothed dolphins have been reported in both shelf and slope waters in

the GOM (Fulling et al., 2003). These unique dolphins forage on surface-dwelling

prey including flying fish, mahimahi and needlefish (Baird et al., 2008; Pitman and

Stinchcomb, 2002).

The remaining pelagic GOM delphinid species, including melon-headed whale,

false killer whale and pygmy killer whale, are infrequently sighted or known mainly

from stranded specimens. Little is known about their distribution and foraging habits in

the region (Jefferson and Schiro, 1997). This may be partially due to the difficulty in

distinguishing between the blackfish species during visual surveys. A number of these

have only been recognized in the region within the last 30 years (Barron and Jefferson,

1993; Mullin et al., 1994; O’Sullivan and Mullin, 1997).

Mixed species groups of delphinids are common in the GOM. Melon-headed

whales have been seen mingling with pods of Fraser’s dolphin (Mullin et al., 1994), and

schools containing multiple species of pelagic Stenellid dolphins have also been reported

(Fertl et al., 2003).

Only two species of delphinid are regularly found in shelf and coastal habitats

in the GOM: Bottlenose dolphins (Tursiops truncatus) and Atlantic spotted dolphins

(Stenella frontalis) (Fulling et al., 2003; Jefferson and Schiro, 1997). Atlantic spotted and

striped dolphin are typically found in cooler waters with mild sea surface temperature

gradients (Davis et al., 1998). Some have suggested that the genus Stenella may be
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non-monophyletic (Perrin, 2001), and that Atlantic spotted dolphins may be more closely

related to bottlenose dolphins than to other Stenellid dolphin species (LeDuc et al., 1999)

. Atlantic spotted dolphins and bottlenose dolphins are often found in mixed groups

(Herzing and Johnson, 1997).

Bottlenose dolphins typically outnumber Atlantic spotted dolphins in areas

shallower than 20 meters (Griffin and Griffin, 2003), and can be found in extremely

shallow bays and estuaries, where they appear to be resident (Wilson et al., 2013). Mean

dive durations are very short for these animals (less than a minute), and foraging seems to

peak in the morning and evening, rather than at night (Mate et al., 1995). Both bottlenose

and Atlantic spotted dolphins are found on the continental shelf and out to the shelf

break (Davis et al., 2002). Their fine-scale distributions are thought to be linked to

oceanographic conditions, but little is known about seasonal distribution trends for these

shallow water species (Griffin and Griffin, 2004).

1.4 The Gulf of Mexico Ecosystem

The GOM covers an area of roughly 1.5 million square kilometers, nearly 60% of

which consists of shallow zones (less than 180 m deep) above a broad continental shelf

(1.1; Gore, 1992). The continental shelf is more than 80 km wide at its narrowest point,

and extends up to 250 km from the coast in some places (Carsey, 1950). Beyond the

shelf, the continental slope represents about 20% of the GOM’s surface area, and abyssal

planes up to four kilometers deep make up the remaining 20% (Gore, 1992).

This unique system is caught between the North American continent and the

Caribbean Sea, both of which heavily influence its oceanographic features. From the

south, a warm flow known as the Loop Current travels up from the Caribbean, passing

between Cuba and the Yucatan peninsula and into the GOM, where it loops around before
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exiting past the tip of Florida to join the North Atlantic Gulf Stream (Murphy et al.,

1999).

Anticyclonic, oligotrophic warm core rings up to 300km wide periodically detach

from the Loop Current and move westward until they dissipate along the coast of Mexico

and southern Texas (Biggs, 1992). Slightly smaller cyclonic eddies known as cold cores

are generated at the edges of the warm cores. These cold cores are nutrient rich and

productive, in contrast with their warm counterparts (Biggs and Müller-Karger, 1994).

The Loop Current and the cores associated with it drive upwelling in along their edges.

This is thought to be a major and dynamic source of nutrient inputs to offshore waters

(Wiseman et al., 1999). Planktonic biomass is generally higher in cyclonic cold core

rings which drive upwelling at their centers, and lower in anticyclonic warm core eddies

(Wormuth et al., 2000). This in turn affects distribution of marine mammals looking for

prey (Biggs et al., 2000). A prominent deep scattering layer lies around 450-550 meters

during the day, but may shoal in areas around the Mississippi river outflow where high

particulate levels reduce light penetration (Kaltenberg et al., 2007).

The GOM is routinely hit by tropical storms and hurricanes in summer months,

and battered by northern cold fronts throughout the winter. Sea surface temperatures

are markedly higher in late spring and summer than in fall and winter (Chang and Oey,

2010; Etter, 1983). This shift, along with seasonal weather patterns leads to seasonal

fluctuations in the mixed layer depth, which varies between 20m in summer, to 125m in

winter (Müller-Karger et al., 1991, 2014).

On its northern edge, the GOM receives an average of 580 km3 of fresh water

annually from the Mississippi River (Meade, 1996). The magnitude of the flow varies

seasonally, with the largest inputs in spring. These waters drain from a basin that includes

more than 40% of the continental US (Berner and Berner, 1987). The Mississippi river

outflow brings levels of dissolved nitrogen, phosphates, and organic particulates to the
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nutrient-depleted subtropical waters (Dagg and Breed, 2003). The combination of the

nutrient-rich Mississippi outflow and strong stratification of the water column in summer

months causes eutrophication, leading to the annual formation of the world’s second

largest hypoxic region along the Northern GOM continental shelf during summer months

(Rabalais et al., 2002). Sediment cores show that this hypoxic zone first appeared around

the turn of the 20th century, and increased dramatically around the 1950s (Turner and

Rabalais, 1994), as nutrient inputs from human activities increased.

1.5 Human impacts in the Gulf of Mexico

The Northern GOM is a chronically impacted system that has been the site of

extensive development and exploitation for over a century, with pressures increasing in

recent decades (Birkett and Rapport, 1999; Austin et al., 2004). Shoreline development

has contributed to extensive wetland and coastal ecosystem loss, leading to increased

erosion, pollution, and lack of nurseries for nekton, including larval fish (Peterson and

Lowe, 2009; Turner, 1990, 1997). Pollutant discharge and nutrient loading from the

Mississippi river outflow are also ongoing sources of environmental stress (Birkett and

Rapport, 1999).

Despite environmental heavy impacts, the GOM is home to productive

commercial and recreational fisheries, with over 60 managed stocks. A number are

identified as over-fished, and many more are of unknown status due to a lack of

historical records (Karnauskas et al., 2013). Numerous studies have found evidence

of bioaccumulation of heavy metals, petroleum residues and Polychlorinated biphenyls

(PCBs) in fish and invertebrates in the region (Cai et al., 2007; Neff et al., 2011; Peterson

et al., 1996).

The oil and gas industry is probably the most well known source of human impact



11

in the GOM. Early extraction efforts began onshore, and subsequently moved through

wetlands and into nearshore sites by the 1930s (Austin et al., 2004). Today Deepwater

(water depth >1000m), and Ultra Deepwater (water depth >5000m) drilling are common.

Well density exceeds three rigs per km2 in some areas along the Texas shelf, while

deepwater densities were between 0.23 and one wells per km2 in 2009 (Nicot, 2009).

Drill sites are routinely plugged and abandoned (Kaiser and Dodson, 2008), causing

leakage concerns, but also reportedly functioning as an artificial reef system (Stanley and

Wilson, 2000).

Oil exploration using airguns is a major source of ambient noise in the GOM,

and this maybe particularly problematic for cetaceans populations. An analysis of global

seismic surveys activity from 1994 to 2005 indicated that the GOM had an average of 25

active oil explorations per month, the highest of any region globally (Hildebrand, 2009).

Additional noise sources include commercial shipping, fishing, and recreational vessel

activity.

1.5.1 The Deepwater Horizon oil spill

The Deepwater Horizon (DWH) oil spill began with a well explosion on April

20th, 2010, followed by oil flow into the GOM for approximately three months. This

was the largest oil spill in US waters to date. Total flow has been estimated at seven

hundred thousand m3 of crude oil (Camilli et al., 2012; Crone and Tolstoy, 2010), with

over two million gallons of dispersant chemicals applied (1.4 million gallons at surface,

0.7 million gallons at depth, Kujawinski et al. 2011).

This spill was unique in that it occurred at the seafloor, in deep water (Reddy

et al., 2012). A large surface oil slick formed, however much of the oil released never rose

to the sea surface, remaining instead in a large and diffuse plume at depth (Kessler et al.,

2011). The deep plume sat at a depth of approximately 1100 m and had a southward
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footprint which differed from that of the surface slick (Camilli et al., 2010; Hildebrand

et al., 2012). Dispersants were applied both at the surface, and at the well outflow, which

may have contributed to the formation of the deep plume (Kujawinski et al., 2011). Over

time, the oil in this plume appeared to settle to the seafloor over an area of approximately

3,200 km2 around the well site (Spier et al., 2013; Valentine et al., 2014).

Surface oil was deposited in sediments by a large marine snow event (Passow

et al., 2012), in which mats of oil, particulate matter and phytoplankton sank to the

seafloor. Oil-derived compounds were released into the atmosphere by evaporation and

managed surface burns (Ryerson et al., 2011). DWH oil was also documented along

1,773 km of shoreline on the Northern Gulf coast (Michel et al., 2013).

Long term effects of the DWH oil spill on pelagic GOM biota have been difficult

to quantify due to the size and depth of affected areas, a lack of baseline data, and the

GOM’s complex history of chronic impacts. Of particular interest from a marine mammal

perspective is an unusual mortality event involving primarily coastal bottlenose dolphins,

which began in February 2010 and was ongoing as of publication of this manuscript (Litz

et al., 2014). Evidence suggests that the magnitude and duration of this event may have

been linked at least in part to the DWH oil spill (Carmichael et al., 2012; Venn-Watson

et al., 2015). Pelagic species have been a minority of reported deaths, but are likely

under-reported (Williams et al., 2011).

1.6 This study

The goal of this study is to develop a framework for long-term, high resolution,

quantitative monitoring of dolphin populations in remote locations. This is accomplished

by estimating delphinid densities at sites of interest on a weekly timescale using PAM

devices. The DWH oil spill event and its unknown impacts on offshore marine mammals
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provided the impetus for collecting the long term passive acoustic dataset used here as a

case study.

The acoustic dataset underlying this study was obtained from HARPs deployed

at five sites of interest in the GOM: Two shallow sites on the continental shelf, and three

deep sites on the continental slope (Figure 1.1 and Table 1.1). Sites were chosen to

capture variation across a range of marine habitats. Instruments were serviced with new

batteries and data storage on a 2-5 month cycle. These instruments recorded continuously

at 200kHz throughout each deployment. Deployments occurred between between May

2010, and September 2013 (Table 1.2).

HARPs are bottom-mounted acoustic recorders containing a hydrophone, data

logger, battery, power supply, ballast weights, acoustic release system, and flotation

(Wiggins and Hildebrand, 2007). The hydrophone is tethered to the instrument and

buoyed approximately 10 m above the seafloor. It consists of a high frequency stage and

a low frequency stage. The high frequency stage consists of a spherical, omni-directional

transducer (ITC-1042, www.channeltechgroup.com), with an approximately flat (+/-

2 dB) sensitivity response of about -200 dB re 1Vrms / ÂţPa between 1 Hz and 100

kHz. The a low frequency stage is made up of six cylindrical transducers (Benthos AQ1,

www.teledynebenthos.com), with a flat response (+/- 1.5 dB) of about -187 dB re 1Vrms

/ ÂţPa from 1 Hz to 10 kHz. . All acoustic data were converted to sound pressure levels

based on hydrophone calibrations performed at Scripps Institution of Oceanography and

at the U.S. NavyâĂŹs Transducer Evaluation Center facility in San Diego, California.

In order to arrive at delphinid density estimates, a number of challenges need

to be addressed. Each subsequent chapter of this document addresses one of these

challenges. First, the probability of detecting delphinids at monitored sites must be

estimated (Chapter 2) and verified (Chapter 3). This probability may vary by site, species

and season. Next, cues need to be detected in the extensive acoustic recordings using a



14

detection method consistent with the constraints of the detection probability estimation

process (Chapter 4). Once detections are made, they need to be categorized by type

(Chapter 5) and attributed to particular species (Chapter 6). Finally, density estimates are

achieved by bringing together the detection counts, detection probabilities, and species

specific behavioral parameters, to generate site specific estimates of animals per unit area

over time (Chapter 7).

The complexity of this undertaking exceeds what can be resolved here. Lingering

refinements needed to solidify density estimates are outlined in the final chapter. A lack

of pre-spill data limits the inferences that can be drawn with respect to the effects of

the DWH event. Nonetheless, this work represents significant progress toward the goal

of monitoring dolphin populations with minimal impact, high temporal resolution, and

improved accuracy. These methods are broadly applicable to monitoring scenarios in

which permanent sensors are unavailable and human effort is constrained. As peripheral

data are improved and expanded, estimates can be refined using the framework developed

here.
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Figure 1.1: Map of the five monitoring sites (black circles) in the Gulf of Mexico used
for this study, and the location of the 2010 DWH oil rig blowout (red triangle). Note
two letter codes used to identify each site. Blue lines indicate 100m depth contours.

Table 1.1: Location of monitoring sites in the Gulf of Mexico. Sites are named after
the federal lease block in which they are located.

Site name Site
Code

Depth (m)
Bathymetry

Type
Dist. from

spill site (km)
Oil

coverage

Desoto
Canyon

DC 270 Shelf 225 No

Dry
Tortugas

DT 1320 Slope 484 No

Green
Canyon

GC 1115 Slope 304 No

Main Pass MP 80 Shelf 56 Yes

Mississipi
Canyon

MC 980 Slope 14 Yes
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Table 1.2: Dates, durations and locations of HARP deployments spanning 3 years at
five sites. Site codes are based on the name of the federal lease block in which the site
is located.

Data ID Data Start Data End Duration Long. W Lat. N Depth

(days) (m)

DC02 10/21/2010 2/6/2011 108 86-05.773 29-03.134 268

DC03 3/21/2011 7/6/2011 107 86-05.800 29-03.210 260

DC04 10/26/2011 3/2/2012 144 86-05.899 29-02.886 260

DC05 3/3/2012 12/9/2012 282 86-05.839 29-02.822 260

DC06 12/9/2012 9/25/2013 289 86-05.873 29-02.902 260

DT01 8/9/2010 10/26/2010 78 84-38.251 25-31.911 1320

DT02 3/3/2011 7/12/2011 129 84-38.251 25-31.911 1320

DT03 7/13/2011 11/14/2011 124 84-38.262 25-31.859 1300

DT04 12/13/2011 1/9/2012 26 84-38.265 25-31.867 1300

DT05 5/27/2012 12/07/2012 195 84-38.041 25-31.938 1200

DT06 12/7/2012 8/18/2013 253 84-38.046 25-31.941 1200

GC01 7/15/2010 10/11/2010 88 91-10.010 27-33.470 1115

GC02 11/8/2010 2/2/2011 86 91-10.014 27-33.466 1160

GC03 3/23/3022 8/8/2011 138 91-10.073 27-33.424 1100

GC04 9/23/2011 2/17/2012 118 91-10.060 27-33.426 1100

GC05 2/28/2012 12/12/2012 289 91-10.562 27-33.440 1100

GC06 12/13/2012 9/10/2013 271 91-10.092 27-33.347 1100

MC01 5/16/2010 8/28/2010 104 88-27.927 28-50.746 980

MC02 9/7/2010 12/19/2010 103 88-27.907 28-50.771 980

MC03 12/20/2010 3/21/2011 91 88-27.909 28-50.775 980

Continued on next page
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Table 1.2 – continued from previous page

Data ID Data Start Data End Duration Long. W Lat. N Depth

MC04 3/22/2011 8/15/2011 146 88-27.946 28-50.775 980

MC05 9/22/2011 2/21/2012 152 88-27.991 28-50.797 980

MC06 2/28/2012 12/11/2012 288 88-28.041 28-50.853 980

MC07 12/11/2013 8/3/2013 235 88-28.059 28-50.781 900

MP01 7/4/2010 9/25/2010 83 88-17.530 29-15.204 86

MP02 11/07/2010 2/19/2011 100 88-17.808 29-15.318 93

MP03 3/23/2011 9/6/2011 167 88-17.808 29-15.318 93

MP04 9/22/2011 3/1/2012 161 88-17.702 29-15.354 93

MP05 3/1/2012 11/24/2012 270 88-17.597 29-15.368 90

MP06 12/10/2012 9/25/2013 289 88-17.514 29-15.379 90



Chapter 2

Modeling detectability of delphinid

echolocation clicks on seafloor sensors

2.1 Abstract

Passive acoustic monitoring devices can record high frequency, directional

delphinid echolocation clicks in the environment. To translate click detections into

a measure of local delphinid density, we need to know the likelihood that a dolphin

in the vicinity of a sensor will be detected. Efforts to determine this probability are

complicated by the limitations of single-sensor monitoring devices, the variability of

dolphin behaviors and of the marine environment, and by the unique characteristics of

delphinid clicks.

In this chapter, I describe two simulation-based methods designed to estimate

the probability of detecting echolocating delphinids in the vicinity of a seafloor sensor.

One method estimates the probability of detecting a single click (cue counting), while

the other estimates the probability of detecting a group of delphinids (group counting).

Simulations predict that groups are up to an order of magnitude more likely to be detected

18
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than individual clicks. Species-specific dive behaviors and click characteristics, including

frequency content and source level, are predicted to significantly affect detectability.

Seasonal sound speed profile changes may affect the probability of detecting groups at

some sites. This work suggests that species-specific, site-specific detection probabilities

are necessary for delphinid density estimation based on passive acoustic methods.

2.2 Background: Detection Probability Estimation

A promising application of marine mammal passive acoustics is in developing the

ability to estimate and monitor animal densities at field sites over time based exclusively

on recording data. The problem of density estimation using passive acoustics has been

largely solved for cases in which an animal produces a detectable acoustic cue at a known

rate, and the distance between the animal and the sensor can be estimated (Thomas

et al., 2010; Marques et al., 2009, 2013). Knowing the distribution of distances at which

detections are made is critical for density estimation because the probability of detecting

an animal is typically a function its distance from the sensor (Buckland et al., 2001).

Distance to an acoustic source has been estimated from recordings in optimal

scenarios. Triangulation is possible when the receiver is an array of simultaneously

recording sensors (e.g. Wiggins et al., 2013). Triangulation has also been applied to

single sensor cases involving few animals producing mid-frequency, high amplitude

sounds, when clear surface and/or seafloor reflections are available (Nosal and Frazer,

2006). Alternatively, the distance to an omnidirectional source with a known source level

and/or initial frequency content can be estimated based on properties of the received

signal (e.g. Marques et al., 2011). However in many cases, none of these ideal scenarios

applies. This is particularly true for delphinids, which tend to travel and forage in large

groups and produce large numbers of high-frequency, directional echolocation clicks
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with poorly understood frequency content and variable source levels.

2.2.1 Detection Probability Simulation

An alternative method of determining detection probability is through simulation.

Detection probability simulation is useful in cases where detection probabilities cannot

be estimated from experimental data. In many cases, the data do not exist, or are

too sparse to represent the full variability across a range of environmental parameters,

species-specific behaviors, cue characteristics, and temporal variability. The field

work and instrumentation necessary to characterize detectability experimentally can

be prohibitively expensive, and the results do not translate well between studies. Models

provide a viable alternative. A model framework can be used to combine parameter

estimates across existing studies and incorporate the reported variability into an estimate

of detection probability through iterative simulation.

Detection probability simulation has been used for fin, humpback, and beaked

whale detection probability estimation (Harris et al., 2013; Helble et al., 2013a; Küsel

et al., 2011). Using a Monte Carlo simulation approach (Metropolis and Ulam, 1949),

sources are placed programmatically at random locations within a specified area around

a receiver. An algorithm then determines whether or not a signal produced by that source

would be received and detected, based on signal characteristics, acoustic propagation

models, and detector parameters. This sequence is repeated millions of times to generate

a map of detection probabilities in the vicinity of the sensor for the signal of interest.

Modeling does have considerable drawbacks: It is necessarily based on a

simplified understanding of the acoustic environment, initial signal, animal behaviors,

and detector properties. However, if input parameters are carefully verified and sufficient

variability is incorporated, a simulation can provide a good first order estimate of

detectability.
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Modeling is somewhat simplified in the case of delphinids because the animals

are typically located within 200 m of the sea surface, even when diving (see for example:

Benoit-Bird and Au, 2003; Hastie et al., 2006; Minamikawa et al., 2013; Wells et al.,

2009). Tagging studies of various delphinid species indicate that these animals often

spend more than half of their time within 20m of the sea surface even during foraging

periods associated with deeper dives (Baird et al., 2001; Scott and Chivers, 2009). The

high frequency content of delphinid echolocation clicks is associated with rapid amplitude

attenuation with distance, generally resulting in small detection ranges. This simplifies the

acoustic propagation component of the model, but limits the area that can be monitored

acoustically. Furthermore, current models of echolocation click signals are very primitive,

therefore only simple propagation effects on cues can be simulated.

2.2.2 Cue-Based and Group-Based Methods

Two basic modeling strategies are implemented in this chapter:

1. Modeling the probability of detecting a single cue (cue counting).

2. Modeling the probability of detecting a group of animals, over a small window of

time (group counting).

These methods are based on influential work by Buckland et al. (2001, 2007).

Cue counting methods use individual detection events (cues), as the basic unit

for density estimation. The number of cues detected over a period of time is converted

into an estimate of animal density. Group counting methods use a small window of time,

or snapshot as the basic unit for density estimation. For each time window, animals

are determined to be either detected or not, and the number of positive detection time

windows is converted into an estimate of animal density, by assuming that a positive time

window equates to presence of a group.
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Both cue and group counting simulation methods require knowledge of cue

properties, animal distributions in space, and local oceanographic conditions. An

advantage of cue counting is that the only behavioral parameters required are animal

depth and vertical orientation in the water column (assuming that animal orientation in

the horizontal plane is random relative to the sensor). Disadvantages of the cue counting

approach appear in other density estimation steps. These include sensitivity to false

positives, risk of detector saturation, and the fact that cue rates may not be proportional

to animal density (e.g. Götz et al., 2006).

In contrast, the group counting approach is relatively insensitive to false positives,

detector saturation, and cue rate variation. However, simulation of group detectability

requires a group behavior model, as well as knowledge about group orientation and

vocalization synchrony (Marques et al., 2013). This method also assumes that average

group size is based on data that is relevant for the time of the acoustic survey.

Regardless of the simulation method used, different delphinid species require

species-specific parameter choices within the model framework. In this study, we are

using echolocation clicks as our cue. (Delphinids also produce omnidirectional tonal

calls, however these are not frequently seen in the Gulf of Mexico recording data). Click

characteristics including frequency content, beam width, and source level vary between

delphinid species (e.g. Au et al., 1986, 1995; Au and Herzing, 2003; Fish and Turl,

1976; Madsen et al., 2004a). Behaviors including depth distributions, group size, and

dive synchrony are also species-dependent (e.g. Baird et al., 2001; Heide-Jørgensen

et al., 2002; Scott and Chivers, 2009; Wells et al., 2009, 2008). Because true parameter

distributions are generally not known or poorly constrained, variability for all of these

parameters must be built into the model framework.
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2.2.3 Parameterizing the Detector

An essential part of estimating detectability is accurate characterization of the

detector’s ability to find cues. In some cases, models have used simulated calls embedded

in noise (Helble et al., 2013a), or signals with known source levels recorded at known

distances (Ward et al., 2011) to empirically determine a detector’s performance. However,

in the case of delphinid echolocation, click production models are not yet able to predict

frequency content as a function of animal orientation relative to a sensor (off-axis angle),

therefore full cue simulation is not a viable option.

The solution applied here is to use a simple energy-based detector, which

functions predictably based on a constant amplitude threshold. It is important to note

that this threshold is an absolute measure of amplitude (peak-to-peak dB re: ÂţPa)

from calibrated hydrophones, thus allowing ambient noise to be ignored in the model

framework. This amplitude threshold can be implemented simply in the Monte Carlo

simulation (see chapter 4 for a description and discussion of the detector that the model

described here simulates).

2.2.4 Goals of this Chapter

This chapter details a model-based methodology for estimating the probability of

detecting delphinid echolocation signals on seafloor sensors. Two modeling approaches,

cue counting and group counting, are implemented and compared. Effects of diel

and seasonal parameter shifts on detectability are explored. Site-specific detection

probabilities for the Gulf of Mexico HARP dataset are computed separately for deep

diving delphinids (incl. Risso’s dolphin (Grampus griseus) and pilot whale (Globicephala

sp.)), and shallow diving pelagic species (incl. Stenellid dolphins (Stenella spp.) and

rough-toothed dolphin (Steno brenanensis)).
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The model results are analyzed to address three main hypotheses:

• H1: For a given species type and site, predicted detection probability is expected

to differ between night and day.

• H2: For a given species type and site, predicted detection probability is expected

to differ between winter and summer.

• H3: At a given site deep divers are expected to have higher predicted detection

probability than shallow divers.

2.3 Methods

Both models consisted of two loops, one nested within the other, in a Monte

Carlo framework. One iteration of the outer loop is considered a simulation, and in

this work, 500 simulations were run for each detection probability scenario of interest.

For each simulation, a mean and standard deviation for each input parameter were

drawn from a random uniform distribution between the ranges associated with that

parameter (Tables 2.1 and 2.2. Using this mean and standard deviation, a second random

distribution of the appropriate type was then generated for each input parameter. In the

inner model loop, each source was assigned parameter values drawn from this second set

of distributions.

2.3.1 Model Design: Cue Counting Method

Click detection probability was modeled using a Monte Carlo framework in

which animal distributions and echolocation parameters were simulated to estimate the

likelihood of detecting clicks produced in the area around each sensor. Within a single

iteration of the model, 104 source positions were randomly selected in the horizontal
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plane around the sensor within a maximum radius of five kilometers, beyond which

it was assumed that clicks were not detectable (e.g. Zimmer et al., 2008, for beaked

whales). Each source was assigned a depth, drawn from a probability distribution based

on species dive behavior data in the literature (Tables 2.1 and 2.2) rendering the model

three dimensional. Sources were then assigned body angle in the vertical (pitch), and

orientation in the horizontal plane (yaw). Yaw was chosen from a uniform distribution

in which all orientations relative to the sensor are equally likely (0° to 359°). Elevation

angle distributions may be derived from tag data in the future, but are not currently

available, therefore elevations were drawn from a normal distribution with a mean of 0°

(body is parallel to the seafloor) and a large standard deviation selected from a uniform

distribution between 20° and 40° upon each iteration of the model. Finally, each source

was assigned source level and beam directivity based on distributions reported in the

literature (Au et al., 1986, 1995; Au and Herzing, 2003; Au et al., 2012a; Fish and Turl,

1976; Madsen et al., 2004a,b; Rasmussen et al., 2002, 2004), and data described in

chapter 4 .

Predicted received levels at the HARP were computed for a click produced at each

modeled source position, using the parameters assigned to each source, and model-based

transmission loss estimates at the click peak frequency (see Section 2.3.4). Clicks with

received levels greater than a static amplitude threshold (based on the detector described

in Chapter 4) were considered detectable. This is a necessary oversimplification given

current click simulation capabilities. Ramifications are further described in the discussion

section and in Chapter 4. Detection probability for each model iteration was given by the

ratio of detectable clicks to total simulated clicks. The model iterated 500 times for a

total of five million sources simulated per detection probability estimate.
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2.3.2 Model Design: Group Counting Method

The group probability of detection model functioned similarly to the cue-counting

model in overall structure, but assumptions at the level of a detection differed. This

model estimated the probability of detecting a group of animals in a five minute window.

Since most delphinids’ mean dive durations are shorter than this, the model incorporated

a range of behavioral possibilities within this time window, including heading, pitch and

depth changes (Tables 2.1 and 2.2). Each source location in the xy plane was assigned a

maximum depth selected from a literature-based distribution.

In the group model, rather than being assigned a specific heading and pitch, each

source was assigned a main heading, and allowed to rotate vertically and horizontally

by a certain amount about that heading. For group detection purposes, only the most

detectable cue in a time window matters, therefore only the maximum possible received

level for each source, given the allowed rotation and depth distribution, was retained.

This model design simulated the detectability of a group of animals that could

change direction and dive during the detection time window. Although position could

conceivably change during this time window, this behavior was not included in the

model, because distance sampling assumptions require that nothing move in or out of the

detection area in during the time window (Buckland et al., 2007).

2.3.3 Model Parameterization

Detection probabilities were computed separately for each site (MC, GC, DT, DC,

and MP) and delphinid group (deep and shallow divers), using model parameters specific

to each. Values of all parameters were randomly and repeatedly selected from expected

distributions, which were constructed based on a literature review (Tables 2.1 and 2.2).

Risso’s dolphin and pilot whales are generally deep divers, with relatively large
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body sizes. Literature values suggest similar dive depth distributions and source levels for

these species therefore a generalized parameter set was used to model their detectability

(Table 2.1; Southall in prep; Chapter 3 data; Au et al., 1986; Au and Herzing, 2003; Fish

and Turl, 1976; Heide-Jørgensen et al., 2002; Madsen et al., 2004a; Wells et al., 2009).

In contrast, Stenellid dolphins are smaller animals, with shallower dive profiles

and lower source levels. Literature values for dive profiles and click parameters of

rough-toothed dolphins and false killer whales suggest that they are more similar in these

categories to Stenellid dolphins than to the deeper divers, therefore they are included in

the shallow diver category (Table 2.2; Au and Herzing, 2003; Au et al., 1995; Baird et al.,

2001; Madsen et al., 2004a; Scott and Chivers, 2009; Wells et al., 2008). Separate day

and night models were created for both deep and shallow divers, because these pelagic

species typically dive deeper at night than during the day (Baird, 2002; Scott and Chivers,

2009).

Due to computation limitations, beam directivity was drawn from a uniform

distribution and kept constant within each model iteration, but varied between iterations.

Beam directivity was used to estimate a simulated beam pattern using a piston model

(Zimmer et al., 2005). This model is an approximation at best, and does not realistically

predict amplitudes at large off-axis angles. In order to compensate for this, mean

values for beam amplitudes at 90° and 180° off-axis angles were drawn from a uniform

distribution based on beam patterns in the literature (Au et al., 1986, 2012a). A linear

interpolation was used to complete the off-axis beam shape, by interpolating between the

90° and 180° amplitude values.

Signal peak frequency, which primarily affects model results by influencing

absorption predictions, was also generalized for computational reasons. Because

echolocation click models are not yet able to simulate click frequency content as a

function of off-axis angle, single frequency value was used to approximate transmission
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loss. For modeling purposes, the critical value is the mean peak frequency of received

clicks recorded for a species of interest. This approximate frequency was identified for

each species category based on a manual review of the HARP detection data (see Chapter

5).

Parameters differed slightly between slope and shelf site simulations (Table 2.3).

Shelf sites were noisier in general, therefore a higher minimum received level threshold

was used, in order to simulate the detector (see Chapter 4 for details).
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Table 2.1: Literature-based parameter ranges from which inputs were drawn for the
Monte Carlo simulation of deep diver (Risso’s dolphin and pilot whale) detectability.
Model type indicates click (C) or group (G) method. TL is transmission loss. For each
outer loop of the simulation, a mean and standard deviation for each parameter were
drawn from a random uniform distribution between the listed ranges associated with
that parameter. A second random distribution of the type listed under "Distribution"
was then generated for each parameter using the selected mean and standard deviation.
Note that log-normal distributions were used to dive depths. In the inner model loop,
each source was assigned parameter values drawn from this second set of distributions.

Parameter Model Mean Std. Dev. Distribution Ref.

Dive depth (day) C 1.5 to 2.5 m 0.5 - 1 m Log-normal (1)

Dive depth (night) C 2 - 3.5 m 1 - 1.5 m Log-normal (1)

Dive depth (day) G 2 - 2.5 m 0.5 - 1 m Log-normal (1)

Dive depth (night) G 2.5 - 3.5 m 1 - 1.5 m Log-normal (1)

Directivity C 23 - 27 dBpp n/a Uniform (2)

Min off-axis TL G 23 - 27 dBpp 2 - 5 dBpp Normal (2)

90° off-axis TL C 23 - 27 dBpp n/a Uniform (2)

180° off-axis TL C 33 - 37 dBpp n/a Uniform (2)

Peak Frequency C, G 34kHz n/a none (3)

Source level C, G 215-225 dBpp 2 - 4 dBpp Normal (3)

Orientation: Elevation C ±0° 20 - 40° Normal

Orientation: Azimuth C ±0-359° n/a Uniform (4)

Rotation: Elevation G ±55 - 65° 10-15° Normal

Rotation: Azimuth G ±140 - 160° 10 - 20° Normal

(1) Wells et al., 2009; Heide-Jørgensen et al., 2002, Southall in prep,
(2) Au et al., 1986, 2012a
(3) Au and Herzing, 2003; Fish and Turl, 1976; Madsen et al., 2004a, Chapter 3 data,
(4) Required by distance sampling assumptions.
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Table 2.2: Literature-based parameter ranges from which inputs were drawn for the
Monte Carlo simulation of shallow diver (Stenellid dolphin, rough-toothed dolphin and
false killer whale) detectability. Model type indicates click (C) or group (G) method.
TL is transmission loss. For each outer loop of the simulation, a mean and standard
deviation for each parameter were drawn from a random uniform distribution between
the listed ranges associated with that parameter. A second random distribution of
the type listed under "Distribution" was then generated for each parameter using the
selected mean and standard deviation. Note that log-normal distributions were used to
dive depths. predict In the inner model loop, each source was assigned parameter values
drawn from this second set of distributions.

Parameter Model Mean Std. Dev. Distribution Ref.

Dive depth (day) C 0.5 - 1.5 m 0.5 - 1 m Log-normal (1)

Dive depth (night) C 1.5 - 3 m 0.5 -1 m Log-normal (1)

Dive depth (day) G 1 - 1.5 m .5 - 1 m Log-normal (1)

Dive depth (night) G 2 - 3 m .5 - 1 m Log-normal (1)

Directivity C 23 - 27 dBpp n/a Uniform (2)

Min off-axis TL G 23 - 27 dBpp 2 - 5 dBpp Normal (2)

90° off-axis TL C 23 - 27 dBpp n/a Uniform (3)

180° off-axis TL C 33 - 37 dBpp n/a Uniform (3)

Peak Frequency C, G 40kHz n/a none (2)

Source level C, G 205 - 215 dBpp 2 - 4 dBpp Normal (2)

Orientation: Elevation C ±0° 20 - 40° Normal

Orientation: Azimuth C ±0-359° n/a Uniform (4)

Rotation: Elevation G ±55 - 65° 10-15° Normal

Rotation: Azimuth G ±140 - 160° 10 - 20° Normal

(1) Baird et al., 2001; Scott and Chivers, 2009; Wells et al., 2008
(2) Au and Herzing, 2003; Au et al., 1995; Madsen et al., 2004a,b; Rasmussen et al.,
2002, 2004, Chapter 3 data,
(3) Au et al., 1986, 2012a
(4) Required by distance sampling assumptions.
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2.3.4 Acoustic Propagation Modeling

Transmission loss as a function of distance and elevation relative to each sensor

was simulated using the ray-tracing algorithm Bellhop (Porter and Bucker, 1987), with

site-specific environmental and physical parameters drawn from the Oceanographic and

Atmospheric Master Library (OAML). The ray tracing technique used by the Bellhop

algorithm models acoustic wave motion by breaking the signal into a large number of

narrow beams, radiating out from a source (Porter and Bucker, 1987). Each ray is made

up of very short straight lines, whose directions change gradually as a function of the

properties of the modeled medium. Together they form long curving paths. This approach

relies on the assumption that the acoustic wavelength is very small compared to physical

features in the propagation environment. The algorithm is therefore well-suited for high

frequency modeling, where other models based on normal modes or parabolic equations,

are inefficient.

Using the theorem of acoustic reciprocity (Rayleigh, 1887), incoherent

transmission loss in a gridded volume around each site was simulated by defining the

sensor location as an omnidirectional sound source. Three thousand rays were projected

from the sensor position, at launch angles ranging from -90° to 90°, where 0° is directly

above the instrument.

Transmission loss at each frequency was computed along 64 equally spaced

radials around each HARP site to render the model three dimensional. Each radial

calculation resulted in a grid covering the full depth of the water column, and extending

20 km horizontally from the sensor. Vertical grid resolution was one meter and horizontal

resolution was ten meters. Vertical grid resolution was kept fine to limit the influence of

the model’s surface boundary layer to a one meter bin. Large radials were computed to

check for non-monotonic detectability changes and to allow for development of models

for other species with higher amplitude signals, such as sperm whales.
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Environmental and physical parameters were extracted from OAML using ESME

Workbench (Mountain et al., 2013). Bottom bathymetry was obtained from the global

Digital Bathymetry Database (DBDB, version 5.4, 1’ resolution) available from OAML.

The bathymetry for each radial was computed as a linear, piece-wise interpolation

between the grid points extracted from the DBDB. Bottom composition was clay at

all sites according to OAML’s Bottom Sediment Type database (BST, version 2.0, 2’

resolution). The bottom boundary was modeled as an acousto-elastic half-space (Porter,

1992). Sound speed profiles were range dependent, such that the profile applied to

each analysis position was dependent on geographical location, rather than applying a

single profile to the entire volume. All sound speed profiles were draw from OAML’s

Generalized Digital Environment Model (GDEM, version 3.0, 15’ resolution).

Potential seasonal environmental changes on detectability were tested for by

computing and comparing detection probabilities based on mean monthly modeled

sound speed profiles from January (winter) and July (summer), as obtained from OAML

databases, which are in turn based on historical values. The sound speed profiles used

are averages, and do not reflect particular hydrographic events. This is in keeping with

the aim of the model to provide an average probability of detection over a large number

of encounters and a wide variety of conditions.

2.3.5 Hypothesis Tests

Hypotheses were tested using a two-sample Kolmogorov-Smirnov test (Massey Jr,

1951), to compare distributions of mean detection probability estimates between iteration

simulations. In all cases, the null hypothesis was that the two distributions were drawn

from the same continuous distribution, and the alternative hypothesis was that they were

drawn from different continuous distributions. A p-value less than a significance level of

5% significance level was required to reject the null hypothesis.
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Table 2.3: Site-specific model input parameters. Note that a higher received level
threshold (RL) was used for shelf sites MP and DC due to noise conditions at these
locations.

Site DC DT GC MC MP

Latitude (N) 29.047 25.531 27.557 28.846 29.256

Longitude (W) 86.097 84.638 91.168 88.465 88.295

Sensor Depth (m) 272 1158 1336 990 97

RL Threshold (dBpp) 117 115 115 115 117

Model Radius (km) 5 5 5 5 5

2.4 Results

For each species group, deep divers and shallow divers, detection probability was

computed using the both the click and group modeling methods (Tables 2.4 and 2.8).

Detection probability decreased as a function of range in all simulations (Figures 2.1

to 2.4), with highest detection probabilities when an animal or group was located within

100m of the sensor (horizontal range).

Differences between model predictions, as well as results of the hypothesis tests

were as follows:

• H1: Diel differences in detection probability

Click model: For a given species group (deep or shallow divers) at slope sites

the distributions of modeled click detection probabilities were not significantly

different between day and night models (Table 2.5). At shelf sites, the only

significant difference was seen for the deep diver model in summer at site MP, with

higher average detectability at night.

Group model: The probability of detecting groups was significantly different
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between day and night models at shelf sites for both deep and shallow divers in

both summer and winter (Table 2.9), with higher average detection probabilities at

night. No significant differences were found between day and night group detection

probability distributions at slope sites for either species category.

• H2: Seasonal differences in detection probability

Click model: At shelf site MP, there was a significant seasonal change in

detectability for shallow divers in both day and night scenarios (Table 2.6). Deep

divers only showed a seasonal detection probability distribution difference at MP

in night scenarios. At shelf site DC, there was no significant difference between

night model predictions for the deep diver category as a function of season. A

significant difference was found between shallow diver night models in Januuary

compared to July models at site DC, but no difference was found for day models.

Significant differences between summer and winter model prediction distributions

were not seen at slope sites for either species category or time of day.

Group model: The distribution of detection probabilities for deep diver groups

was significantly different in summer than in winter models for northern slope

sites MC and GC, with higher mean detection probabilities predicted in summer

(Table 2.10). There was no significant difference in shallow diver models, and

no significant difference at the southern slope site DT. At shelf sites, both deep

and shallow diver detection probability distributions were significantly different

between summer and winter models. Both were predicted to be less detectable on

average in summer than in winter.

• H3: Inter-species differences in detection probability

Click model: Deep diver and shallow diver models predicted significantly different

click detection probability distributions in all scenarios (Table 2.7). Deep diver
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clicks were predicted to be roughly five times more likely than shallow diver clicks

to be detected at slope sites, and three times more detectable at shelf sites.

Group model: Deep diver and shallow diver models predicted significantly different

group detection probabilities in all scenarios (Table 2.11). Deep diving groups

were predicted to be two to three times more detectable than shallow diving groups

on average, at all sites.

Table 2.4: Model-based estimates of the site specific probability (as a %) of detecting
an individual echolocation click, plus or minus one standard deviation (σ ), accounting
for time of day and season, within a 5 km radius. Models were used to generate models
associated with night and day dive behaviors using both summer (July) and winter
(January) mean sound speed profiles. Separate estimates are presented for shallow
diving delphinids (including Stenellid dolphins, Rough-toothed dolphins, and false
killer whales), and deep diving delphinids (including Risso’s dolphins and pilot whales).
Clicks are assumed to be undetectable at ranges larger than 5 km.

January July

Site day/night shallow deep shallow deep

MC day 1.4 ±0.8 σ 7.5 ±2.3 σ 1.4 ±0.8 σ 7.5 ±2.3 σ

night 1.4 ±0.7 σ 7.7 ±2.4 σ 1.4 ±0.7 σ 7.7 ±2.3 σ

DT day 1.1 ±0.7 σ 7.4 ±2.3 σ 1.1 ±0.7 σ 7.2 ±2.2 σ

night 1.2 ±0.7 σ 7.4 ±2.3 σ 1.1 ±0.7 σ 7.3 ±2.3 σ

GC day 1.1 ±0.7 σ 7.3 ±2.4 σ 1.1 ±0.7 σ 7.2 ±2.3 σ

night 1.1 ±0.7 σ 7.4 ±2.4 σ 1.2 ±0.7 σ 7.3 ±2.4 σ

MP day 2.1 ±0.6 σ 6.8 ±1.5 σ 2.0 ±0.6 σ 5.0 ±0.8 σ

night 2.2 ±0.7 σ 6.7 ±1.6 σ 2.1 ±0.6 σ 5.6 ±1.0 σ

DC day 2.2 ±0.7 σ 7.7 ±2.0 σ 2.2 ±0.8 σ 8.1 ±1.9 σ

night 2.2 ±0.8 σ 8.0 ±2.1 σ 2.2 ±0.8 σ 8.1 ±2.1 σ
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Table 2.5: Click Method: P-values from two-sample Kolmogorov-Smirnov goodness-
of-fit hypothesis tests, comparing mean detection probability distributions obtained
from day and night simulations, for a given diver type and season (January and July
indicate winter and summer models respectively). A p-value less than 0.05, denoted
with * is taken to indicate a significant difference between distributions.

January July

Site Shallow Deep Shallow Deep

MC 0.90 0.40 0.36 0.25

DT 0.17 0.86 0.86 0.60

GC 0.76 0.28 0.07 0.32

MP 0.25 0.66 0.06 *0.00

DC 0.19 0.08 0.32 0.12

Table 2.6: Click Method: P-values from two-sample Kolmogorov-Smirnov goodness-
of-fit hypothesis tests, comparing mean detection probability distributions obtained
from January (winter) and July (summer) simulations, for a given diver type and time of
day. A p-value less than 0.05, denoted with *, is taken to indicate a significant difference
between distributions.

Shallow divers Deep divers

Site Day Night Day Night

MC 0.66 0.71 0.98 0.93

DT 0.96 0.19 0.50 0.45

GC 0.36 0.86 0.81 0.66

MP *0.03 *0.00 0.09 *0.00

DC 0.32 *0.02 0.19 0.22
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Table 2.7: Click Method: P-values from two-sample Kolmogorov-Smirnov goodness-
of-fit hypothesis tests, comparing mean detection probability distributions obtained for
deep and shallow diver simulations, for a given month and time of day. January and
July indicate winter and summer models respectively. A p-value less than 0.05, denoted
with *, is taken to indicate a significant difference between distributions.

January July

Site Day Night Day Night

MC 0.00* 0.00* 0.00* 0.00*

DT 0.00* 0.00* 0.00* 0.00*

GC 0.00* 0.00* 0.00* 0.00*

MP 0.00* 0.00* 0.00* 0.00*

DC 0.00* 0.00* 0.00* 0.00*

Table 2.8: Model-based estimates of the site specific probability (as a %) of detecting a
group of delphinids, plus or minus one standard deviation (σ ), accounting for time of
day and season, within a 5 km radius. Models were used to generate models associated
with night and day dive behaviors using both summer (July) and winter (January) mean
sound speed profiles. Separate estimates are presented for shallow diving delphinids
(including Stenellid dolphins, Rough-toothed dolphins, and false killer whales), and
deep diving delphinids (including Risso’s dolphins and pilot whales). Groups are
assumed to be undetectable at ranges larger than 5 km.

January July

Site day/night shallow deep shallow deep

MC day 15.5 ±2.9 σ 40.8 ±6.0 σ 15.8 ±3.1 σ 43.1 ±6.5 σ

night 15.6 ±2.9 σ 41.1 ±6.0 σ 15.7 ±3.0 σ 43.4 ±6.6 σ

DT day 15.5 ±3.2 σ 41.7 ±6.3 σ 15.3 ±3.2 σ 42.1 ±6.2 σ

night 15.1 ±3.1 σ 41.8 ±6.5 σ 15.5 ±3.2 σ 42.1 ±6.5 σ

GC day 15.0 ±3.2 σ 41.0 ±6.1 σ 15.2 ±3.1 σ 42.6 ±6.5 σ

night 15.1 ±3.0 σ 41.3 ±6.1 σ 15.1 ±3.1 σ 42.7 ±6.4 σ

MP day 12.2 ±1.7 σ 27.5 ±3.6 σ 7.8 ±0.9 σ 18.8 ±2.7 σ

night 12.8 ±2.0 σ 30.9 ±4.2 σ 9.0 ±1.4 σ 24.3 ±3.7 σ

DC day 14.3 ±2.0 σ 28.2 ±3.0 σ 13.7 ±1.6 σ 25.9 ±2.7 σ

night 15.4 ±2.1 σ 30.3 ±2.9 σ 14.3 ±1.7 σ 27.8 ±2.9 σ
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Table 2.9: Group Method: P-values from two-sample Kolmogorov-Smirnov goodness-
of-fit hypothesis tests, comparing mean detection probability distributions obtained
from day and night simulations, for a given diver type and season (January and July
indicate winter and summer models respectively). A p-value less than 0.05, denoted
with *, is taken to indicate a significant difference between distributions.

January July

Site Shallow Deep Shallow Deep

MC 0.81 0.93 0.40 0.60

DT 0.12 0.90 0.32 0.86

GC 0.45 0.66 0.93 0.93

MP *0.00 *0.00 *0.00 *0.00

DC *0.00 *0.00 *0.00 *0.00

Table 2.10: Group Method: P-values from two-sample Kolmogorov-Smirnov goodness-
of-fit hypothesis tests, comparing mean detection probability distributions obtained
from January (winter) and July (summer) simulations, for a given diver type and time of
day. A p-value less than 0.05, denoted with *, is taken to indicate a significant difference
between distributions.

Shallow divers Deep divers

Site Day Night Day Night

MC 0.11 *0.00 0.99 *0.00

DT 0.28 0.66 0.07 0.36

GC 0.40 *0.01 0.71 *0.04

MP *0.00 *0.00 *0.00 *0.00

DC *0.00 *0.00 *0.00 *0.00
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Table 2.11: Group Method: P-values from two-sample Kolmogorov-Smirnov goodness-
of-fit hypothesis tests, comparing mean detection probability distributions obtained for
deep and shallow diver simulations, for a given month and time of day. January and
July indicate winter and summer models respectively. A p-value less than 0.05, denoted
with *, is taken to indicate a significant difference between distributions.

January July

Site Day Night Day Night

MC 0.00* 0.00* 0.00* 0.00*

DT 0.00* 0.00* 0.00* 0.00*

GC 0.00* 0.00* 0.00* 0.00*

MP 0.00* 0.00* 0.00* 0.00*

DC 0.00* 0.00* 0.00* 0.00*
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Figure 2.1: Group Model: Nighttime model-based probability of detecting a deep
diving group, as a function of range, at all sites. Light gray bars: January (winter); Dark
gray bars: July (summer).
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Figure 2.2: Group Model: Nighttime model-based probability of detecting a shallow
diving group, as a function of range, at all sites. Light gray bars: January (winter); Dark
gray bars: July (summer).
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Figure 2.3: Click Model: Nighttime model-based probability of detecting a deep diver
click, as a function of range, at all sites. Light gray bars: January (winter); Dark gray
bars: July (summer).
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Figure 2.4: Click Model: Nighttime model-based probability of detecting a shallow
diver click, as a function of range, at all sites. Light gray bars: January (winter); Dark
gray bars: July (summer).
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2.5 Discussion

2.5.1 Click Detection Probabilities

The click-based probability of detection model aims to estimate the likelihood of

detecting a single delphinid click given that it was produced within a 5 km radius of the

sensor. In general, this probability is very low, when averaged across the entire 79 km2

monitoring area (Table 2.4). However, when detectability is considered as a function

of range (Figures 2.3 and 2.4), the reason behind the low probabilities becomes clear:

Detection probabilities are high in the small region immediately around the sensor, but

are outweighed by low detection probabilities at large ranges. Since the area monitored

increases with the square of distance, the overall probability of detection is low.

Click detectability is most affected by two main factors. The first is source

level. The main difference between the deep diver and shallow diver models is the

estimated source level distribution. Deep divers’ source levels are typically higher,

making them detectable at larger ranges than the shallow divers, under otherwise similar

model conditions (Table 2.4). Preliminary work during model development also suggested

that the click model is sensitive to assumptions about beam pattern. Since most of the

clicks are expected to be received off-axis, assumptions about beam width and off-axis

amplitudes can have relatively large effects on model predictions. This sensitivity is

addressed within the model by sampling from a range of probable beam directivities

and off-axis amplitudes, and is therefore expected to be included in the error estimates.

Further research on click directivity and off-axis amplitudes would improve the reliability

of model predictions.

The second factor influencing click detectability within the model is site depth.

Detection ranges are slightly shorter at shelf sites due to the higher detection thresholds

used there relative to slope sites. However despite the received level threshold differences,
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animals are more likely to be detected at close horizontal ranges because the water depth

is much less than at slope sites (Table 2.3). For the same horizontal range, the animals

are actually much closer to the sensor at shelf sites than slope sites. In general, when

animal dive depths are large relative to the site depth, predicted detectability increases,

therefore deep divers are more likely to be detected at deep sites than shallow divers.

Both sets of species are thought to dive deeper at night than during the day (Baird

et al., 2001; Heide-Jørgensen et al., 2002; Scott and Chivers, 2009; Wells et al., 2008,

2009), but the effect of this difference on detectability is predicted to be very small. False

killer whales may exhibit the reverse behavior, diving deeper during the day than at night

(Minamikawa et al., 2013), but unless the depth distributions are vastly different, this

would not be expected to have a large effect on detectability.

Overall, although there are some small, significant differences in the model

predictions of mean click detection probability as a function of season and time of

day, these differences are not expected to have a large effect on density estimates. The

estimated detectability differences are below a few percentage points on average. When

combined with other factors influencing density estimates and the associated variances,

these temporal effects are expected to be minimal. The modeled sound propagation

environment is generalized, and may not account for the effects of specific oceanographic

events. In general, the smaller the predicted detection range, of the cue of interest, the

smaller the impact of sound speed profiles on detectability.

The click detection model predicts that individual delphinid clicks are only

detectable when an animal is on or nearly on-axis relative to the instrument, or the animal

is close to the sensor. A shallow-diver click produced at the sea surface directly above a

deep (>1000m) seafloor sensor may not be detected if the animal’s beam is not pointed

downward. On the other extreme, a deep diver click produced over three km away from

the sensor, may be detected if the animal’s beam is aimed toward the sensor.
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The use of received level as the the only metric of detectability is an

oversimplification. In reality echolocation click detectability is also influenced in part

by frequency content and energy distribution in the time-series, both of which can vary

as a function of off-axis angle. Since we currently have no methods for modeling the

effects of off-axis angle on received click structure, an alternative approach is used, in

which click detection is simplified to rely as much as possible on received level (Chapter

4), which can be modeled. Future work will likely seek to improve echolocation click

simulation in order to allow for more sophisticated detection methods and more refined

estimates of click detectability.

2.5.2 Group Detection Probabilities

The probability of detecting a group is related to the click detection probability

in many ways, but it attempts to mimic a snapshot approach over a short time window,

and to estimate the detection probability during that period. Integrating over a small time

window is expected to increase detection probabilities relative to cue counting methods.

This is borne out by the group model predictions, which estimate that the probability of

detecting a shallow-diving group in a five minute window will be an order of magnitude

higher than the probability of detecting a single click from that group. Likewise, the

probability of detecting a deep-diving group in a five minute window is predicted to be

nearly five times higher than the probability of detecting a single click from that group.

Because it integrates detectability across a time window, the group model predicts

larger maximum detection ranges than the click model, given the same conditions. This

is because an on-axis click is theoretically detectable at relatively large ranges, but the

probability of an individual click being on-axis is very low. In the group model, the

probability of a click being on-axis is much higher because time and multiple animals

make it more likely that at least one animal in the group will orient toward the sensor at
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least once during the window. While this is probably true in practice, in the model realm,

the distribution of rotational angles and depths expected of an average group is poorly

constrained, if at all. This is a considerable weakness in the group model because group

rotation assumptions have a large effect on detectability predictions.

The high detection probabilities at horizontal ranges over 2 km predicted by

the group model make detectability predictions more sensitive to seasonal changes in

sound-speed profiles than the click model predictions. The sound propagation models

predict that the strong summer thermocline will have two main effects (Urick, 1967).

First it will trap sound energy produced above the thermocline in the shallow mixed layer

at the sea surface, reducing the amplitude of the signal that reaches the seafloor sensor

below. Second, the thermocline will strongly refract sound energy that does escape the

surface layer toward the seafloor, reducing the distance that the signal will travel before

it bounces off the seafloor (Figure 2.5 A). In contrast, the weak winter thermocline and

deep mixed layer is predicted to allow more near-surface acoustic energy to reach the

seafloor, and to cause weaker downward signal diffraction (Figure 2.5 B). For shallow

diver click detectability, the probability of detecting an individual click at the ranges at

which these effects would be significant is small. However the estimated probability of

detecting a group is greater at these ranges, therefore the effects of seasonal thermocline

shifts are predicted to be larger. This effect is seen at shelf sites MP and DC. Groups of

both deep and shallow divers are predicted to be less detectable in summer than in winter

at horizontal ranges over 1.5 km. Groups are also predicted to be more detectable during

summer nights when they spend a larger portion of the time below the thermocline, than

summer days. This effect is stronger for the deep-diving group.

A different seasonal effect is seen at the two northern slope sites, MC and GC. The

group detectability model predicts slightly higher detection probabilities in the summer,

but only at night. At night, the deep diver model puts more animals just below the
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thermocline, which has the reverse effect of trapping energy at depth, pushing detection

probabilities slightly higher (Figure 2.6). This effect is not seen at the shallow sites

because the signal would bounce off the seafloor prior to arriving at the sensor at the

ranges at which this effect is seen. The effect is not seen at site DT because the summer

thermocline there is not typically as strong there as it is at the more northern sites.

Modeling group behavior over a short time window also requires assumptions

about how a group’s orientation changes over time. We know from manual analysis of

recording data that the period of time during which a group of animals appears to be

approaching the sensor (amplitudes steadily increasing over time) is generally much

longer than the period during which the group appears to be leaving it (amplitudes steadily

decreasing). This suggests that the animals in the group are more likely to be clicking in

their direction of travel, and may not turn back 180° to click on-axis after the point of

closest approach. In the case where the animals are foraging, full 360° rotation in the

time window may be more likely than in a traveling mode. These different behavioral

modes are not currently captured by the group model, but their incorporation, along with

the availability of further data, could improve the reliability of the group model approach

in the future.

Group spread is currently not incorporated into the model. Group spread is a

complex variable to predict, because it is expected to vary as a function of group size

and behavior, which are poorly characterized. Data on group spread could be extracted

from tracking data in the future, but is not currently available. The effect of modeling a

group as a single point is mainly seen at short ranges in figure 2.2, for slope sites GC

and DT, where a slight dip in detectability is seen at approximately 1km. Incorporating

spread would likely remove the predicted dip in detectability because group spread

would be larger than the affected area. This would have the effect of smoothing out

dips in detectability as a function of range. Average predicted group detectability is not
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expected to change dramatically if group spread is incorporated, because if the animals

are randomly distributed in space according to a uniform distribution, the distribution of

distances between the sensor and the most detectable animal in a group should also be

random and uniform.

The MP site is characterized by asymmetry in detection probabilities in summer

months (Figure 2.7 A). Northward, up-slope radials show increased detectability at

horizontal ranges over two kilometers, relative to down-slope radials, due to a higher

likelihood of indirect arrival paths from sources near the surface. Detection probability

drops off more quickly along southward, down-slope radials at this site. The model

asymmetry is primarily seen summer months. This effect is less dramatic for the lower

amplitude clicks of the Stenellid dolphins, which are not predicted to be highly detectable

at the ranges for which the effect is seen. Models for all other sites predict largely

symmetric detection probabilities about the sensor (Figure 2.7 B). Asymmetric detection

probabilities are problematic if animals are not uniformly distributed in the area around

the sensor over time. Since uniform distribution is one of the primary assumptions of

point transect density estimates, it is not a problem here. However, if that assumption is

violated at site MP (for example, dolphins are only present on the shallow side leading

to an underestimation of detection probability) models would need to be adjusted to

incorporate the non-uniformity. Data to verify this assumption are not currently available.

It is clear that detectabilty models must be tailored to each species’ signal

characteristics and behavior. Uncertainty in modeled detection probabilities could be

significantly reduced given more specific characterizations of group and individual

behaviors, as well as a more accurate acoustic model of echolocation clicks. Large-scale

tagging and tracking efforts, which would provide much of the information needed to

improve the behavioral components of the simulations, are beginning to target delphinids,

but data is still sparse. Although these more detailed inputs are currently lacking, the
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Figure 2.5: Comparison of modeled transmission loss (TL) at site MP. A) Average
summer TL and sound speed profile; B) Average winter TL and sound speed profile. In
A and B, red indicates areas of low TL, and blue indicates high TL. These plots can be
interpreted using the theorem of reciprocity (Rayleigh, 1887), by imagining the sensor
as located at the seafloor where horizontal range = 0 km. Estimated TL between the
sensor and a source is then given by the color of the plot at the depth and range of the
source.
C) Difference between summer and winter TL. Note that color scale is different from the
top two panes. Dark blue areas at shallow depths indicate regions of the water column
where sources are predicted to be less detectable in summer than in winter conditions.
Note that these are the near surface areas where dolphins spend most of their time. Red
areas indicate zones where sources are predicted to be more detectable in summer than
in winter. Yellow areas indicate zones where detectability is expected to remain roughly
constant across seasons.
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Figure 2.6: Comparison of modeled transmission loss (TL) at site MC. A) Average
summer TL and sound speed profile; B) Average winter TL and sound speed profile. In
A and B, red indicates areas of low TL, and blue indicates high TL. These plots can be
interpreted using the theorem of reciprocity (Rayleigh, 1887), by imagining the sensor
as located at the seafloor where horizontal range = 0 km. Estimated TL between the
sensor and a source is then given by the color of the plot at the depth and range of the
source.
C) Difference between summer and winter TL. Note that color scale is different from the
top two panes. Dark blue areas at shallow depths indicate regions of the water column
where sources are predicted to be less detectable in summer than in winter conditions.
Red areas indicate zones where sources are predicted to be more detectable in summer
than in winter. Yellow areas indicate zones where detectability is expected to remain
roughly constant across seasons. A small increase in detectability at the most extreme
ranges is seen in summer.
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(A) MP

(B) GC

Figure 2.7: Examples of asymmetric (A) and symmetric (B) detectability patterns
at two sites for deep diver group models in summer months. Asymmetric detection
probabilities occur at site MP under certain conditions, such as strong thermocline. This
can lead to biased density estimates if animals are not uniformly distributed around the
sensor. Symmetric detectability patterns, such as that shown for GC, are common for
models at deeper sites.
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broad variability incorporated into the model framework enables us to produce an estimate

of detectability with the understanding that further refinements will be incorporated into

the existing model frameworks as data become available.

2.5.3 Propagation Model

There are a number of caveats to consider when interpreting the results of the

ray-tracing model. First, ray tracing doesn’t take phase into account, so it does not predict

interference or diffraction. The number of rays that can be traced is also limited. More

rays require more computation time, but reduce the likelihood of artifacts in the model

due to gaps between calculated rays. In general, the three thousand rays used for each

radial in these models provided good coverage of the water column. The shallowest slope

site, MP, appeared to be the most vulnerable to artificial blind spots created by ray gaps

Figure 2.5. This issue is expected to have a minor effect on propagation predictions, and

therefore minor effects on detection probabilities and density estimates.

Bellhop also has known issues with modeling sea surface boundaries (Porter

and Liu, 1994). Although sea surface roughness is included in the model, this captures

only small scale features, not the constantly changing swells and surf. The effect of this

weakness is unclear. In general, we do not expect indirect clicks to be detectable at deep

sites, and this is supported by the fact that we rarely see multiple arrivals of the same

click. However multiple arrivals are common at the slope sites, therefore poor handling

of the surface boundary may have a larger effect there. Multiple arrivals are problematic

because they can inflate detection counts is each arrival is counted as a separate detection.

This could lead to an overestimate of animal density. Handling of multiple arrivals at

slope sites is explored further in Chapter 4.
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2.6 Conclusion

The probability of detecting delphinid clicks was computed for shelf and slope

sites using both cue and group counting methods. Simulations predict that groups are

between four and ten times more detectable than individual clicks, depending on the

dive behavior and echolocation signals of the species of interest. Large, deep-diving

delphinids including Risso’s dolphin and pilot whales are expected to be detectable at

greater ranges than smaller, shallow-diving species including Stenellid dolphins. Diel

differences in dive depths within species are not predicted to have significant effects on

detectability. Seasonal effects on detectability were not significant for the cue-counting

method, but are predicted to significantly affect group detection probabilities at shallow

sites. In general detectability is more dynamic at shelf sites and more consistent at slope

sites. Modeling provides a good first order estimate of click and group detectability at

all sites, however more detailed descriptions delphinid of echolocation click parameters

and behaviors are needed to improve model reliability. Inputs to the model framework

described can be updated as further data become available.



Chapter 3

Ground-truth of detectability models

using acoustic localization

3.1 Abstract

A series of delphinid encounters were recorded during a short term deployment

of a HARP equipped with multiple hydrophones in a three dimensional configuration.

One encounter consisted of a small group of Risso’s dolphins (Grampus griseus), and the

others were groups of Stenellid dolphins (Stenella sp.). After verifying that the multi-

channel HARP data could be used to accurately track a vessel of known location, the

delphinid encounters were localized based on the time difference of arrivals (TDOAs) of

individual delphinid clicks across each pair of hydrophones. Horizontal detection range

(HR), received level (RL) and estimated source level (SL) distributions from localized

encounters were compared with predicted distributions obtained from species-specific

Monte Carlo simulations. Probability of vocalization was examined for both species by

comparing expected click counts to detected counts. Agreement between the localization-

based results and model predictions suggests that the simulation described in Chapter 2

55
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can be used to estimate detection probabilities when localization is not an option.

3.2 Background

The models presented in Chapter 2 provide estimates of species detectability

at each of the HARP sites monitored in the Gulf of Mexico (GOM), in the absence

of experimental data. However, the models are only as good as their inputs and our

understanding of the parameters affecting detectability, which are fairly simplified. Our

assumptions and predictions need to be verified by comparing the model predictions to

data.

Here I present a ground truth case in which model predictions are compared

with experimental results. This was was accomplished using a short-term deployment

of acoustic sensors with the ability to localize echolocating animals. Localizations

were used to compare actual distributions of signal parameters to those predicted by the

models. Ideally, all passive acoustic monitoring (PAM) devices would be made up of

multiple hydrophones in a three-dimensional configuration, to enable localization of all

detections. This would render detectability modeling unnecessary. However data storage

and battery-life limitations make this currently unfeasible at the bandwidths needed for

odontocete clicks.

3.2.1 Acoustic Localization

Acoustically-based marine mammal tracking efforts began in the 1970s with the

development of a three-dimensional hydrophone array to record cetacean vocalizations

by Watkins and Schevill (1971), who applied the technique to spinner dolphins (Watkins

and Schevill, 1974). Since then, similar tracking techniques have successfully located

and tracked large cetaceans, using far-ranging, stereotyped, low-frequency blue, fin and
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humpback whale calls (Clark, 1995; McDonald et al., 1995; Tiemann et al., 2004). Semi-

omnidirectional, broadband sperm whale clicks have also been used for localization (e.g.

Giraudet and Glotin, 2006). More recently, beaked whale and delphinid echolocation

clicks have been localized using closely spaced, time-synchronized hydrophones

(Gassmann et al., 2013, 2011; Wiggins et al., 2012).

Well-established acoustic localization methods use the time difference of arrival

(TDOA) of a signal on multiple hydrophones in a known spatial configuration to estimate

a source position (e.g. Watkins and Schevill, 1971). If sensors are positioned in a

three dimensional configuration, then both azimuth and elevation between the sensor

and source can be determined trigonometrically. Determining source depth typically

requires at least two multi-channel instruments. For localization using echolocation

clicks, hydrophones generally need to be closely spaced so that the same click can be

received and identified on all channels. This is primarily because delphinids often click

rapidly and simultaneously. Click association across sensors becomes difficult if TDOAs

can be larger than the click time between successive clicks. (A probability-based method

for associating clicks in such cases is described by Baggenstoss (2011)for a small group

of four sperm whales, but it remains to be seen whether the method can be applied to

larger groups of dolphins).

Although closely-placed sensors are deemed necessary for click localization,

there are disadvantages to this kind of small aperture array. These include high sensitivity

to time resolution and sensor depth errors, as well as compromised accuracy at large

horizontal ranges.

3.2.2 Vocalization Rate Estimates

A key variable in density estimates using passive acoustics is the likelihood that

an animal is actively vocalizing, and therefore available for detection (see Chapter 7 for
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further discussion). Probability of vocalization is a difficult value to pin down, because it

is likely influenced by many variables, including group size, behavior and environment,

which are highly dynamic. Data in which animals can be tracked provides an opportunity

to examine vocalization probability in a small set of cases. If the species-specific click

rate while actively vocal is known, and the number of animals present can be estimated,

then the number of detections obtained when the animals are within detection range

can be compared to the number of detections expected if all animals were actively

echolocating at all times (e.g. Van Parijs et al., 2002). This ratio provides a preliminary

estimate of probability of vocalization.

3.2.3 Goals of this Chapter

In this groundruth example, two different species were encountered and localized.

The first was Risso’s dolphin (Grampus griseus). This species has a unique click type

(Soldevilla et al., 2008) which is easily recognized and distinguished from other Gulf

of Mexico delphinids based on frequency content. The second localized species was

Stenella sp., identified from inter-click interval and click frequency content (see Chapters

5 and 6 for details).

The primary goal of this chapter is to confirm that model predictions of

detectability are in agreement with in situ results. This is accomplished by comparing

predicted and actual distributions of received level (RL), source level (SL), and horizontal

range (HR) for detected clicks. Because the models are simplified relative to reality,

and are designed to simulate average detectability over a large number of detections and

conditions, we do not expect a perfect match between the two. Rather we are looking

for general agreement as an indication that model predictions are aligned with reality. A

secondary goal is to obtain a preliminary estimate of probability of vocalization.
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3.3 Methods

3.3.1 Data Collection

A four-channel HARP was deployed near the Dry Tortugas site (DT) for

approximately 18 hours in November 2013 (Figure 1.1). The instrument was equipped

with four hydrophones in a tetrahedral configuration, each sampled at 100 kHz (Figure 3.1;

Wiggins and Hildebrand, 2007; Wiggins et al., 2012). Each hydrophone was recorded

on a separate channel. Hydrophones were affixed to a low-reflectivity plastic frame

to minimize signal reflections. Maximum distance between hydrophones was 104 cm

when measured prior to deployment. Floats attached above the hydrophone frame held it

vertically above the seafloor. The frame was able to rotate freely in the horizontal plane.

A test deployment in southern California indicated that the frame rotated 180° around its

vertical axes on a tidal cycle, but was generally stable over shorter periods of time. Due

to tilt sensor failure at the DT site, frame rotation during the Gulf of Mexico deployment

is not known deployment.

Instrument position after settling on the seafloor was computed by

circumnavigating the instrument while sending 12 kHz pings to it from a towed transducer

(Wiggins et al., 2012). The instrument responded with pings from an on-board transducer.

The two-way travel times (interrogation and response), assuming a mean sound speed

of 1490 m/s, were used to solve for instrument position and depth to within 8 m (e.g.

Creager and Dorman, 1982).

3.3.2 TDOA Calculation

A hemispherical grid of expected signal time TDOAs was computed as a function

of azimuth and elevation relative to hydrophone 1 (one of the bottom phones on the

tetrahedral frame, Figure 3.1). This resulted in a set of six theoretical TDOAs for each grid
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Figure 3.1: Diagram of four-channel HARP setup and tetrahedral hydrophone
configuration. Image and instrumentation by Sean Wiggins.
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position on the hemisphere. Grid spacing was in one degree increments, with elevation

ranging from zero to 90° (directly above the instrument) and azimuth ranging from zero

to 359°. A sound speed of 1500 m/s was assumed between phones, based on typical

sound speeds for that site and depth (Oceanographic and Atmospheric Master Library,

OAML, US Navy, 2009). To localize a source given a set of experimentally-derived

TDOAs, the total difference between theoretical and actual TDOAs was computed for all

grid locations. The elevation and azimuth of the position with the minimum difference

was used to generate an estimated source position, assuming that the source was located

near the sea surface.

3.3.3 Ship Localization

Ship position was computed by localizing the HARP interrogation pings

originating from the vessel. Pings were transmitted at 11 kHz. A second order infinite

impulse response resonator filter with peak frequency of 11 kHz and a 250 Hz bandwidth

was applied to the recording data (MATLAB DSP Systems Toolbox, Version R2012b).

The onset of the ping was defined as the moment the filtered signal rose above 50

counts. TDOAs were obtained by differencing the onset times across the four channels.

The elevations obtained from the minimization process were translated into horizontal

range from the sensor using the depth of the instrument, as calculated from the two-way

travel times. The ship’s transducer was assumed to be at the sea surface for localization

purposes.

Azimuth obtained from the minimization process provided a relative heading for

the ship over the tracking period. A constant rotation was applied to align the relative

heading with the actual position of the ship, known from GPS data. The magnetometer

aboard the instruments failed at depth, therefore true azimuthal orientation of the frame

was unknown. It was assumed that the instrument was stationary and did not rotate during
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the tracking period. Ship tracks obtained from the localization process were compared

with those from the GPS receiver located at mid-ship.

3.3.4 Dolphin Localization

During the deployment, one 60-minute Risso’s dolphin (Grampus griseus)

encounter and four consecutive Stenella sp. encounters over a 3.5 hour period were

recorded and tracked. Delphinid echolocation clicks were automatically detected on all

channels (see Chapter 4 for detector details). The small array aperture made it possible to

identify individual clicks across all four channels because the travel time between sensors

(less than one millisecond) was less than the dolphin’s interclick interval (>50 ms).

Clicks were matched automatically across channels by associating those which

were temporally closest to one another. A TDOA set was computed for each detected

click by computing the TDOA of the click amplitude maximum between sensor pairs.

Elevation angles for the animals were translated into horizontal ranges by assuming that

the animals were located at the sea surface. A second set of horizontal ranges were

computed for Risso’s dolphins assuming that animals were diving to 200 m, which is an

intermediate dive depth for these animals (Wells et al., 2009).

3.3.5 Comparison with Model Predictions

Risso’s dolphin and Stenella sp. SLs were computed from localized clicks by

adding estimated transmission loss to RLs using the sonar equation (Urick, 1967):

SL = RL ·20log(r)+α · r2 (3.1)

where r is slant range in meters, and α is attenuation at peak frequency in dB/m. Estimated

SLs were compared with literature values for consistency. Delphinid detection range
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and RL distributions were compared to model predictions. Transmission loss within the

simulation was computed for both sensors using typical environmental parameters for

the site in month of November (OAML, US Navy, 2009).

3.3.6 Vocalization Rate Estimates

Vocalization rate estimates P̂v were computed by estimating the number of animals

n in a tracked group and comparing the expected number of clicks ĉexp to the actual

number of clicks detected cact, such that

P̂v =
cact

ĉexp
(3.2)

The expected number of clicks is the product of the mean probability of detecting a click

Pdet, the mean species-specific click rate r (chapter 5), and n:

ĉexp = Pdet r n (3.3)

This calculation was done for a series of five minute time bins. For Risso’s dolphin, the

number of animals present in a five minute bin could be determined based on tracks,

therefore n was adjusted to reflect this number for each bin. For Stenellid dolphins,

animals could not be individually counted, therefore an average group size was used

(chapter 7; Mullin and Fulling, 2004) to estimate expected click counts, and then an

average P̂v was computed across all bins.

Variances associated with Pv were computed using the delta method (Seber, 1982;

Powell, 2007) :

var(Pv) = var(Nact) ·
(

1
Nexp

)2

+var(Nexp) ·
(

1
Nact

)2

(3.4)
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where

var(Nact) = var(D) · (ĉk)
2 +var(ĉk) ·mean(D)2 (3.5)

and

var(Nact) = var(ĝ) · (cr Pk)
2 +var(cr) · (ĝPk)

2 +var(Pk) · (ĝ cr)
2 (3.6)

3.4 Results

3.4.1 Harp and Ship Localization

Instrument latitude, longitude and depth were determined from the two-way travel

times of interrogation pings sent from the ship (Table 3.1). The instrument drifted with

the current between its surface release location and landing site on the seafloor. Azimuth

and elevation estimates from the TDOA minimization scheme used to localize the ship’s

transducer generally agreed with the theoretical values expected based on the vessel’s

GPS coordinates (Figures 3.3 and 3.4). Acoustically-derived elevation estimates closely

matched expected values. Azimuthal estimates deviated from expected values based on

actual vessel position during the first part of the circumnavigation period, but matched

closely for the second half of that period. This indicates that the tetrahedral frame was

rotating, during the first part of the tracking period contrary to our expectations.

Calculated horizontal distances between the HARP and ship are comparable with

expected ranges based on GPS positions. Timing differences between the GPS and HARP

localizations are due to instrument rotation (Figure 3.4). The tracklines obtained from

horizontal range estimates are similar to actual tracklines.
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Figure 3.2: Ping onset TDOAs across sensor pairs on multi-channel sensor. Colored
points indicate actual TDOAs. Black lines indicate expected TDOAs based on GPS
position of ship and known array configuration. All times are in GMT. Local time is
GMT -05:00.
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Table 3.1: Position and depth of sensor on seafloor based on a minimization of two-way
interrogation ping travel times.

Site Latitude Longitude Depth (m)

HARP B 25.5366N 84.6320W 1220
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Figure 3.3: Theoretical (red) and actual (blue) elevation and azimuth of ship relative to
sensor. Azimuths are relative. Elevation of 90° indicates that ship is directly above the
sensor. All times are in GMT. Local time is GMT - 05:00.
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Figure 3.4: Ship position estimates (colored circles) based on localization using time
difference of arrivals (TDOAs) of transducer pings from the ship on a multi-channel
HARP. Colored line indicates actual ship position based on GPS. Color indicates the
time associated with each position, in GMT, with red indicating the beginning of the
vessel tracking period, and blue indicating the end of the tracking period. Local time is
GMT - 05:00. The HARP position on the seafloor is indicated by the black triangle at
(0,0).
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3.4.2 Dolphin Localization

Risso’s Dolphin Encounter

A total of 509 Risso’s dolphin echolocation clicks were localized from the HARP

data (Figures 3.5 and 3.7) at a maximum horizontal range of 3.0 km (Table 3.2). High

SLs allowed the animals to be detected at elevation angles as low as 20° (where 90° is

directly above the instrument). Localization range may have been limited by vertical

array aperture.

The maximum detection range predicted by the model was 4.6 km, however

large ranges would be rare in practice, therefore it is not unexpected that the theoretical

maximum detection range is not seen in this small dataset. RL and horizontal detection

range distributions match fairly well between the modeled and in situ data when animals

are assumed to be located at the sea surface (Figure 3.8), however the match improves

if animals are assumed to be diving to 200 m (Figure 3.9). In situ elevation angle

distributions also match modeled data more closely if the animals are assumed to be at

200m (Figures 3.10 and 3.11). In situ RLs reached a maximum of 138 dBppre : 1µPa

with most received clicks much lower in amplitude (Table 3.2). The modeled maximum

RL was much higher, at 163 dBppre : 1µPa, but again, it is not unexpected that this value

is not seen in the in situ data. Mean in situ RLs were close to the modeled mean, around

122 dBppre : 1µPa, with similar standard deviations.

SL distributions from the modeled data accurately predicted the in situ SL

distribution back-calculated from the localizations (Table 3.2). In situ SL estimates

ranged from 184 to 217 dBppre : 1µPa. Maximum in situ SL estimates were lower than

the theoretical maximum predicted by the model. The range of SLs estimated from the

localizations was contained within the modeled maximum and minimum SLs (176 to

234 dBppre : 1µPa). Mean SL was higher in the in situ data (201 ± 4σ dBppre : 1µPa)
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than in the modeled data (196 ± 4σ dBppre : 1µPa) .

Multiple track lines are visible in the position data (Figure 3.7), suggesting a

small group of five animals moving through the area (Figure 3.6). Larger numbers of

clicks are detected in the first half of the encounter, when animals are moving toward the

sensor. In the second half of the encounter the animals have passed their point of nearest

approach to the sensor and are oriented away. Mean vocalization probability is estimated

at 0.13 (CV = 0.37; Table 3.3).

Table 3.2: Comparison of modeled and in situ parameter distributions for Risso’s
dolphin encounters. The model distributions are based on 500 model iterations. HR
indicates horizontal range. Subscripts indicate HARP data (H), or model value (M). All
amplitudes are reported in dBppre : 1µPa.

Parameter µ±σ Max Min
RLH (dB) 122 ±5σ 138 115

RLM (dB) 122 ±5σ 163 115

HRH (km) 1.3 ±0.6σ 3.0 0.1

HRM (km) 1.1 ±0.5σ 4.6 0.0

SLH (dB) 201 ±6σ 217 184

SLM (dB) 196 ±6σ 234 176
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Figure 3.5: Risso’s dolphin encounter localized by seafloor sensor. (A) Elevation
relative to sensor. (B) Azimuth relative to sensor. (C) Received levels of localized clicks
over time. (D) Estimated SLs of localized clicks based on received levels and position
estimates. All times are in GMT. Local time is GMT - 05:00.
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Figure 3.6: Risso’s dolphin encounter localized by five minute bin. Blue stars indicate
click localizations, red triangles indicate HARP position. Total group size is estimated
at 5 animals, but all five are not within detection range at all times. Animals are assumed
to be at the sea surface for localization purposes.
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Table 3.3: Estimate of Risso’s dolphin vocalization probability by five minute bin
during a tracked encounter. The estimated number of animals (n) present during each
time bin is used to estimate the expected number of clicks (ĉexp) that would be detected
if all animals were actively vocal. This is compared to the actual number of clicks
detected (cact), to estimate the probability Pv that an individual animal is vocalizing.

bin # n cact ĉexp Pv

1 1 19 117 0.16

2 2 37 235 0.16

3 2 39 235 0.17

4 2 37 235 0.16

5 4 66 469 0.14

6 5 75 587 0.13

7 5 85 587 0.14

8 5 74 587 0.13

9 2 16 235 0.07

10 3 25 352 0.07

11 2 8 235 0.03

12 1 21 117 0.18

mean 0.13
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Figure 3.7: Bird’s eye view of Risso’s dolphin encounter as localized by seafloor sensor.
Black triangle indicates tracking HARP position. Color indicates time in GMT.
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Figure 3.8: Risso’s horizontal detection ranges (A) and received level distributions (B),
assuming the animals are located at the sea surface. Grey bars indicate results from in
situ data. Overlaid black line indicates model-based distribution.

Figure 3.9: Risso’s horizontal detection ranges (A) and received level distributions (B),
assuming the animals are diving to 200 m. Grey bars indicate results from in situ data.
Overlaid black line indicates model-based distribution. Agreement between in situ and
model data improves if animals are assumed to be at depth.
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Figure 3.10: Blue bars indicate model-predicted distribution of elevation angles at
which Risso’s dolphin should be detected if randomly distributed in space, and animals
are located at the sea surface. Grey bars indicate actual distribution of elevation angles
at which Risso’s dolphin were detected during this encounter. An elevation angle of 90°
indicates that the animal was directly above the receiver.

Figure 3.11: Blue bars indicate model-predicted distribution of elevation angles at
which Risso’s dolphin should be detected if randomly distributed in space, and diving
to a depth of 200 m. Grey bars indicate actual distribution of elevation angles at which
Risso’s dolphin were detected during this encounter. Agreement between in situ and
model data improves if animals are assumed to be at depth. An elevation angle of 90°
indicates that the animal was directly above the receiver.
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Stenellid Dolphin Encounters

Four successive Stenellid dolphin encounters were tracked. Encounter #1 was a

small, tight group of animals traveling rapidly at approximately 6 km/hr (Figures 3.12

and 3.14) . Encounter #2 consisted of three small groups, one of which remained at the

limit of the detection range. At least two of these groups were also traveling, but some

milling behavior and looser association is seen in one group (Figures 3.15 and 3.17).

Encounter #3 consisted of multiple large groups which appeared to merge and split over

time (Figures 3.18 and 3.20) . Detection rates during this encounter were as high as 3,500

clicks per five minute bin. Encounter #4 was a small group of animals traveling through

the area at roughly 4 km/hr (Figures 3.21 and 3.23).

The number of animals in each encounter could not be determined from the

tracking data. If an average Stenellid dolphin group size of 60.7 animals based on visual

data is assumed (Mullin and Fulling, 2004), Pv is estimated at 0.19 (CV = 1.6).

Stenella sp. echolocation clicks were localized at a maximum horizontal range of

2.3 km, slightly less than the 2.7 km maximum predicted by the model. Mean horizontal

detection range and standard deviation was very similar to the model prediction. Most

of the nearly 43,000 localizations associated with these encounters were within two

kilometers of the sensor (Figure 3.24). The SL distribution from the ground truth data

was had a higher mean and smaller standard deviation than predicted by the model

results (Table 3.4). However, the distribution of SLs seen in the data was within in the

range predicted by the model, suggesting that the difference may be attributable to a

non-random uniform distribution of the animals in the area around the sensor.

Figure 3.25 shows that the distribution of elevation angles of localized clicks

during this encounter does not perfectly match the modeled data for a uniform randomly

distributed set of sources, although the two distributions have similar overall shapes. The

majority of in situ Stenellid dolphin localizations were at an elevation of 50° or greater,
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where 90° indicates that the animal is directly above the sensor. The number of counts

above 70° begins to decline because area decreases. A tail of low number of detections

extends out to low elevation angles, down to approximately 30°. At these angles, animals

are not detected unless their beam is pointed at the hydrophone.

Received levels reached a maximum of 132 dBpp re:1 µPa with most received

clicks much lower in amplitude (Table 3.4). The model predicted a maximum RL of

150 dBpp re:1 µPa, but this extreme value was not seen in the data. Mean RL was 118 ±

4σ dBpp re:1 µPa, which was very similar to the model-predicted mean RL.

Table 3.4: Comparison of model and ground truth parameter distributions for Stenella
sp. dolphin encounters. Model distributions are based on 500 model iterations. HR
indicates horizontal range. Subscripts indicate HARP data (H), or model value (M). All
amplitudes are reported in dBppre : 1µPa.

Parameter µ±σ Max Min
RLH (dB) 118 ±4σ 132 115

RLM (dB) 119 ±3σ 150 115

HRH (km) 0.6 ±0.3σ 2.3 0.0

HRM (km) 0.6 ±0.3σ 2.7 0.0

SLH (dB) 196 ±4σ 211 189

SLM (dB) 188 ±6σ 221 176
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Figure 3.12: Stenellid dolphin encounter #1 localized by tracking HARP. (A) Elevation
relative to sensor. (B) Azimuth relative to sensor. (C) RLs of localized clicks over time.
(D) Estimated SLs of localized clicks based on received levels and position estimates.
All times are in GMT. Local time is GMT - 05:00



80

Figure 3.13: Stenellid dolphin encounter #1 localizations by five minute bin. Blue stars
indicate click localizations, red triangles indicate HARP position. Animals are assumed
to be at the sea surface for localization purposes.
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Figure 3.14: Bird’s eye view of Stenellid dolphin encounter #1 as localized by seafloor
sensor. Black triangle indicates the position of the tracking HARP. Color indicates time
(GMT).
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Figure 3.15: Stenellid dolphin encounter #2 localized by tracking HARP. (A) Elevation
relative to sensor. (B) Azimuth relative to sensor. (C) RLs of localized clicks over time.
(D) Estimated SLs of localized clicks based on received levels and position estimates.
All times are in GMT. Local time is GMT - 05:00
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Figure 3.16: Stenellid dolphin encounter #2 localizations by five minute bin. Blue stars
indicate click localizations, red triangles indicate HARP position. Animals are assumed
to be at the sea surface for localization purposes.
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Figure 3.17: Bird’s eye view of Stenellid dolphin encounter #2 as localized by seafloor
sensor. Black triangle indicates tracking HARP location. Color indicates time (GMT).



85

Figure 3.18: Stenellid dolphin encounter #3 localized by tracking HARP. (A) Elevation
relative to sensor. (B) Azimuth relative to sensor. (C) RLs of localized clicks over time.
(D) Estimated SLs of localized clicks based on received levels and position estimates.
All times are in GMT.



86

Figure 3.19: Stenellid dolphin encounter #3 localizations by five minute bin. Blue stars
indicate click localizations, red triangles indicate HARP position. Animals are assumed
to be at the sea surface for localization purposes.
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Figure 3.20: Bird’s eye view of Stenellid dolphin encounter #3 as localized by seafloor
sensor. Black triangle indicates tracking HARP location. Color indicates time (GMT).
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Figure 3.21: Stenellid dolphin encounter #4 localized by tracking HARP. (A) Elevation
relative to sensor. (B) Azimuth relative to sensor. (C) RLs of localized clicks over time.
(D) Estimated SLs of localized clicks based on received levels and position estimates.
All times are in GMT.
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Figure 3.22: Stenellid dolphin encounter #4 localizations by five minute bin. Blue stars
indicate click localizations, red triangles indicate HARP position. Animals are assumed
to be at the sea surface for localization purposes.

Figure 3.23: Bird’s eye view of Stenellid dolphin encounter #4 as localized by seafloor
sensor. Black triangle indicates position of tracking HARP. Color indicates time (GMT).
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Figure 3.24: Stenella sp. in situ horizontal detection ranges (A) and received level
distribution (B). Grey bars indicate results from in situ data. Overlaid black line indicates
model-based distribution.

Figure 3.25: Blue bars show model-predicted distribution of elevation angles at which
Stenella sp. should be detected if randomly distributed in space. Grey bars indicate
actual distribution of elevation angles at which Stenella sp. were detected during all
encounters. An elevation of 90° indicates that the source is directly above the sensor.
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3.5 Discussion

3.5.1 Ship Localization

The in situ data demonstrates agreement between model predictions of detection

range and detectability at site DT and real values from tracked encounters. Acoustically-

based position estimates for the ship, a sound source of known location, closely matched

the actual vessel positions in most cases. The fact that estimated elevations were very

close to expected values, while azimuthal estimates deviated, suggests that the sensors

might have been rotating slightly around the vertical axis during the tracking periods.

This type of rotation was seen in test deployments, albeit on a tidal cycle much longer

than these tracking periods.

A second line of elevation estimates appears to shadow the main trajectory

in Figure 3.3 (top panel). This is attributable to errors associated with signal onset

identification when detecting interrogation pings. When the signal onset is identified one

cycle earlier on some sensors than others, the result is a 0.1 ms over or under-estimate of

the TDOA for some sensor pairs (Figure 3.2), which translates into a localization error.

This might be improved by fine-tuning the interrogation ping detection process. Previous

ship localization efforts have used propeller noise as the signal of interest for localization,

rather than interrogation pings (Wiggins et al., 2012). However, this vessel’s propeller

was small, low power, and did not generate enough noise for successful localization using

that method.

Minor inaccuracies in sensor depth and position estimates may introduce further

discrepancies between the position estimates and true locations. The algorithm used to

estimate sensor position from the interrogation ping two-way travel times assumed that

the ship’s GPS and the transducer were at the same location. In reality, the transducer

was towed alongside the vessel, and may have been as much as 20 m away from the GPS
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receiver.

The ship tracking exercise demonstrates that the elevation estimates from which

horizontal ranges are computed are generally reliable. Horizontal range estimation to

echolocating animals for ground truth purposes is therefore feasible. Although deviations

were seen in azimuthal estimates, azimuth appears to be fairly reliable over small time

windows.

3.5.2 Dolphin Localization

One Risso’s dolphin and four Stenella sp. encounters were successfully localized.

Both encounters were nocturnal (local time is GMT - 05:00).

The Risso’s dolphin tracks over time indicate a small group of animals moving

through the area during a one hour period, with a possible single animal following behind

in the same direction, toward the end of that period. Animals were initially localized at a

horizontal range of 3 km. Four waves of Stenella sp. transits were identified in the area

over a 3.5 hour period. Possible rotation of the sensor during this period prevents us from

identifying the absolute direction of travel.

Animals were assumed to be at the surface, for localization purposes, however

some clicks may have been produced at depth. Multiple seafloor packages would be

necessary to determine depth. Clicks produced at depth would be closer to the sensor

than estimated assuming a surface location, which would reduce some of the horizontal

ranges for these encounters. In the case of the Risso’s dolphin encounter, agreement

between modeled and in situ data improves if the animals are assumed to be at depth.

Here we assumed that all clicks were produced at 200 m below the sea surface, for

comparison with the assumption that the animals were at the sea surface. This is an

over-simplification aimed at examining the effects of depth assumptions. The comparison

indicates that the Risso’s dolphins were likely diving to a variety of depths during the
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tracking period.

The Stenellid dolphins were also likely diving during the tracking period, rather

than staying at the sea surface. Because these animals do not typically dive as deep as

Risso’s dolphins (Baird et al., 2001; Scott and Chivers, 2009), the effect on localizations

is expected to be smaller. However some of the in situ horizontal range estimates obtained

by assuming the animals were at the sea surface are likely overestimates.

The method for estimating source positions assumes that the sound travels from

source to receiver along a linear path. In reality the path is not truly linear, due to the

bending effects of the thermocline (Urick, 1967). At horizontal ranges less than or

close to the water depth, the effect of this bending on position estimates is small, as

can be seen in the ship localization case: when the ship is close to the sensor, errors

decrease. However, as the horizontal distance increases, the error resulting from the linear

path assumption also increases. Low elevation angles associated with large horizontal

ranges are also problematic, as range estimates become sensitive to small errors in angle

estimates. In the case of dolphins, however, detection ranges are relatively short, and

errors due to signal path curvature are estimated to be less than 10 meters.

Tracks over time appear patchy. This is primarily attributed to a ’flashlight’ effect,

in which many clicks are detected when an animal or cluster of animals turns toward the

sensor, and few clicks are detected when they turn away, due to the directional nature

of echolocation clicks. An alternative explanation is that the animals fall silent during

these periods. Although the latter may be true part of the time, one clue that this is not

the primary explanation lies in the relationship between animal direction of travel and

number of detections. Localized clicks were recorded more often during the approach

phase, when the animals were traveling toward the sensor, than the departure phase.

Assuming that probability of vocalization is independent of whether the animals are

approaching or departing, we can infer from this that the animals are probably off-axis,
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rather than silent, during gaps in the tracks. As a result, both approach and departure bins

need to be taken into account when computing the vocalization probability Pv because

the model-based estimate of detection probability is an average across all orientations of

animals relative to the sensor.

The method used here to estimate Pv is not ideal, because it assumes that we

can deconvolve this parameter from group size, click rate, and detection range. These

parameters are highly intertwined. A better approach would be to use acoustic tag data to

come up with an independent estimate of clicking activity across a variety of behaviors.

Acoustic delphinid tag data is currently rare, but is expected to become increasingly

available over the next few years.

The density of clicks and localizations during the Stenellid dolphin encounters

suggests more animals than seen in the Risso’s encounter, however the click rate of

Stenellid dolphins is expected to be two to three times that of Risso’s dolphin, which

partially explains the larger numbers of clicks. Clicks were localized at a maximum

horizontal range of roughly 2.5 km. This smaller detection range relative to Risso’s

dolphin is expected due to lower SLs and higher peak frequencies in Stenellid dolphins.

Individual animals are not readily distinguishable in the Stenellid tracking data. This is

partially due to lower click detectability, but also is likely due to behavioral differences

including tighter groupings of individuals, and coordinated vocalization behaviors such

as ’eavesdropping’ in order to avoid sonar jamming (Götz et al., 2006; Gregg et al., 2007).

Computing Pv from these data using an average group size is the best we can do given

the current data, but further refinements are needed. Our estimates for Risso’s dolphin

are in line with P̂v estimates for beaked whales (Hildebrand et al., 2015), which are also

deep divers. The Stenellid P̂v computed here is higher than the Risso’s dolphin estimate.

Further data are needed refine probability of vocalization estimates for Stenellids and

other delphinid species.
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Back-calculated SLs from horizontal range and RL yields peak SL estimates

below the maximum predicted for both species. Values are lower than expected based on

the literature because the in situ clicks are not strictly on-axis. It is possible that none

of the received clicks from the Risso’s dolphin encounter were perfectly on-axis with

respect to the sensor given the small sample size, and the narrow aperture of delphinid

beam patterns (Au et al., 2012a). Experimentally-derived SLs increased slightly with

increasing range, particularly when the animals were approaching the instrument. This

relationship is also predicted by the model results, and is attributed to the fact that animals

are more likely to click on-axis relative the seafloor instrument when they are farther

away. As animals approach the instrument, a steeper body inclination is required to

obtain an on-axis click. Further refining SL estimates will likely require an array of

multi-channel sensors capable of resolving source depth. Model-predicted and in situ

elevations are right-skewed for the Stenellid dolphin encounters, and left-skewed for the

Risso’s dolphin encounter. This is primarily attributed to source level differences.

Differences between model and experimental results for both encounters are

attributable in large part to non-uniform distributions of the animals in space. The model

is designed to simulate average detectability over a large number of encounters and

conditions. Overall, the tracking data from this ground truth experiment are consistent

with the model predictions and support the use of the model-based detection probability

in generating preliminary delphinid density estimates.

3.6 Conclusion

By localizing a ship transducer with known coordinates, we demonstrated that

the tetrahedral HARP configuration could be used to accurately localize a sound source

at the sea surface within a range of a few kilometers. Five delphinid encounters were
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successfully tracked. Predicted distributions of RL, SLs and horizontal detection ranges

are consistent with distributions computed from these encounters. The consistency

of the results supports the use of the model to estimate detection probabilities, when

multi-channel data are not available.



Chapter 4

Designing a delphinid echolocation

click detector for density estimation in

the Gulf of Mexico

4.1 Abstract

A delphinid echolocation click detector was designed to find clicks in passive

acoustic HARP recordings from five sites in the Gulf of Mexico in a predictable way,

such that detection probabilities could be simulated in a model framework. Unlike

other detectors, this click detector is based on an absolute amplitude (dBp−pre : 1µPa)

threshold. This detection scheme was coupled with a manual review phase aimed at

removing large batches of false positives where ambient noise was high. A false positive

rate was then determined for each site, across the entire monitoring period. Time series

of detection results are presented for each site both in terms of weekly average click

counts and as weekly mean percentage of bins containing detections. By satisfying the

density estimation requirements that detection probabilities be predictable, and that false

97
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positives be evenly distributed throughout each dataset, we produced a detection time

series specifically tailored for use in delphinid density estimation.

4.2 Background

Recording efforts in the Gulf of Mexico yielded a large amount of acoustic data

in which delphinid signals needed to be detected for monitoring purposes. A review of

the HARP data as well as array data collected Gulf indicated that delphinids in this region

whistle infrequently, therefore echolocation clicks were a better option for documenting

delphinid presence.

4.2.1 Developing a Predictable Detector

Detection and classification are closely intertwined. Detections are not typically

useful unless there is some indication of what was detected. Many so-called detectors

incorporate multiple layers of filters, transformations, and thresholds designed to exclude

undesired signals from the final set of detections. These layers are actually preliminary

classification steps, in which the classifier attempts to decide whether the detected signal

is of the kind the user is interested in.

This approach becomes problematic with respect to density estimation because

the extra layers of complexity make it difficult to predict the behavior of the detector.

When classification steps are added, there is no longer a simple way to determine whether

a signal will be detected under a given set of conditions.

If synthetic signals can be generated and fed to a detection algorithm, then

these can be used to characterize the detector’s performance (Helble et al., 2013b).

Alternatively, if recordings are available which are coincident with high resolution

tracking data capable of pinpointing the source location, such recordings can also be used
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to characterize the detector (Marques et al., 2009). However, in the case of delphinid

clicks, no such data are currently available, and click models (e.g. Zimmer, 2011) are not

developed enough to simulate the complex interference patterns associated with off-axis

clicks (Au et al., 2012a) in a model framework.

An alternative approach is to build a predictable click detector, with behavior that

can be incorporated into a model such as that described in Chapter 2. The detector must

rely on clearly identifiable thresholds in order to be accurately modeled in simulations.

Extra filters can result in unpredictable detection behavior, opening up the possibility that

the detector will behave differently in different noise conditions for instance, unaccounted

for by the simulation. This can lead to potential biases and erroneous results (Helble

et al., 2013a). At the same time, the detector also needs to minimize the number of false

positives returned, and to be efficient due to the large quantity of data to be analyzed.

A number of choices were made in the design of this click detector to maintain

predictability. A peak-to-peak signal amplitude threshold (dBp−pre : 1µPa) was used,

rather than a signal to noise ratio, because the impacts of different types of noise of click

detectability were too complex to simulate, without a sophisticated click model. Once

candidate detections were identified, the detector relied on three variables: duration,

energy distribution, and peak frequency, to determine whether or not a signal was a

delphinid click.

The trade-off for detector simplicity is a higher false positive rate in complex

or noisy environments. In a density estimation framework, the solution to this is to

characterize the detector’s false positive rate and factor it in to the density estimates

(Buckland et al., 2001). However, this approach is only reliable if false positives can be

assumed to be uniformly distributed throughout the time series. If false positives occur

instead in concentrated episodes, they can lead to biased density estimates.
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4.2.2 Bin vs. Cue Counting Detection Rates

For density estimation, we are considering two possible approaches: Cue counting

and group counting. Each method has its pros and cons, as discussed in chapter 2. Group

counting is less sensitive to false positives than cue counting, however the process of

binning detections for this method may obscure detail in the time series. Part of the

detection process therefore is to understand the relationship between these two methods

across sites, in order to recognize potential biases in the results associated with each.

4.2.3 Goals of this Chapter

The goals of this chapter are as follows:

• Describe the detector implemented.

• Describe the false positive rate estimation process and present resulting estimates.

• Provide time series of delphinid click detections at all sites, adjusted for false

positives, for use in click counting and group counting density estimation methods

respectively.

• Account for the effects of detector dead time on detection counts.

• Investigate the relationship between the click and group counting metrics.

4.3 Methods

4.3.1 Detection

The goal in creating this detector was to build an algorithm with behavior that

could be fully modeled in the detection probability simulations described in chapter
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2. Peak-to-peak (PP) amplitude in decibels (dBp−pre : 1µPa) was selected rather than

signal to noise ratio (SNR) as the primary detection threshold because SNR is much more

difficult to model accurately. Issues include colored noise unequally affecting different

frequencies, and temporal noise patterns biasing detectability over time. Using peak to

peak amplitude ensures that detector performance will remain consistent across noise

conditions, however false positives may increase during noisy periods.

A two-step detection process modeled after work by Soldevilla et al. (2008) was

implemented to find click-like signals in the dataset exceeding a minimum peak-to-peak

amplitude threshold. Both detection steps analyzed a band-passed version of the time

series data (10 to 85 kHz). Band passing was used to filter out low frequency, high

amplitude signals which can otherwise overpower delphinid clicks in the time series. In

the first step, a low resolution detector flagged 30 second segments of band passed time

series data containing energy peaks greater than 5000 counts (counts are defined as the

squared amplitude of the band passed signal).

In the second detection step, a high-resolution detector returned to flagged time

periods. All candidate energy peaks within each time period were identified using the

same energy threshold approach as in the first step, and then further pruned to retain

only clicks with a received level (RL) of at least 115 dBp−pre : 1µPa at peak frequency

(clicks with RL >=112 dBp−pre : 1µPa were retained for classification in chapter 5). Start

and end times (defined as the moment when energy rose above and fell below the 60th

percentile from the mean, respectively) were found for each energy peak. Overlapping

clicks, and clicks within 50 µs of each other were merged. Clipped signals, defined as

those with amplitudes greater than 90% of the maximum recordable by the instrument

A/D were ignored. The time series of each candidate click was extracted, with an added

250µs buffer on either end, for analysis by a simplified classification scheme designed to

exclude impulses that did not have the basic expected features of delphinid clicks.
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Classification and Post-processing

A rudimentary, preliminary classification step followed the detection process,

in order to discard clearly non-delphinid signals. The main categories of such signals

at most sites were beaked whale clicks, sperm whale clicks, and cavitation noise from

ship propellers. Classification heuristics were therefore based on manual analysis of the

classifier’s ability to reject these unwanted detections on a subset of data.

In the classification step, the amplitude envelope of each click was computed

using a Hilbert transform, and normalized on a scale from zero to one. The duration of

the portion of the envelope above 0.5, as well as the ratio of the envelope amplitude in

the first half vs. the second half of the click envelope were computed (method based on

work by SBP, pers. com.). A 240 point-fft with 50% overlap of Hanning windowed data

was used to estimate the frequency content and the peak frequency of the signal. Signals

with an envelope duration between 10 and 70 µs, total click duration less than 1 ms, peak

frequency between 20 and 80 kHz, and a positive envelope energy distribution ratio were

classified as delphinid clicks. Each threshold choice was linked to a specific anticipated

false positive source: Beaked whale clicks have longer envelope and overall durations

than delphinid clicks, sperm whale clicks have lower peak frequencies, and propeller

cavitation impulses typically have irregular envelope shapes and energy distributions.

Lone clicks or pairs of clicks separated from a neighboring signal by more than

0.5 seconds both before and after were discarded, because manual analysis revealed

that such detections were likely to be false positives. Click bouts, defined as periods

of clicking with more than 15 minutes without detections both before and after, were

identified automatically. Bouts shorter than 75 seconds and bouts containing fewer than

25 clicks were excluded from further analyses.

After the detection process was complete, a long term spectral average (LTSA,

Wiggins and Hildebrand, 2007) of each bout was reviewed visually by an analyst (KF),
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who flagged concentrated bouts of false detections for removal. If false positives are

uniformly distributed throughout the dataset, they can be accounted for later on using

a false positive rate, however some false positives (particularly ship noise) occur in

concentrated events. The manual review process was aimed at minimizing the inclusion

of such events in the detection dataset.

Time series were computed for click counts, in preparation for cue-based density

estimation methods. Time series of positive (containing clicks) and negative (no clicks)

five minute bins, were generated in preparation for group-counting density estimation

methods.

Shallow water detections

A number of challenges appear when attempting to detect clicks in data recorded

at shallow sites (<300 m deep). In particular, the clicks often arrive via an indirect path,

bouncing off the sea surface and/or seafloor before arriving at the sensor. Multiple arrivals

are common for this reason. There is also increased noise from anthropogenic, biological

and oceanographic sources relative to deep sites. Shipping activity is high at some coastal

sites. Sensors are close to the surface and record more weather-related noise. Snapping

shrimp are a particular problem at site MP, where their signals are difficult to distinguish

automatically from delphinid clicks. Conversely, beaked and sperm whales are much less

prevalent at these sites.

In order to address these challenges, several parameter changes were made when

running the detector on site MP and DC recordings. The low pass end of the band pass

filter was increased slightly for shallow site detection at sites MP and DC, to 90 kHz, to

account for the fact that animals were closer to the sensors at these sites, and therefore

high frequencies would not be as strongly attenuated. The RL minimum detection

threshold was also raised to 117 dBPP to reduce the number of indirect arrivals and poor
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quality signals detected, and therefore to improve the performance of the preliminary

classifier at shallow sites. (Note that this decreases the maximum detection range, and

is accounted for in simulations in chapter 2). Allowed click envelope duration was

lengthened to 20 to 80 µs to allow for more complex arrivals, and a 1.5 ms lockout

was imposed after every detection to avoid counting echos as individual clicks. Lastly,

the maximum allowed time between neighboring clicks was reduced to 0.25 seconds.

Batches of up to 5 detections isolated from neighboring detections by this amount were

discarded, due to the prevalence of snapping shrimp impulse signals, which often occur

as one or a small number of impulses, rather than a longer click train.

4.3.2 Estimation of False Positive Rates

Error rates after manual false positive removal were estimated by reviewing a

subset of individual clicks. For each deployment, a starting value between 1 and 1000

was chosen to indicate the click number of the first click to be inspected . Using that

value, the time series, spectrum and spectrogram of every 5000th click was manually

reviewed and labeled as a correct or false detection. This sampling method ensured that

the final error rate would represent the entire monitoring period at each site. Once the

analysis was complete, a bootstrap approach was used to estimate the mean and standard

deviation of the false positive rate. For each site, 500 detections were sampled without

replacement from the set of manually reviewed clicks (Table 4.2). The proportion of

false positives in this subset was computed, and the process was then repeated 100 times.

The mean and standard deviation of the false positive rates by site were estimated from

the sampled subsets.

Due to the simplicity of the energy detector it was assumed that no signals

exceeding the minimum amplitude threshold were missed, therefore the false negative

rate is negligible. Manual removal of large bouts of false positives ensured that no five
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minute intervals were entirely composed of false positives, therefore the error rate on the

group method is negligible.

4.3.3 Accounting for Detector Dead Time

Counts were adjusted by accounting for detector saturation or dead time (Lucke,

1976). For each time bin T , a true number of counts N was estimated as a function of the

detector dead time τ in seconds, and the actual number of counts NT in the bin, as:

N̂ =
NT

1− NT τ

T

(4.1)

In this case, T equals five minutes, or 300 seconds. Detector dead time was higher at

shelf sites because of the longer lockout time implemented to avoid counting echos as

new detections (τslope = 50µs; τshel f = 1500µs).

4.4 Results

Delphinid clicks were detected at all sites (Table 4.1). Detection results are

presented here both as raw counts of detections for use in eventual cue-based density

estimates, and as positive (containing detections) and negative (no detections) five minute

bins for use with group-based density estimates. In general, the two detection indices

are correlated, however Figures 4.1 and 4.2 show that they are not strictly proportional

to one another, and that the relationship between the two metrics varies across sites. At

the upper end of this variation are sites DC and MC, where the ratio of number of clicks

detected to the percentage of positive bins per day tends to be higher than at other sites.

Site DT is at the lower end. This may have to do with regional differences in species

composition and group sizes.
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Figure 4.1: Slope Sites: Relationship between weekly average number of detections
per day and weekly average number of positive bins per day by site. A first order
polynomial fit to each site’s dataset (black line), with slope indicating the approximate
relationship between the two metrics. R2 values provide a measure of goodness of fit.
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Figure 4.2: Shelf Sites: Relationship between weekly average number of detections
per day and weekly average number of positive bins per day by site. A first order
polynomial fit to each site’s dataset (black line), with slope indicating the approximate
relationship between the two metrics. R2 values provide a measure of goodness of fit.
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Table 4.1: Detection summary statistics by site. Total detections indicate the number of
clicks detected at each site, while positive bins are the total number of five minute bins
containing detections at each site. Total possible five minute bins per day is 288.

Site Total Detections Positive Bins Effort
(days)

Mean Clicks
per Day (103)

Mean % Bins
per Day

MC 13,089,754 20,949 1089 10.6 ±16.2 σ 5.9 ±6.8σ

GC 4,842,472 10,809 1001 3.9 ±7.0 σ 3.0 ±4.2σ

DT 5,924,725 18,911 791 4.8 ±8.5 σ 5.3 ±7.4σ

DC 9,296,068 10,463 749 7.5 ±24.0σ 2.9 ±4.5σ

MP 5,711,326 11,594 1020 4.6 ±13.2σ 3.2 ±5.2σ

4.4.1 Detections by Site

Detection counts at all sites increase exponentially with decreasing RL, until RLs

fall below the site-specific detection threshold (Figure 4.3). This suggests that detections

above the RL threshold are not being systematically missed, which is important for

density estimation using model-based detectability estimates.
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Figure 4.3: Total click counts are shown in 1 dBpp bins as a function of received level
(RL) by site. This analysis is performed as a check to ensure that the detector does not
start to miss detections as RL decreases. Missed detections would result in a leveling
off of counts as RLs approached the minimum amplitude threshold (115 dBpp for slope
sites, 117 dBpp for shallow sites). The exponential increase in counts as RL approaches
the threshold, seen here for all sites, indicates that clicks above the RL threshold are not
being systematically missed, and that the detector is performing predictably.
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Missisippi Canyon

The largest dataset in terms of days of recording effort and total clicks detected

came from MC (Table 4.1). Mean numbers of clicks per week at site MC were variable,

with higher averages in summer months (Figure 4.4). Weekly averages of percent of

five-minute bins containing detections follow a similar pattern. The shapes of the two

time series (click and group) are similar, suggesting overall agreement between the

two methods. The diel view shows a clear nocturnal pattern, with most clicks detected

at night (Figure 4.14). Detections tend to increase after dusk and decrease before

dawn. Ephemeris in Figures 4.5, 4.7, 4.9, 4.11 and 4.13 were obtained from NASA Jet

Propulsion Laboratory’s Horizons ephemeris service (Giorgini et al., 1996) via the Tethys

workbench (Roch et al., 2013).

Click counts were often high at site MC, with well over ten thousand detections

in a five minute period in some cases. The mean false positive rate at this site was the

lowest of all sites (Table 4.2).

Table 4.2: False positive detection rates by site.

Site Mean false positive rate (%) Number of clicks analyzed

MC 1.4 ±0.55σ 3950

GC 2.0 ±0.51σ 1942

DT 2.2 ±0.55σ 1784

DC 6.4 ±0.96σ 1864

MP 20 ±1.1σ 898
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Green Canyon

Mean numbers of clicks per week at site GC were generally lower than at site

MC, however the time series retains a similar character, with possibly higher averages in

summer months (Figure 4.6). Fewer than half as many clicks were detected overall at

this site compared to site MC. Weekly averages of percent of five-minute bins containing

detections are also lower overall than at site MC. A pattern of predominantly nocturnal

click detection is evident at this site (Figure 4.14). The false positive rate at this site was

low and comparable to that at site MC (Table 4.2).

Dry Tortugas

Mean numbers of clicks per week at site DT are comparable to those at site GC,

while the proportion of five minute bins containing clicks is generally larger (Figure 4.8

and Table 4.1). Unlike sites MC and GC, no clear seasonal pattern is visible in the

time series of delphinid detections at this site, however the same nocturnal increase in

detections is seen here (Figure 4.14). As at the other two slope sites, the mean false

positive rate was low at site DT. Instrument failure in the first half of 2012 resulted in

reduced total recording effort at this location compared to the other slope sites.

Desoto Canyon

Mean numbers of clicks per week at site DC are comparable to numbers of

detections at the slope sites, however it is important to remember that the amplitude

detection threshold was higher at this site and at site MP, therefore the effective

detectability is smaller. No clear seasonal pattern appears in the weekly averaged time

series (Figure 4.10). A possible increase in weekly mean of number of click detections

may be occurring at site DC during the monitoring period. This increase is not discernible

in the binned time series. The hourly view indicates that any diel pattern is weak at this
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site (Figure 4.14). Although there appear to be slightly more click detections at night

than during the day, daytime detections appear to be more common at this location than

at any of the slope sites. The false positive rate at this site was roughly three times higher

than at the slope sites, due in large part to snapping shrimp noise.

Main Pass

The number of clicks detected was smallest at this site, despite a high level of

recording effort. This is partially attributable to the higher RL threshold used, as well

as the relatively low detection probabilities associated with this site (chapter 2). Mean

numbers of clicks per week at site MP are generally lower than at site DC, with a few

exceptional spikes (Figure 4.12). The time series of proportion of bins containing clicks

is similar in overall shape to the counts time series. Maximum click counts per 5 minute

bin are lowest at this site, with numbers of detections rising above 10 thousand on only a

few occasions. The nocturnal increase in detections at this site appears to be stronger than

at site DC, however daytime detections are common (Figure 4.13). The false positive

rate was highest at this site, mainly due to snapping shrimp which generate a constant

and confounding noise source in these shallow coastal waters.
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Figure 4.4: Site MC detections. Top: Weekly mean of daily number of click detections.
Counts are adjusted by mean false positive rate. Bottom: Weekly mean of daily
percentage of five minute intervals containing delphinid clicks. Gray bands indicate
gaps in time series.
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Figure 4.5: Click detections at site MC by time of day for the duration of monitoring
period. Grayscale indicates number of clicks detected. Resolution is one day in the
vertical, and one minute in the horizontal. Gray bands indicate gaps in time series.
Orange curve indicates time of sunrise, blue indicates time of sunset.
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Figure 4.6: Site GC detections. Top: Weekly mean of daily number of click detections.
Counts are adjusted by mean false positive rate. Bottom: Weekly mean of daily
percentage of five minute intervals containing delphinid clicks. Gray bands indicate
gaps in time series.
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Figure 4.7: Click detections at site GC by time of day for the duration of monitoring
period. Grayscale indicates number of clicks detected. Resolution is one day in the
vertical, and one minute in the horizontal. Gray bands indicate gaps in time series.
Orange curve indicates time of sunrise, blue indicates time of sunset.
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Figure 4.8: Site DT detections. Top: Weekly mean of daily number of click detections.
Counts are adjusted by mean false positive rate. Bottom: Weekly mean of daily
percentage of five minute intervals containing delphinid clicks. Gray bands indicate
gaps in time series.
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Figure 4.9: Click detections at site DT by time of day for the duration of monitoring
period. Grayscale indicates number of clicks detected. Resolution is one day in the
vertical, and one minute in the horizontal. Gray bands indicate gaps in time series.
Orange curve indicates time of sunrise, blue indicates time of sunset.
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Figure 4.10: Site DC detections. Top: Weekly mean of daily number of click detections.
Counts are adjusted by mean false positive rate. Bottom: Weekly mean of daily
percentage of five minute intervals containing delphinid clicks. Gray bands indicate
gaps in time series.
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Figure 4.11: Click detections at site DC by time of day for the duration of monitoring
period. Grayscale indicates number of clicks detected. Resolution is one day in the
vertical, and one minute in the horizontal. Gray bands indicate gaps in time series.
Orange curve indicates time of sunrise, blue indicates time of sunset.
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Figure 4.12: Site MP detections. Top: Weekly mean of daily number of click detections.
Counts are adjusted by mean false positive rate. Bottom: Weekly mean of daily
percentage of five minute intervals containing delphinid clicks. Gray bands indicate
gaps in time series.
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Figure 4.13: Click detections at site MP by time of day for the duration of monitoring
period. Grayscale indicates number of clicks detected. Resolution is one day in the
vertical, and one minute in the horizontal. Gray bands indicate gaps in time series.
Orange curve indicates time of sunrise, blue indicates time of sunset.



123

(A) MC (B) GC

(C) DT (D) DC

(E) MP

Figure 4.14: Mean number of positive five minute bins per hour by time of day. Error
bars indicate one standard deviation from the mean. Times are in GMT. Local time is
GMT -05:00.
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4.4.2 Detector Dead Time

The use of a detector lockout period, in which a short period of time after each

detection was skipped to avoid multiple arrivals, likely has a significant effect on total

click counts at shelf sites, where the lockout period was longest, during periods of high

clicking activity (Figure 4.15). As a result, detection counts from the shelf sites need

to be adjusted based on an estimate of missed rate, prior to use in cue-based density

estimates. Detector saturation effects are estimated to be negligible at slope sites, due to

the shorter lockout period.

4.5 Discussion

4.5.1 Detector Performance

These results indicate that delphinids are detected year round at each of the

five sites monitored. The detector design emphasized predictability while effectively

excluding non-delphinid clicks using a few targeted thresholds. Efficient manual removal

of large bouts of false positives from ships made it possible to assume a uniform

distribution of remaining false positives throughout the dataset. The detector performed

best at the deep slope sites MC, GC and DT, where potential sources of click-like false

positives were few. False positive rates were lowest at site MC, due to high levels

overall of delphinid vocal activity at that site. Click counts increased exponentially as

RLs approached the minimum amplitude threshold, indicating that the detector was not

missing low amplitude clicks. This is critical for density estimation, and confirms that

this detector is performing predictably.

The simplicity of the detector had to be compromised somewhat for shallow water

detections. One way to reduce false positives at these sites without adding unwanted



125

Figure 4.15: Estimated true click count after adjusting for clicks missed due to detector
saturation, as a function of number of clicks detected per bin, using slope (solid blue
line) and shelf (dashed green line) detection parameter settings. Bin size is five minutes.
τ represents the duration of the lockout period imposed for detection purposes at shelf
and slope sites, in microseconds.
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thresholds and filters was to raise the minimum RL threshold. In general, higher amplitude

clicks were found to be of better quality and to conform as expected to the filters already

in place. However, this did not completely resolve false positive issues, particularly

because higher amplitude signals are more likely to be followed by multiple arrivals.

In order to handle multiple arrivals at shelf sites, a detector lockout period was

implemented after each click, before another click could be identified. This was deemed

necessary to avoid detecting multiple arrivals of the same click, however it leads to a

potential underestimation bias, because true detections may be missed during the lockout

period. In both shallow and deep scenarios, the detector has a theoretical saturation point,

which it is expected to approach asymptotically: As numbers of detections increase, so

does the likelihood that the detection window around two signals will overlap. In the

intermediately bad case, only one detection is made, when there should be two or more.

In the worst case, no detections are made, because the detector doesn’t recognize the

interfering signals.

It is likely that some clicks were missed due to overlap, but the number is

presumably quite small, particularly at slope sites. At the shelf sites it is much more

likely that click detections obscure one another occasionally. In fact at shallow sites,

once the click rate exceeds 30 clicks/sec, there is approximately a 50% chance that at

least two click windows will overlap each second. In a few cases at site MP and more

often at site DC, click counts exceeds 10,000 in a five minute bin, or 33 clicks/second,

and the potential for interference becomes a reality. Click saturation is only an issue

for cue-counting applications, but must be accounted for if a lockout period is being

implemented as part of the detection strategy.

Group counting methods based on time bins have the advantage of being

insensitive to saturation issues. The binning approach has a different sensitivity issue: It

is theoretically possible that a single click could be detected in a five-minute window,
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and this would be considered a positive bin. However in reality neither the detector nor

an analyst could reliably find that single click, and attempting to do so would make the

output very sensitive to false positives. A single false positive could add an extra five

minutes of false detection time. For this reason, minimum click counts are required in

this model before a bin is considered positive for delphinid clicks. Unfortunately, this

leads to a subset of very sparsely populated bins being ignored, effectively reducing

probability of detecting groups at large ranges. Ideally, a bin-based detection probability

model would simulate the probability of detecting N clicks, in a five-minute time window,

where N is the minimum number of clicks required. However, given the current state of

the behavioral models, this is not a viable option.

Future detection improvements are possible. One promising approach is to use

training data to develop a scheme capable of estimating a probability that a detection of

interest was a click, rather than applying independent thresholds. This approach would

improve the validity of the assumption that the model and detector are consistent, and

could provide a method of estimating a false negative rate. Another technique is to identify

click trains. Trained analysts rely heavily on temporal regularity as an identifying feature

in noisy environments to distinguish clicks from other sounds with similar appearance in

the time domain, such as snapping shrimp and cavitation. Currently, this detector makes

minimal use of the temporal relationships between clicks. Incorporating such information

could be particularly useful at shallow shelf sites. The use of lockout to avoid detecting

echos at shallow sites could be replaced by using cross-correlation and/or a click model

to determine whether a detected signal is as a second arrival or a new detection. Future

analyses may look for cyclical trends in snapping shrimp noise, and use only times when

snapping shrimp noise is low for density estimation.
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4.5.2 Detection Time Series

Diel patterns were seen at all sites, with greater numbers of detections occurring

at night, but the pattern was most prominent at slope sites. The difference between slope

and shelf in terms of diel pattern may be due to species differences and/or differing

foraging strategies. Pelagic animals are expected to dive at night to forage on prey in

the deep scattering layer at slope sites. This may not be the primary foraging pattern at

shallower sites. The predominance of clicking at night suggests that echolocation may be

more typical of nocturnal behaviors at most of the monitoring sites, and may not be a

good cue for evaluating density during the day at these sites. Alternatively, the animals

may simply not be present at these sites during daylight hours. Acoustic propagation is

not expected to differ between night and day.

The possibility that species composition differs between sites is further suggested

by the differing ratios of click counts to bins per day among sites. The presence of

animals that click more slowly on average is one possible explanation for the lower

ratios at site DT compared to MC and GC (Figure 4.1). The poor fit of the first order

polynomial to the DC dataset (Figure 4.2) may be due to the presence of two distinct

count:bin relationships, which may indicate two different species groups.

Seasonal shifts in detection rates are seen seen at the two northern slope sites,

MC and GC. These and other trends will be explored further in subsequent chapters,

but these preliminary results indicate that findings will likely differ between northern

(MC, GC, DC and MP) sites and southern (DT) sites. Before long term trends in these

time series can be definitively identified, and inter-site comparisons can be made, these

detection rates need to be adjusted for detectability and cue rates, when translated into

density estimates.
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4.6 Conclusion

A fundamental part of density estimation is understanding the likelihood that a

cue will be detected given the methodology used. Here, a simplified, targeted delphinid

echolocation click detector was designed to maintain predictabilty so that detector output

would be appropriate for use in density estimation. This approach was explored as

an alternative to characterizing an existing detector, which would require specialized

tracking or localization data. Trade-offs in this case included high false positive rates

under noisy conditions, and the need for a manual phase to remove concentrated instances

of false positives associated with ship passages.

Clicks were detected at all five monitoring locations in the Gulf of Mexico, with

highest detection rates at site MC. Time series depicting weekly averages of percentage

of bins containing clicks per day were similar in shape to average click count time series.

However, the relationship between these two metrics was found to differ between sites.

Click detections followed a strongly diel cycle at slope sites with higher detection rates

at night. This trend was weaker at shelf sites. These results provide a first glimpse at

delphinid presence in offshore areas of the Gulf of Mexico over a multi-year period, on a

weekly time scale.



Chapter 5

Classification of delphinid echolocation

clicks in the Gulf of Mexico

5.1 Abstract

Bouts of delphinid echolocation clicks were manually classified by type according

to inter-click interval (ICI) and frequency content. At least seven distinct click types

were seen throughout the recording period across all slope sites. Two of these types were

also seen at shelf sites, along with one additional click type not found at slope sites. An

automated classification scheme was trained using the manually identified click types,

and used to label click types in five minute bins throughout the time series. Automated

and manual click methods are compared. These distinct, recognizable click types likely

represent different species of delphinids known to be present in the monitored areas, and

may be useful for species specific density estimation.

130
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5.2 Background

5.2.1 Echolocation Click Characteristics

Dolphins produce echolocation clicks to find prey and interpret their environment

(Au, 1993). Characteristics of echolocation clicks, such as frequency content, duration,

and inter-click interval (ICI), are known to differ between species (e.g. Madsen et al.,

2004a,b; Baumann-Pickering et al., 2010). Animal size and head morphology, as well as

habitat and target prey are among the factors thought to influence the acoustic properties

of clicks (Litchfield et al., 1979; Au, 2004).

In addition to species-specific click differences, captive studies have shown that

individual delphinids can vary the structure of their clicks (Moore et al., 2008; Au and

Benoit-Bird, 2003; Kloepper et al., 2012). Source level and beam width are among the

parameters that appear to be variable both between individuals and by individuals. The

highly directional nature of echolocation clicks also adds a layer of complexity to click

characterization, because the structure of received signals depends on the orientation of

the animal producing the sound relative to the recording sensor (Au et al., 2012a).

Despite the many sources of click variation, click-based classification of

odontocetes is an active area of research (see Bittle and Duncan, 2013, for a review).

Studies have shown that porpoise and delphinid echolocation clicks differ in frequency

and duration between species (Kamminga et al., 1996; Akamatsu et al., 1998; Baumann-

Pickering et al., 2010). Classification efforts have used these discriminating features, as

well as transformations thereof, with some success (Gillespie and Caillat, 2008; Roch

et al., 2007, 2011, 2015; Soldevilla et al., 2010, 2008). In general, these methods work

well for a subset of species with very distinct click spectra, but struggle in cases where

differences are more subtle or variable.

ICI is also used to identify delphinid click trains to species. Most notably, a



132

proprietary algorithm implemented in C-POD sensors (Chelonia Ltd., Cornwall, U.K.) is

able identify certain species using this approach (e.g. Roberts and Read, 2015; Castellote

et al., 2013), however no data is available on the algorithm’s ability to distinguish between

these species.

The ICI of coastal bottlenose dolphins has been shown to vary as a function of

depth (Simard et al., 2010). This is consistent with evidence that captive delphinids

adjust the timing of their clicks to allow for the two way travel time of the signal between

the source a target (Au, 1993). However, typical ICI ranges have been shown to differ

between species (Baumann-Pickering et al., 2010). ICI variability in other species, as

well as across behaviors and environments, remains to be quantified.

5.2.2 Network Analysis and Clustering

The classification effort described here is aimed at using network analysis to find

a subset of high quality, recurring click spectra amid a larger body of poor quality, highly

variable click spectra. This subset is then used in combination with ICI as the basis for

classification. Using network analysis, the relationships between numerous spectra are

summarized as a map in which nodes representing clicks are linked to each other based

on their similarity. Two nodes which have high similarity are expected to be neighbors in

a network, with a strong connection (referred to as an edge) between them. Two nodes

which are very different should be situated far apart, with a weak edge between them.

Visualizing a network representation of a relational dataset facilitates the identification of

unique nodes with little in common, as well as clusters of closely-related nodes. In the

case of this application, the ability to identify subsets of highly similar click types within

a larger body of clicks may be useful for species classification.

Many methods have been developed for partitioning networks into clusters of

highly related nodes (Newman, 2004). One of these methods is to search for a network



133

partition that optimizes a function known as modularity (Newman, 2006). The modularity

calculation is based on the idea that a good partitioning of a network should be defined

by clusters with strong edges connecting nodes within clusters, and weak edges linking

outward to other clusters. Accordingly, the modularity Q of a partition is a value between

-1 and 1 that represents the strength or weights of the edges within clusters compared to

the weights of the edges between clusters. The best partition of a network is taken to be

the one that maximizes Q.

A simple example case could involve a network containing n nodes being divided

into two clusters. For a pair of nodes i and j, the weight of the edge between them is

defined as Ai j. The sum of the weights of all edges attached to a node i, is defined as ki,

such that:

ki = ∑
j

Ai j (5.1)

The expected weight E of the edge between i and j, if edge weights were evenly

distributed throughout the graph, is given by the product the edge sums ki and k j, divided

across the weights of all of edges in the network:

Ei j =
kik j

∑i j Ai j
=

kik j

2m
(5.2)

where

m =
1
2 ∑

i j
Ai j (5.3)

The modularity Q of a network partition is the sum of Ai j−Ei j across all pairs of

nodes i and j that fall into the same cluster. It is divided by the sum of the weights of

edges in the network to ensure that Q is a value between zero and 1. In order to include

the caveat that nodes must be in the same cluster to increase Q, a delta function δ (ci,c j)

is used, in which ci and c j represent the clusters to which nodes i and j are assigned. If
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ci = c j, then δ (ci,c j) = 1, and it is zero otherwise (Blondel et al., 2008). The statement

for Q becomes:

Q =
1

2m ∑
i j
(Ai j−Ei j)δ (ci,c j) (5.4)

Algorithms for maximizing network modularity vary, but the one used in this

study is described in greater detail in Blondel et al. (2008). It uses an inverted approach

with two phases which together consitute one pass over the dataset. In the first phase,

each node is initially assigned to its own cluster, and the algorithm looks for cases

in which reassigning a node i to the cluster of one of its neighbors j will increase Q.

Iterations cease when no further re-assignments increase Q. In the second phase, a new

network is created in which the clusters found in the first phase are redefined as nodes,

and the weights of the edges between them are given by the cumulative weights of the

edges between them. This completes the first pass. A second pass begins, applying the

same two phases to the new network. Passes continue until no more changes occur, and

modularity is considered to be maximized. This algorithm is designed for computational

speed.

One of the benefits of the use of this modularity approach over a simpler clustering

algorithm such as k-means is that the number of clusters created does not have to be

specified apriori. However, modularity algorithms are known to suffer from intrinsic

resolution limits (Fortunato and Barthelemy, 2007). In particular, they are not good at

finding modules of extremely different sizes within a network. Given the relatively small

networks considered in this work, and the fact that we are not interested in small clusters,

this is not a significant issue. However, it should be kept in mind if the approach is

developed further.

The goals of this chapter are:
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• to describe a manual echolocation click classification method based primarily on

ICI.

• to describe an automated echolocation click classification method based on

unsupervised clustering of manually labeled training data.

• to compare manual and automated classification results.

• to present type-specific time series for automatically classified and manually

classified types

5.3 Methods

5.3.1 Manual Classification

Echolocation clicks were detected using the detector described in chapter 4.

Clicks with an RL ≥ 112 dBpp re:1µPa were used for classification. An analyst (KF)

reviewed each bout of detections, manually classifying clicks based on a long term

spectral average (LTSA) of the bout, time series of ICI and RL, and mean spectra (Figure

5.1, mean spectra not shown). RL was useful for getting a sense of group passages

(approach, closest point of approach, and departure) over the instrument, which can be

used to distinguish click types in overlapping encounters. A bout was defined as a period

of detections separated from other periods by at least 15 minutes before and after. Bouts

longer than six hours were subdivided into six hour segments for manual review purposes.

Recurrent click types with typical ICIs and spectra were labeled with an ID number

representing that type. Clicks that did not clearly conform to any recurrent type were left

unclassified. Bouts less than 75 seconds long, and/or containing fewer than 25 clicks

were discarded.
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Click spectra were normalized to improve comparability. First, each click was

truncated to focus on the frequency content between 12 and 60 kHz, where the bulk of the

distinctive spectral features were found. The slope of each click spectrum between the two

end frequencies was subtracted out of the overall spectrum (based on work by S. Baumann-

Pickering, pers comm). This amplified structural differences within the frequency band

of interest. Click spectral amplitudes were then further normalized by re-scaling them on

a [0,1] scale. After normalization of all clicks, a mean spectrum was computed from the

set of spectra within each bout. The use of ICI as an additional discriminating feature

allowed multiple simultaneously occurring species to be distinguished despite spectral

averaging.

Clicks were classified manually by batch selection in the time series space. The

large number of clicks detected at each site made individual click examination unfeasible,

therefore manual classifications were subject to possible cross-contamination in cases

where multiple species were detected simultaneously.

5.3.2 Automated Classification

The goal of the the automated classification step was to refine and improve the

consistency of the generalized manual classification results. The automated classification

algorithm included three steps: Building templates from the manually labeled data,

identifying major types in test data, and assigning labels to test types by comparing them

to templates.

Building Templates

The labeled data from the manual classification step was used to build spectral

templates and to determine characteristic ICIs for each type. For each manually labeled

click type at a given site, all associated clicks were extracted from the acoustic record.
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Clicks with received amplitudes below 118 dBPPre : 1µPa were pruned out of the set in

order to exclude poor quality clicks from the dataset used for template building.

ICI was computed for each set of high quality clicks by taking the first time

difference between them. A gaussian kernel-smooth (Bowman and Azzalini, 1997) was

used to fit a probability density distribution to the ICI data between 0 and 0.3 seconds.

This range encompassed the variety of ICIs seen in the manual analysis step. The kernel

smooth was used instead of a simpler probability distribution, because ICI distributions

were complex, and in some cases multi-modal. The idea behind this approach is to

estimate a density f̂ (x,h) by centering a kernel function K over each observation x. The

kernel function is used to average neighboring points. The formula for a Gaussian kernel

is

K(x;σ) =
1√

2πσ
e−

x2

2σ2 (5.5)

where σ is the standard deviation of the input data.

The kernel probability density f̂h(x) is estimated by applying K at each value of

x as

f̂h(x) =
1

nh

n

∑
i=1

K
(x− xi

h

)
(5.6)

where n is the sample size and h is the bandwidth of the kernel. For a Gaussian kernel,

the optimal kernel bandwidth is computed as

h = σ
( 4

3∗n

)1/5 (5.7)

(Scott and Chivers, 2009; Silverman, 1986).

Characteristic spectra were computed for each high-quality click set by repeatedly

selecting a randomized subset of 1,000 clicks from the labeled data. For each pair
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Figure 5.2: Flow chart of classification steps. A manual classification step is used to
roughly assign clicks to categories. Detailed templates describing each type are then
trained using the labeled data. These templates are then used automatically assign types
to the detected clicks on a much finer scale.

of n-point spectra xs and xt , in the randomized set, a correlation distance D was

computed as one minus the sample correlation between points of the normalized spectra

(Equation (5.8); Pearson, 1920).

D = 1− (xs− x̄s)(xt− x̄t)
′√

(xs− x̄s)(xs− x̄s)′
√
(xt− x̄t)(xt− x̄t)′

(5.8)

where x̄s and x̄t are the averages of xs and xt respectively:

x̄s =
1
n ∑

j=1
xs j and x̄t =

1
n ∑

j=1
xt j

The similarity S between two spectra was computed as exp(-D). This procedure

resulted in a network in which each click was represented by a node, and S represented the

strength of the connections or linkages between nodes. Values of S closer to one indicated
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closely-related spectra with strong linkages, whereas smaller values indicated dissimilar

spectra with weak linkages. A dynamic pruning threshold set at the 90th percentile of the

distribution of network edge weights was used to trim the click networks.

Clusters were identified in the network using a modularity algorithm implemented

in the network analysis tool Gephi (Blondel et al., 2008; Bastian et al., 2009). This

algorithm does not require the user to specify a number of clusters to be identified,

however a modularity coefficient can be adjusted to influence the number of clusters

formed. A larger modularity coefficient (>1) favors the identification of few, larger

clusters, while a smaller coefficient (<1) favors the identification of many, small clusters.

A modularity coefficient of two was used in the template-building step, to favor the

identification of larger, more generalized clusters. For each cluster containing 25 or

more clicks, a mean spectrum was computed and retained. This process of selecting and

clustering a randomized subset of clicks was repeated 50 times for each click type.

After the sets of mean spectra were generated for each click type, each set

was manually reviewed. If multiple spectral variations were present in the same set,

having been lumped together in the manual classification step, the types were split into

subcategories for improved template matching. This was done by clustering the mean

spectra once more using a pruning coefficient of 0.95 and a modularity coefficient of one

(example Figure 5.3). Contaminating types were discarded.

A spectral template for each click type was created by taking the first derivative

of each of the associated mean spectra, and determining the mean and standard deviation

of the first derivatives at 58 evenly-spaced frequencies across the band of interest. The

standard deviations were floored to a minimum of 0.005 and re-scaled to a maximum of

0.025 normalized amplitude units/kHz.
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Figure 5.3: Example of mean spectra partitioning. Top: Set of mean spectra resulting
from the template building process for click type C. Bottom: Two spectral variations
found within the manually identified training data.
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Test Data

Clicks were extracted from the recording data and batched according to

consecutive five minute bins. Predominant types for each time bin were identified

by clustering all clicks in the bin using the methods described above, with the same input

parameters for the modularity algorithm. Mean spectra were computed and stored for

each cluster with more than 100 high quality clicks. ICIs of the clicks in each cluster

were also computed and retained.

The classifier did not assign a label to clicks that were not associated with a

cluster of at least 100 nodes. If a five minute window contained more than 3000 high

quality clicks, a randomized subset of 3000 click spectra was selected for clustering,

due to computation limitations. If a window contained fewer than 100 clicks, no mean

spectra were computed, and no further attempt at classification was made.

Assigning Labels

For automated classification, the first derivative of each mean test spectrum t was

compared to each template T . The probability P(Tn) that each point n along t came from

a normal distribution defined by the template mean µn and standard deviation σn was

computed along the test spectrum using a normal probability density function ( f ):

PTn = f (tn|µn,σn)

The resulting probability vectors were log-transformed and normalized by setting

the maximum value across all vectors to zero, and subtracting that maximum from all

other vectors. Each probability vector was then multiplied by a linear interpolation from

one to zero (A) of the same length. This decreased the influence of the probability values

as frequency increased, the rationale being that the most informative part of the spectrum
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Figure 5.4: Top: Visualization of network of 736 clicks detected in a five minute bin.
Each node (sphere) represents a single click in the set. Lines between nodes indicate
connection strength with longer lines indicating weaker connections. Colors indicate
two distinct click types identified by the clustering algorithm described in the text. Black
nodes are not assigned to a cluster. Network image was generated using a force-directed
layout routine Force Atlas 2 (Jacomy et al., 2014), of the graph visualization tool Gephi
(Bastian et al., 2009).
Bottom: Two spectral types, B2 (red) and C1 (blue) identified in a the time bin
associated with the network above.
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tended to be in the lower frequencies, while variability was high and less meaningful at

higher frequencies (Ibsen et al., 2007, 2009). The score ST associated with the match

between the test spectrum and each template was obtained by taking the mean of each

vector.

ST = mean(log(P2
Tn
)) ·A (5.9)

A second probability was computed using a similar strategy to estimate the

likelihood PICI that the set of ICIs in the test sample came from the ICI distribution

associated with each template. For each click type, the mean probability across all of the

ICI values in the test bin was computed using the probability density function associated

with that type. The mean ICI probabilities were log-transformed and normalized to a

maximum of -1, so that ICI would have less influence than spectral shape on the goodness

of fit calculated between templates and test data. This resulted in an ICI score, SI ,

associated with each template:

SI = log(P1/2
ICI )−max(log(P1/2

ICI ))−1; (5.10)

The match score (M) between the the template and spectrum was computed as

M = ST ∗ SI . The template with the lowest score was the best match (Mbest). If Mbest

was less than a threshold value of ten, the test cluster was assigned the template label,

otherwise, the test cluster type was unknown. This threshold value was chosen based on

manual review of a subset of automated click assignments to prevent poor matches from

being retained.
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5.3.3 Comparing Manual and Automated Results

Manual and automated classification results were compared by totaling numbers

of click detections assigned to each click type, and by reviewing plots of click-type

specific time series obtained by each method. Because subtypes were not recognized

manually, comparisons were conducted only at the level of the more generalized manual

click types. Confusion matrices were generated by comparing the manual classifications

to the automated classifications by bin. Since the true click type is not known, neither

method can be said to represent true classifications. Further field data is needed to assess

the accuracy of both methods.

5.4 Results

5.4.1 Manual Classification

Manual review of the click detections from the three slope sites MC, GC and

DT revealed approximately seven visually distinguishable click types (A through G)

(Figures 5.6, 5.12 and 5.17). Examples of each type were seen at all three slope sites,

with the exception of type F, which was not seen at site DT. Click types B, E and F, seen

at the slope sites were also seen at the deepest shelf site DC (Figure 5.22). Type K was

not equivalent to any of the types seen at slope sites. Only one distinguishable type, B2,

was found at site MP. This type was comparable to type B2 from the other four sites

(Figure 5.27). High false positive rates at site MP contaminated mean spectra and ICI

distributions, limiting the feasibility of manual classification.

In the manual classification phase, click types were recognized primarily by

ICI distribution, and secondarily by mean spectra. Mean spectra were not manually

categorizable on their own with the visual method described, because averaging across
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many clicks made spectral differences difficult to distinguish, particularly in mixed

encounters. Click type A was distinguished by its large ICI, (mean near 0.2 seconds),

and lower frequency spectra (Figures 5.9, 5.14 and 5.24). Click type B was the most

common across all sites (Tables 5.3 to 5.5). Although type B appeared during manual

analysis to include multiple spectral types with roughly the same ICI, the types were too

intermingled to be consistently discerned. Type C was closely related to type B (similar

ICI, and often co-occurring), but different enough to distinguish, due to two small energy

peaks at approximately 16 and 22 kHz. Types D, F and G were distinguished primarily

by ICI. Types E and K were recognized spectrally based on their distinct and consistent

spectral shapes. Type E is associated with Risso’s dolphin based on previous work by

Soldevilla et al. (2008).

Overall, approximately 98% of clicks detected at the slope sites and 94% of

click detected at site DC were assigned a manual identification (Table 5.1). Manual

classification was less successful at site MP, where roughly half of the detected clicks

were assigned a manual identification. The percentages of total bins classified by site

using the manual method were similar to the click count percentages (Table 5.2)

All click types were detected primarily at night, with the exception of type K

from site DC, which was detected at roughly the same rate regardless of time of day

(Figure 5.5).

5.4.2 Automated Classification

Automated classification revealed that some of the visually identified click types

were consistent spectrally, while others contained multiple subtypes. A single typical

spectrum characterized types A, F, G and K. Click type B contained multiple distinct

spectral types at all sites except for MP, therefore type B was split into three subtypes,

B1, B2, and B3 for classification purposes (Figures 5.6, 5.12 and 5.12). All versions of



147

Figure 5.5: Top: Mean number of type B clicks detected by hour of the day at slope site
DC. This nocturnal pattern was typical of most click types. Bottom: Mean number of
type K clicks detected by hour of the day at slope site DC. This click type was unique in
that it was found during all hours of the day. Error bars indicate one standard deviation
above the mean.
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Table 5.1: Total clicks with classified by site using manual and automated methods.
Total classified clicks are provided both as counts and as percentages of all detected
clicks.

Site Manually Classified Auto Classified Total Clicks
counts % of total counts % of total

MC 12,868,599 (98%) 12,796,841 (98%) 13,089,754

GC 4,750,237 (98%) 4,760,356 (98%) 4,842,472

DT 5,780,329 (98%) 5,727,053 (97%) 5,924,725

DC 8,692,519 (94%) 8,705,755 (94%) 9,225,644

MP 2,804,598 (49%) 4,997,696 (86%) 5,711,326

Table 5.2: Total bins classified by site using manual and automated methods. Total
classified bins are provided both as counts and as percentages of all positive bins (bins
containing clicks).

Site Manually Classified Auto Classified Total Positive
counts % of total counts % of total Bins

MC 20,129 (96%) 19,891 (95%) 20,949

GC 10,374 (96%) 10,316 (95%) 10,809

DT 18,490 (98%) 17,048 (90%) 18,911

DC 9,325 (89%) 7,292 (70%) 10,463

MP 5,514 (48%) 8,054 (69%) 11,594

click type B had very similar ICIs.

Click types C, D, and E were each split into two subtypes for most slope sites, to

better capture the diversity of associated mean spectra, but it was not clear whether the

subtypes were truly distinct, or if they represented a continuum of variability within a

single type. Click types at the shelf sites were noisier and less consistent. Click type K

was very common at site DC, however the type had high spectral variability, and no clear

ICI mode, making it difficult to recognize automatically.

ICI probability distributions varied between types (Figures 5.10, 5.15, 5.20, 5.25
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and 5.30). ICI variability was higher, reflected by broader ICI peaks, for types A, D

and E, which also had larger ICIs on average than the other types. Types B, C and F

had lower ICI variability, and lower, more distinct modes. These types also often had

multiple smaller peaks associated with multiples of the main ICI peak, as reflected in

the ICI probability distributions from the slope sites. Complexity in the ICI pdfs was

captured by the Gaussian kernel smooths. Secondary ICI peaks at multiples of the main

peak are likely associated with cases in which a click in a click train is missed, while the

clicks on either side of it are detected. They were not visible in the ICI distributions at

the shelf sites (Figures 5.25 and 5.30).

Slope site ICI distributions were also characterized by peaks at very low ICIs

(0.02 seconds or less). These low ICI peaks are likely due to false positives, a higher

probability of detecting off-axis clicks at these shallow sites, and a higher probability of

detecting multiple animals simultaneously.

5.4.3 Counts and Time Series Comparison

Total manually classified click and bin counts were very similar to automatically

classified counts (Tables 5.3 to 5.7). Confusion matrices indicate however that there

was significant confusion between types, and that there is room for improvement. It is

important to remember that interpretation of the confusion matrices is limited by the fact

that they only compare the manual and automated classifications to each other, not to

reality.

At slope sites, click counts assigned to types A through E were generally similar

between manual and automated methods. Type B was so common at slope sites that it

was confused more often between the two methods, in absolute terms, but on a relative

scale it appears to have been strongly identifiable. Large differences between the two

methods were seen for types F and G at slope sites. Bin counts were more variable
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between the two methods than click counts. Automated bin counts were typically higher

because the automated method allowed multiple types to be found in a single bin fairly

often, while the manual method rarely did, due to resolution limitations. Interestingly,

at slope sites there is little agreement in what falls into the unknown type categories

suggesting that the two approaches have different weaknesses.

At site DC, click counts assigned to click types B and F were comparable between

manual and automated methods. Type K was not matched as frequently as expected with

the automated approach. Type E was identified more often by the automated method

than the manual method. Bin followed the same trends as cue counts. At site MP, the

automated classifier assigned more clicks to the type B category than the manual method

did (86% vs. 49%).

The manual and automated classification time series were similar overall shapes

for most click types (figs. 5.31 - 5.54). The automated classification results indicate that

certain B subtypes occurred at different times over the course of the monitoring period at

all three slope sites (Figures 5.32, 5.39 and 5.46). Subtypes of other click types do not

appear to be temporally separated.

5.5 Discussion

5.5.1 Manual Classification

Manual classification proved essential for developing templates and understanding

the relationships between click types found in the data. However, manual classifications

may be inconsistent across large deployments, and the ability to distinguish between

mingled types was limited. It was clear from the data that different types of clicks were

present, and we expected that we would be able to distinguish them to some level using

spectral shape and ICI information. Further refinements are needed to define some the
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more similar types, while more unique types are fairly easily classifiable. Similar findings

have been seen in other attempts to distinguish delphinid vocalizations across species

(e.g. Baumann-Pickering et al., 2010; Roch et al., 2015; Soldevilla et al., 2008).

Further data, such as seafloor sensor recordings associated with visual species IDs,

are needed to refine click types, and distinguish between within-type vs. between-type

variation. This would improve the quality and consistency of training data, and likely lead

to improved templates, and better classification results. Given further training data, some

of these types might be merged, while others might be teased apart. Delphinid species

diversity in the Gulf of Mexico is fairly high, and the number of click types documented

manually is in keeping with the 10 to 14 species expected around these sensors. However,

the manual classification process applied here is aimed at recognizing dominant click

types in the data, and rare types associated with rare species were likely overlooked.

5.5.2 Automated Classification

The automated classification step provided a method for refining the manual

classifications, teasing apart intermingled click types and operating consistently across

datasets. The expectation was that an algorithm could be developed based on the analysts’

manual classification process, and the automated method might be more consistent across

the large volume of data. The findings in this chapter support that expectation, but also

reflect the fact that in a supervised learning setup like this, the automated classifier is

only as good as the training data provided by the manual process. For click types F and

G the manual and automatic classification output did not agree well, because the two

types were not clearly distinguished in the manual training step.

The use of two lines of evidence, ICI and spectrum, for classification led to

better results than using either independently. Other choices within the automated

classification method, such as weighting spectral fit at lower frequencies more than at
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higher frequencies, and balancing the contribution of ICI and spectrum fits to overall

template scores, significantly improved performance. The use of first derivative of

frequency to capture shape significantly improved the matching ability of the algorithm.

More complex approaches such as the use of click cepstrum and first derivative of

cepstrum could further improve the quality of template matching.

Click classification suffers when the number of clicks in a bin is low. In these

cases, clicks are often low amplitude, with noisy spectra, and ICI distributions are

sparse. Handling of sparsely populated bins was improved by implementing a variable

network pruning threshold. Smaller click networks were pruned less harshly than larger

networks using an edge-weight distribution-based threshold rather than a static threshold.

This increased the likelihood that a summary spectrum would be produced for sparsely

populated bins. For large networks, a higher pruning threshold tends to result in clearer,

more consistent summary spectra, by reducing the influence of outlier spectra and

speeds up processing times. The drawback is the potential loss of minor types from the

classification pool as more and more nodes become fully isolated (i.e. all linkages to the

rest of the network are severed).

A number of refinements are possible and may be implemented in the future.

In its current form, the template approach still becomes unreliable when operating on

a small set of input clicks. In cases where a bin has no clear summary spectra, the

classifier cannot reliably assign a type. The ICI data can also become unreliable in cases

where there are very few data points. Those same bins might be classifiable by a human

analyst through more sophisticated pattern recognition and incorporation of contextual

information.

Contextual information could be incorporated into the automated classifier by

considering classifications in neighboring time bins, such that the probability that a bin

preceded by click type A and followed by type A, would have a higher than average
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probability of containing type A itself. Expanding time bin durations would also likely

improve classifications, however longer time bins increase the probability that animals

either enter of leave the detection range during a bin, posing problems for density

estimation later on.

Developing a method for adjusting the score contribution from ICI as a function

of the number of datapoints available might also improve automatic classification

performance. If an ICI distribution is robust, it could be given more weight than if

only a few data points were available.

The template matching approach has an innate weakness in that it performs best

if all possible click types are defined. If a click type is not represented in the body of

templates, it is possible that clicks belonging to the missing type will be assigned to an

alternate type. This appears to be the case at site DC, for instance, where a manual review

of the template matches revealed that a type not represented in the template set was

intermingling with type E inflating the counts associated with that type. Another issue

is that weak templates, characterized by high variability, few examples, or very generic

mean spectra and ICI distributions, may score more highly than strong, well-defined

templates. This was partially addressed in the classification scheme, by normalizing the

standard deviations of the spectral templates over a common interval. However, types

F and G remained fairly generic. These types were weak due to confusion with type B

during the manual classification process.

The ultimate solution to this is probably to collect visually verified, species-

specific training data, and to build classification templates from that data.An alternative

might be to use an unsupervised learning approach to identify distinct click types in the

data without a manual input step.
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5.5.3 Time Series

The click types described here are likely each associated with different species.

An initial look at possible identifications is covered in the following chapter, although

more research is required to refine the types and finalize species. The fact that these types

occur at different times over the course of the monitoring period, are common across

sites, and occur in different quantities, supports the idea that these are in fact different

species.

Type B is probably associated with multiple species, given the variety of subtypes

found. Unlike the subtypes of C, D and E, some of the subtypes of B are have distinct

energy distributions from the others. A pulse of type B2 in the summer of 2012 at sites

MC and GC may be indicative of a temporary species composition shift during that

period. At site, DT a shift from predominantly type B2 in the first half of the time-series

to predominantly type B3 in the second half is also noteworthy.

There is likely variability both spectrally and in terms of ICI within each click

types which is not indicative of different species, but rather of other factors including

behavior, oceanographic conditions, or individual differences. This is in keeping with

established research on delphinid echolocation click properties and variability.

5.6 Conclusion

Manual and automated echolocation click classification methods identified click

types with distinct spectra and ICI distributions. An automated time series generated

based on both methods indicate that different types are encountered at different rates and

times, but are common across sites. These click types may be associated with different

species of delphinids frequently encountered in the monitored areas. Applications include

species-specific density estimates based on passive acoustic recordings.
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Table 5.3: Click and bin counts associated with each click identified at site MC. Manual
and automated classification results are shown for each type. Subtypes were identified
by the automated classification scheme which were not identified manually.

Type Manual ID clicks Auto ID clicks Manual ID bins Auto ID bins

A 55,836 43,583 242 261

B1 n/a 3,416,460 n/a 6,313

B2 n/a 1,704,513 n/a 3,991

B3 n/a 2,467,035 n/a 7,416

B (all) 6,671,061 7,588,008 11730 14,745*

C1 n/a 843,524 n/a 1,805

C2 n/a 251,517 n/a 764

C (all) 1,094,861 1,095,041 1,402 2,273*

D 764,387 672,015 742 1894

E1 n/a 245,425 n/a 1479

E2 n/a 120,767 n/a 721

E (all) 204,575 366,192 1,687 1,985*

F 2,729,558 805,372 1,712 1,312

G 1,348,321 2,226,630 2,563 4,479

unknown 221,155 292,913 1,251 1,058

TOTAL 13,089,754 13,089,754 20,949* 20,949*
*Bins do not sum to this value because some bins contain multiple click types.
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Table 5.4: Click and bin counts associated with each click identified at site GC. Manual
and automated classification results are shown for each type. Subtypes were identified
by the automated classification scheme which were not identified manually.

Type Manual ID clicks Auto ID clicks Manual ID bins Auto ID bins

A 49,254 51,003 253 338

B1 n/a 950,244 n/a 3529

B2 n/a 844,188 n/a 2329

B3 n/a 785,880 n/a 3516

B (all) 2,751,348 2,580,312 6,844 7,351

C1 n/a 586,614 n/a 1,975

C2 n/a 308,787 n/a 826

C (all) 849,492 895,401 1,677 2,545*

D1 n/a 156,537 n/a 543

D2 n/a 447,966 n/a 1,575

D (all) 579,476 604,503 652 1,878*

E1 n/a 27,229 n/a 216

E2 n/a 18,491 n/a 88

E (all) 17,448 45,720 230 278*

F 99,740 292,093 81 924

G 403,479 290,724 722 802

unknown 92,235 82,716 435 493

TOTAL 4,842,472 4,842,472 10,809* 10,809*
*Bins may not sum to this value because some bins contain multiple click types.
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Table 5.5: Click and bin counts associated with each click identified at site DT. Manual
and automated classification results are shown for each type. Subtypes were identified
by the automated classification scheme which were not identified manually.

Type Manual ID Clicks Auto ID clicks Manual ID bins Auto ID bins

A 37,156 21,944 253 301

B1 n/a 7,15,199 n/a 3150

B2 n/a 2,274,587 n/a 6747

B3 n/a 1,384,202 n/a 6531

B (all) 4,690,477 4,373,988 12,373 12,572*

C 140,613 69,064 496 537

D1 152,314 927

D2 131680 687

D (all) 130,479 283,994 97 1,502*

E1 n/a 187,440 n/a 1,885

E2 n/a 318,166 n/a 2,403

E (all) 554,847 505,606 5,192 3,803*

F 31,390 237,746 61 786

G 195,367 457,992 362 1,014

Unk 144,396 197,672 421 1,863

TOTAL 5,924,725 5,924,725 18,911* 18,911*
*Bins may not sum to this value because some bins contain multiple click types.
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Table 5.6: Click and bin counts associated with each click identified at site DC. Manual
and automated classification results are shown for each type. Subtypes were identified
by the automated classification scheme which were not identified manually.

Type Manual ID Clicks Auto ID clicks Manual ID bins Auto ID bins

B1 n/a 542,866 n/a 841

B2 n/a 313,727 n/a 559

B3 n/a 5,472,880 n/a 5170

B (all) 5,414,470 6,329,473 3,749 5,597*

E 33,231 142,640 166 382

F 1,433,230 1,307,691 1,060 942

K 1,811,588 925,951 5,119 2609

Unk 533,125 519,889 881 2,197

TOTAL 9,225,644 9,225,644 10,463* 10,463*
*Bins may not sum to this value because some bins contain multiple click types.

Table 5.7: Click and bin counts associated with the single click type identified at site
MP. Manual and automated classification results are shown for this type.

Type Manual ID Clicks Auto ID clicks Manual ID bins Auto ID bins

B 2,804,598 4,997,696 5,514 8,054

Unk 2,906,728 713,630 6,080 3,540

TOTAL 5,711,326 5,711,326 11,594 11,594
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Table 5.8: Site MC: Confusion matrix comparing manual and automated classification
results by five minute bin. Numbers on the diagonal (bold) indicate the total number of
bins that were given the same classification by both methods. Values off of the diagonal
indicate bins that were classified differently by the two methods.

Manual

A
ut

om
at

ic

A B C D E F G Unk Total

A 108 6 3 7 0 1 6 52 183

B 11 10,289 194 30 19 308 393 2,219 13,463

C 2 164 886 4 3 2 17 802 1,880

D 10 113 3 343 5 50 37 741 1,302

E 2 50 5 63 1,171 10 11 347 1,659

F 2 40 13 0 7 555 4 457 1,078

G 2 97 18 33 47 82 1,705 1,350 3,334

Unk 64 610 74 79 408 45 231 900 2,411

Total 201 11,369 1,196 559 1,660 1,053 2,404 6,868 25,310
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Table 5.9: Site GC: Confusion matrix comparing manual and automated classification
results by five minute bin. Numbers on the diagonal (bold) indicate the total number of
bins that were given the same classification by both methods. Values off of the diagonal
indicate bins that were classified differently by the two methods.

Manual
A

ut
om

at
ic

A B C D E F G Unk Total

A 123 15 1 2 0 1 1 100 243

B 23 5,727 219 24 3 5 55 870 6,926

C 2 275 1,148 5 1 2 13 744 2,190

D 16 88 25 518 15 4 34 810 1,510

E 2 15 11 4 123 0 1 72 228

F 5 63 27 3 1 48 7 460 614

G 2 38 6 2 0 1 462 196 707

Unk 48 367 83 55 84 2 77 186 902

Total 221 6,588 1,520 613 227 63 650 3,438 13,320
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Table 5.10: Site DT: Confusion matrix comparing manual and automated classification
results by five minute bin. Numbers on the diagonal (bold) indicate the total number of
bins that were given the same classification by both methods. Values off of the diagonal
indicate bins that were classified differently by the two methods.

Manual
A

ut
om

at
ic

A B C D E F G Unk Total

A 108 8 0 1 2 0 1 47 167

B 24 11,143 212 6 93 30 70 740 12,318

C 1 43 150 0 4 0 1 247 446

D 22 157 10 74 79 3 8 909 1,262

E 3 76 5 2 3,245 0 0 341 3,672

F 0 61 4 0 38 16 14 459 592

G 1 75 0 1 21 0 187 477 762

Unk 78 560 39 4 1,641 3 46 415 2,786

Total 237 12,123 420 88 5,123 52 327 3,635 22,005
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Table 5.11: Site DC: Confusion matrix comparing manual and automated classification
results by five minute bin. Numbers on the diagonal (bold) indicate the total number of
bins that were given the same classification by both methods. Values off of the diagonal
indicate bins that were classified differently by the two methods.

Manual

A
ut

om
at

ic
B K E F Unk Total

B 2,956 295 6 367 1 3,625

K 32 2,410 0 7 1 2,450

E 35 17 94 6 1 153

F 77 9 2 260 1 349

Unk 1 1 1 1 1 5

Total 3,101 2,732 103 641 5 13,164
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Figure 5.6: MC: Normalized mean click spectra extracted from manually labeled data
using spectral clustering methods.
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Figure 5.7: Site MC mean and standard deviation normalized amplitude of clustered
mean click spectra by type.
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Figure 5.8: Site MC click templates based on mean and standard deviation of the first
derivative of clustered mean spectra.



166

Figure 5.9: Site MC ICI distributions associated with each click type identified at this
site.
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Figure 5.10: Site MC: ICI probability density distributions associated with each click
type identified at this site.
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Figure 5.11: Site GC: Normalized mean click spectra extracted from manually labeled
data using spectral clustering methods.
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Figure 5.12: Site GC: Mean and standard deviation normalized amplitude of clustered
mean click spectra by type.
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Figure 5.13: Site GC: Click templates based on mean and standard deviation of the
first derivative of clustered mean spectra.
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Figure 5.14: Site GC: ICI distributions associated with each click type identified at this
site.
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Figure 5.15: GC: ICI probability density distributions associated with each click type
identified at this site.



173

Figure 5.16: Site DT: Normalized mean click spectra extracted from manually labeled
data using spectral clustering methods.
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Figure 5.17: Site DT: Mean and standard deviation of normalized amplitude of clustered
mean click spectra by type.
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Figure 5.18: Site DT: Click templates based on mean and standard deviation of the first
derivative of clustered mean spectra.
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Figure 5.19: Site DT: ICI distributions associated with each click type identified at this
site.
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Figure 5.20: Site DT: ICI probability density distributions associated with each click
type identified at this site.
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Figure 5.21: Site DC: Normalized mean click spectra extracted from manually labeled
data using spectral clustering methods.
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Figure 5.22: Site DC: Mean and standard deviation normalized amplitude of click
spectra by type.
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Figure 5.23: Site DC: Click templates computed from mean and standard deviation of
the first derivative of clustered mean spectra.
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Figure 5.24: Site DC: ICI distributions associated with each click type identified at this
site.
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Figure 5.25: Site DC: ICI probability density distributions associated with each click
type identified at this site.
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Figure 5.26: Site MP click type B normalized mean spectra extracted from manually
labeled data.

Figure 5.27: Site MP: Mean and standard deviation of normalized amplitude of mean
click spectra for type B.
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Figure 5.28: Site MP: Click template based on mean and standard deviation of the first
derivative of the clustered mean spectra.

Figure 5.29: Site MP: Inter-click interval distribution associated with click type B.

Figure 5.30: Site MP: ICI probability density distribution associated with click type B.
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Chapter 6

Towed array recordings of Gulf of

Mexico delphinid echolocation clicks

6.1 Abstract

Echolocation clicks recorded on seafloor sensors are useful for delphinid species

identification, if they can be compared with recordings of known species. In order to

obtain labeled recordings, towed array data were collected over three years in the Gulf

of Mexico and along the southern US Atlantic coast. Visually verified, single species

delphinid encounters were recorded. Spectral characteristics and inter-click interval

(ICI) distributions of echolocation clicks from these recordings are presented here for

ten species of delphinids commonly found in the Gulf of Mexico. These click types are

compared with click types seen in Gulf HARP data for potential matches.

210
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6.2 Introduction

HARPs and other deployable passive acoustic monitoring devices can record over

long periods of time, in variable oceanographic conditions, around the clock (Mellinger

et al., 2007). However, making sense of the data requires an intermediate step, in which

simultaneous recording and visual efforts are used to associate species with characteristic

signals. Conducting surveys with towed arrays and visual observation teams is a common

strategy (e.g. Oswald et al., 2003; Rankin and Barlow, 2007; Baron et al., 2008; Soldevilla

et al., 2008). Similar efforts were undertaken in the Gulf of Mexico to aid in acoustic

species identification in the context of this study.

6.2.1 Comparing Array and HARP data

Although array recordings are a useful tool for interpreting unlabeled HARP data,

there are considerable differences between recordings obtained via the two methods.

Noise

Towed array recordings are often noisier than seafloor sensor recordings. Surface

sounds from wind and wave action are common. Vessel propeller, echosounder and

electronic noise can be problematic. Noise is also associated with flow across the towed

hydrophone. Because of the elevated noise levels, false positives rates are often higher in

towed array detections than for seafloor sensors. Low amplitude clicks are likely to be

masked.

Proximity

Animals are typically much closer to the sensor in the case of a towed array. When

listening for near-surface dwelling odontocetes on a seafloor sensor, we can assume that
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we mainly detect on-axis, or nearly on-axis click trains associated with one animal at a

time. This is because off-axis clicks are not very detectable given the distance between

the animals and the sensor, and the likelihood of each animal being on-axis is relatively

small given their narrow transmitting beam.

As a simple illustration, consider a click produced on-axis relative to a sensor,

with a source level, SLON of 210 dBppre : 1µPa@1m (Au and Herzing, 2003; Au et al.,

1995). If the received level (RL) threshold imposed by the detector is 115 dBppre : 1µPa,

then maximum transmission loss (TL) is given by

T L = SLON−RL = 95dBppre : 1µPa (6.1)

Assuming spherical spreading to approximate TL

T L = 20log10(r)+(rα) (6.2)

95dBppre : 1µPa = 20log10(r)+(rα) (6.3)

where r is the maximum detection range (slant range) for this signal, and α is frequency

dependent absorption (Approximately 9 dBpp/km at 35 kHz; Francois and Garrison,

1982). Solving for r in equation 6.3, yields a maximum detection slant range of roughly

3 km. If the receiver is a HARP sitting at a depth z of 1000 m below the sea surface, then

the maximum horizontal detection range h =
√

r2− z2 = 2.8 km.

In the off-axis case, SLOFF is estimated to be at least 25 dBppre : 1µPa lower

than the SLON . Repeating the previous calculations:

SLOFF = SLON−25dBppre : 1µPa = 185dBppre : 1µPa@1m (6.4)
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T L = SLOFF −RL = 70dBppre : 1µPa (6.5)

95dBppre : 1µPa = 20log10(r)+(rα) (6.6)

Solving for r now yields a maximum detection range of approximately 1 km. Now if the

receiver is a HARP sitting 1000 m below the sea surface, then the maximum horizontal

detection range is zero meters, i.e. only off-axis clicks from animals directly above the

instrument will be detected. An animal diving to a depth of 200m would be detectable

off-axis at a maximum horizontal range of 0.6 km.

Based on these rough calculations it is clear that off-axis clicks are only detectable

when the horizontal range between a clicking dolphin and a seafloor sensor is small. We

can therefore assume that off-axis click detections are fairly rare. Since the odds that an

animal will be on-axis with respect to a seafloor sensor are low, we are only likely to

detect multiple animals simultaneously when a group is very close to the sensor.

This assumption does not hold for towed array data. In the towed array case, the

animals and the sensor are both near the sea surface, at comparable depths, therefore

horizontal and slant ranges are approximately equal. As a result, off-axis clicks produced

within roughly 1km of the array will be detectable, and it is much more likely that many

animals will be detected simultaneously, both on and off-axis.

Since sequential clicks are often from different animals in towed array recordings,

the use of a simple first difference approach to capture ICI distributions (as described for

HARP data in Chapter 5) is not as effective as it is for seafloor sensor data. An alternative

is to identify click trains associated with individual animals. Once sets of sequential

clicks from the single animals have been identified, ICI distributions can be computed for

this subset of related clicks. One method for identifying click trains is cross-correlation
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of click timeseries (e.g. RainbowClick click train identification, Gillespie and Leaper,

1996; Baggenstoss, 2011).

Proximity between animals and a towed array results in higher variability in

received click structure and quality, relative to HARP recordings. This makes click

characterization more challenging and complex. Animal proximity also changes the

frequency content of received clicks. Higher frequencies attenuate more rapidly than

lower frequencies with distance (Fisher and Simmons, 1977), therefore when the source

animal is closer to the hydrophone, as in the array case, high frequency content will be

more apparent (eg. Au, 2004; Au et al., 2012a,b).

Behavior

Although towed arrays can record at night, and can record animals that are not

at the surface, visual identification typically requires daylight and surface behaviors.

This means that identified array recordings are generally daytime recordings of animals

engaged in surface behaviors such as bow riding, travel, or near-surface foraging. In

contrast, daytime detections are rare in HARP data, where nighttime detections are more

common (e.g. Chapter 4). At slope sites in particular, the vast majority of detections

occur at night when animals are presumed to be foraging (Benoit-Bird, 2004; Klatsky

et al., 2007; Herzing and Elliser, 2014). Click characteristics may differ between these

behavioral modes.

6.2.2 Goals of this Chapter

Goals of this chapter are:

• to summarize a multi-year towed array dataset collected in the Gulf of Mexico and

along the southern US Atlantic coast.
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Figure 6.1: Schematic of R/V Gordon Gunter towing a six element hydrophone array
used to record delphinid vocalizations during encounters with visually identified species.

• to generate inter-click interval (ICI) distributions for recorded species associated

with confirmed visual species identifications.

• to extract click spectra for recorded species associated with confirmed visual

identifications.

• to compare ICI and click spectra from array data to those from HARP data, and

look for possible matches.

6.3 Methods

6.3.1 Data Collection: Array Recordings

Dolphins in the Gulf of Mexico and US Atlantic coast were recorded in 2010,

2011 and 2012 using a six-element towed hydrophone array on three summer cruises

aboard the NOAA research vessel R/V Gordon Gunter (Figure 6.1). Cruises proceeded

along pre-planned tracklines.

Delphinid groups were found by acoustic localization or visual observation.

During daylight hours, localized groups were approached for species identification by

professional marine mammal observers. When visual and acoustic detections were

correlated in time and space, recordings were associated with the visually identified
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species. Additional information was gathered based on visual observations, including

estimated group size, presence of calves, and occurrence of mixed species groups.

Acoustic monitoring for marine mammals was conducted 24 hours a day on all

cruises. Visual identification of recorded mammals was only possible during daylight

hours. Acoustic signals from the array were recorded continuously, and monitored both

visually and aurally for marine mammal vocalizations during all hours of acoustic survey

effort. All detections, acoustic effort, deployments, environmental data, and recordings

were logged to a Microsoft Access database using the Logger 2000 software package

(Gillespie, IFAW).

A six-channel hydrophone array was towed 274 m behind the ship, at an estimated

depth of 15 to 18 meters at a minimum survey speed of 10 knots (Figure 6.2). Array

depth was measured by attaching a dive watch to the head of the array during deployment.

Measured depths were matched with vessel speed using time stamps associated with each

measurement.

Each hydrophone element in the array consisted of a custom built preamplifier

with a high pass filter set at 1 kHz and roll-off of either 100 or 200kHz connected to

an SRD HS-150 hydrophone (Table 6.1). While the array was deployed, four channels

were recorded continuously using a MOTU 896 HD digital audio interface, sampling

at 192 kHz. The two remaining channels were recorded continuously at 500 kHz using

a National Instruments (NI) USB 6251 data acquisition module (except in 2010, when

NI recordings were sampled at 300 kHz). Recording was controlled through the Logger

2000 software package.

Hydrophone channels 1 and 3 were monitored by trained acousticians using

headphones connected to the MOTU to aid in aural detection of marine mammal calls.

Channels 1, 3 and 4 were monitored visually using running, real-time spectrograms

displayed by the recording program Ishmael (D. Mellinger, NOAA). Channels 1 and 3
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Figure 6.2: Relationship between vessel speed and array depth when towing.

were displayed across the full bandwidth (1 to 92 kHz) to monitor for echolocation clicks,

while Channel 4 was displayed from 1 to 35 kHz to monitor for whistles.

Localization of signals of interest was performed by entering time difference

of arrival (TDOA) data from Ishmael into Whaletrak, a localization and distance

estimation program developed by J. Barlow (NOAA, SIO). TDOAs were computed

between hydrophones with known spacing. Using localization, it was possible to detect

odontocetes while underway and often to derive relative bearings to click or whistle

producing animals when their received levels rose sufficiently above background noise.

Localization also enabled acousticians to determine whether acoustic detections were

spatially coincident with visual detections.

6.3.2 Click Detection and Characterization

Clicks were detected using the click detector described in Chapter 4. Only

recordings associated with confirmed single species visual identifications were analyzed.

The analyses reported here are based on NI recordings only, because they were found to

be of higher quality than the MOTU recordings. Recordings containing few detectable

clicks and those containing click types associated with other known species (e.g. Risso’s
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dolphin) were excluded from the analyses.

ICI Analysis

Click timeseries were extracted by finding the maximum amplitude of each

detected click and extracting the time period between 30µs before to 40µs after this peak.

The timeseries of each click was then cross-correlated with a set of subsequent candidate

clicks, using an unbiased cross-covariance (mean-removed cross correlation) function

evaluated at 41 sequential one-sample time lags ([-20:20]).

Candidate matching clicks were defined as clicks occurring within 0.5 seconds

of the original click. The candidate with the highest maximum cross-covariance was

considered the best match. If the maximum cross-covariance between a click and it’s

best matching candidate exceeded a threshold value of 105, the time interval between the

two clicks was computed and retained. The threshold excluded poor matches from the

dataset when no good match was found. ICIs were rounded to the nearest millisecond.

ICI distributions were generated for each species by binning the time differences into

10ms bins between zero and 300 ms.

Echolocation Click Spectral Analysis

A subset of recorded echolocation clicks were digitally clipped, due to the broad

variability of received click amplitudes and lack of adjustment of recording tools. Another

subset were of poor quality due to low amplitudes. Detected clicks were therefore pruned

to exclude both high and low amplitude clicks, retaining only mid-amplitude clicks for

spectral clustering.

Click spectra were normalized as described in chapter 5, and then clustered

using an iterative two-step process. For each species, click spectra from all detections

were assembled. A subset of 1000 clicks (or 50% of total clicks, whichever was
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smaller) was then selected at random from the overall set and clustered according to

pairwise correlation distances between normalized spectra, using the previously described

modularity algorithm (see Chapter 5). A high pruning threshold of 0.92 was used to trim

the click networks. A modularity coefficient of 0.5 was used to facilitate identification of

small clusters.

Mean spectra were computed and retained for clusters which contained at least

two percent of the clicks in the clustered subset. This process of selecting a subset of

clicks, clustering them, and computing spectral means of resulting clusters was repeated

50 times for each species. The resulting set of mean spectra for a given species was then

re-clustered to obtain summary spectra, using the same algorithm, but with a modularity

coefficient of 1.

Table 6.1: Towed array hydrophone specifications. Hydrophone array was towed
approximately 284 feet behind the vessel.

Array Ch. Rolloff Dist. from Ch1 Sampling device Sampling Rate

1 (front) 100 kHz 0 cm MOTU Ch1 192 kHz

2 200 kHz 22 cm NI Ch1 300 or 500 kHz

3 100 kHz 78 cm MOTU Ch2 192 kHz

4 100 kHz 193 cm MOTU Ch3 192 kHz

5 200 kHz 233 cm NI Ch2 300 or 500 kHz

6 (rear) 100 kHz 333 cm MOTU Ch4 192 kHz

6.4 Results

Visually verified single-species delphinid encounters were collected in the Gulf

of Mexico and along the southern US Atlantic coast (Figure 6.3). Recordings of ten
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Figure 6.3: Map of all towed array recording effort conducted in tandem with NOAA
Southeast Fisheries Science Center’s ship-based marine mammal surveys in the Gulf
of Mexico and along the Atlantic Coast between 2010 and 2012. Tracklines in gray.
Colored markers indicate sighting locations of delphinid species listed in the legend.
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Table 6.2: Click counts from visually confirmed array detections used for ICI and
spectral analyses respectively. Modal ICI is reported for each species. ICI data were
divided into 10ms bins.

Species Clicks for ICI
Analysis

Clicks for
Spectral
Analysis

Modal ICI
Bin (ms)

Atlantic spotted dolphin 21,345 19,130 60

Pantropical spotted dolphin 26,924 23,873 70

Spinner dolphin 11,009 10,678 100

Striped dolphin 1,058 1,048 140

Bottlenose dolphin 45,742 20,574 50

False killer whale 638 608 140

Fraser’s dolphin 1,768 1,690 200

Pilot whale spp. 5,000 4,647 160

Risso’s dolphin 1,796 1,563 110

Rough-toothed dolphin 4,914 4,514 100
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species contained sufficient numbers of detected clicks for analysis (Table 6.2). These

included: pantropical spotted dolphin (Stenella attenuatta), Atlantic spotted dolphin

(Stenella frontalis), spinner dolphin (Stenella longirostris), striped dolphin (Stenella

coeruleoalba), Risso’s dolphin (Grampus griseus), pilot whale (Globicephala spp.),

rough-toothed dolphin (Steno bredanensis), false killer whale (Pseudorca crassidens),

Fraser’s dolphin (Lagenodelphis hosei), and bottlenose dolphin (Tursiops truncatus).

One additional Stenellid dolphin species, Clymene dolphin (Stenella clymene), was

encountered but too few high quality clicks were detected for further analysis.

6.4.1 ICI

ICI distributions were generated for ten delphinid species. Modal ICI values for

the Atlantic and pantropical spotted dolphins were similar, with modes of 60 and 70 ms

respectively (Figures 6.4A and 6.4B). The modal ICI for spinner dolphins was higher,

at 100ms (Figure 6.4C). ICI distributions for the Stenellid dolphins were similar to one

another, with Atlantic spotted dolphin ICIs skewed slightly lower, and spinner dolphin

slightly higher than pantropical spotted dolphin. The striped dolphin dataset was very

small, and the ICI histogram showed no clear peak.

The bottlenose dolphin ICI distribution was close to that of Atlantic spotted

dolphin, with a modal ICI of 50 ms (Figure 6.5F), the lowest of the recorded species.

Rough-toothed dolphin had an ICI distribution centered around a mode at 100 ms

(Figure 6.5E). Modal ICIs for the blackfish species were larger in general than for the

Stenellid dolphins. Risso’s dolphin had the lowest modal ICI of the blackfish, at 110 ms.

Pilot and false killer whale ICIs were higher, at 160 and 140 ms respectively. Fraser’s

dolphin ICI data were noisy, due in part to the small sample size (a single encounter). The

main ICI mode was at 200 ms, but the distribution may be bi-modal, with a secondary

peak at approximately 100 ms.
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6.4.2 Click Spectra

For all species, fewer clicks were used for spectral analysis than for ICI analysis,

because high amplitude, clipped signals were pruned out of the spectral set.

Risso’s dolphin mean click spectra were the most distinct, with a characteristic

three-peak pattern across most clusters (Figure 6.6). A subset of pantropical spotted

and Atlantic spotted, spinner and striped dolphin mean click spectra were distinct, with

variations of a bimodal-structure (Figures 6.7 to 6.10).

Pilot whale mean click spectra had some variation of an energy peak at roughly

15kHz (Figure 6.11). False killer whale and rough-toothed dolphin mean click spectra

were skewed toward lower frequencies than the Stenellid dolphin spectra (Figures 6.12

and 6.13).

The remaining click types typically had generic unimodal shapes. Bottlenose

dolphin click spectra had few distinguishing features and were generally variable

(Figure 6.14). Fraser’s dolphin mean click spectra did not appear to have distinguishing

features (Figure 6.15) but sample size was small, and further recordings might yield more

details.

6.5 Discussion

6.5.1 Towed Array Data Collection in the Gulf of Mexico

Detectability of echolocating dolphins in the Gulf of Mexico was found to be

lower than expected based on array recording efforts in other areas. Animals were often

only acoustically detected once they had approached the ship, and then only for a brief

period of time. This is likely at least partially due to the warm summer surface layer in

the Gulf during summer surveys. As discussed in Chapter 2, warm waters in the Gulf
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cause sound energy produced near the surface to be strongly refracted down toward the

seafloor, limiting detection ranges using a towed array (Figure 6.16).

Propeller noise was also constant challenge in these data, particularly since visual

survey speeds were in excess of 10 knots, and the survey vessel was large and powerful.

False positives due to cavitation noise are common across all detections, and vessel noise

likely masked weak and distant cues. At the same time when animals were near the

hydrophone array, digital signal clipping became an issue. This is particularly problematic

for the analyses described here, and for comparison with HARP data, because the high

amplitude, on-axis clicks recorded by seafloor sensors are likely distorted in the array

recordings. Clipping is definitely an issue for spectral comparisons, but may also affect

ICI distributions because cross-correlated time-series may have been distorted for some

clicks of interest. Future attempts to compare seafloor sensor and towed array data may

have greater success if detection of low amplitude clicks was sacrificed in the interest of

ensuring that high amplitude clicks were recorded without clipping.

6.5.2 ICIs

ICI distributions differed between species, supporting the use of ICI as a

classification feature, and confirming the significance of ICI differences observed in

seafloor sensor recordings. The Stenellid dolphins all had similar ICI distributions to one

another. Although the modal ICI for spinner dolphins was higher than for Atlantic and

pantropical spotted dolphins, this is likely because the number of ICIs retained was small.

The striped dolphin ICI was also small, and no clear modal peak was visible. The overall

distributions for both species suggested that their typical ICIs were comparable to those

of Atlantic and pantropical spotted dolphins.

Bottlenose dolphin ICI was highly variable, with a mode similar to that of Atlantic

spotted dolphin. This indicates that the main species expected on the continental shelf
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in the Gulf of Mexico (bottlenose and Atlantic spotted dolphins), cannot be easily

distinguished using ICI.

In general, the blackfish species, including Risso’s dolphin, pilot whales, and false

killer whales, were found to have longer modal ICIs than the Stenellid and bottlenose

dolphins. Differences may reflect differences in prey type and behavior. More data is

needed for some of the rarer species, which were not recorded often enough to generate

meaningful distributions.

It is important to note that these ICI distributions are based on daylight encounters

at the surface and may differ significantly from the predominantly nocturnal encounters

recorded by the Gulf of Mexico HARPs. Additionally, a subset of the recordings were

collected in the Atlantic. Although the species are the same, acoustic characteristics may

differ between populations. Little is known about genetic exchange between Gulf of

Mexico delphinid populations and those in the greater Atlantic.

6.5.3 Click Spectra

Click spectra varied widely even within an encounter. The clicks that constitute

the majority of signals detected on a seafloor instrument (on or nearly on-axis), are likely

the minority in array recordings. Many clicks fell into a generic featureless category for

all species. However a number of species had one or more subsets of more distinctive

click types that may be characteristic, and therefore useful for classification.

Stenellid dolphin clicks often had a bimodal shape, similar to spectra seen on

seafloor sensors, but with higher energy at the upper end of the normalized spectra (>40

kHz). This is expected because animals are closer to the towed array. Spectral details

in the lower frequency end of the spectra (below 15kHz) were often obscured by noise.

The normalization and truncation parameters used here are consistent with those used

for HARP data, in order to facilitate comparison, however, there may be more distinct
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features above 60 kHz. In general, these spectra are useful, but difficult to compare with

those seen on seafloor sensors, because of the many differences in recording conditions.

Bottlenose dolphins were most often encountered in shallow waters (Figure 6.3),

where ship noise was worsened by of reflections off the seafloor. False positives are

likely more common under such conditions, and this may partially explain the lack of

consistency in the bottlenose dolphin summary spectra. Pilot whale clicks had consistent

small energy peaks at approximately 15 kHz, which may be useful for identification.

Rough-toothed dolphin and false killer whale clicks seemed to have higher energy at

lower amplitudes relative to a number of the other species. The Fraser’s dolphin spectra

set was small, and more data is needed before drawing conclusions about the species’

average click characteristics.

A two step clustering process was used because of the high variablilty and number

of clicks detected. This works well for the large datasets, but is probably unnecessary for

small datasets of a few thousand clicks. In the interest of treating all sets the same, it was

used here on all species’ sets. A challenge with these data is that some encounters yielded

more detections than others, and therefore a small number of encounters may dominate

in some datasets. If those dominant encounters are not representative, or have very high

false positive rates, they may obscure information contained in smaller encounters. In

this analysis, all clicks associated with a given species are treated equally. However, some

encounters may be higher quality than others, and a weighting strategy might balance

information across detections in further analyses.

6.5.4 Comparison to HARP types

Based on this work, click types B and C in the HARP data (see Chapter 5) are

likely associated with Stenellid dolphins. Further labeled acoustic data might improve

the ability to associate these species with specific subtypes. Bottlenose dolphin ICI was
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in the same range, and might also be consistent with type F. Pilot whale ICIs and spectra

were consistent with type D clicks from the HARP datasets.

Rough-toothed dolphin ICI was similar to type G from the HARP data, and

spectra were not inconsistent with the type. However Fraser’s dolphin may click at

similar rates, and more work is needed to develop methods for distinguishing the two.

Click type A in the HARP data is likely associated with one of the blackfish

species, given it’s long ICI. False killer whale is a likely match for that type, but melon-

headed whale (Peponocephala electra) is another possible candidate which cannot be

ruled out, because it was not encountered during these surveys. This may be because

melon-headed whales are more often encountered in the western half of the northern

Gulf, where little survey effort was applied. Melon-headed whales are likely among

the species detected in the HARP datasets. Killer whale and pygmy killer whale have

also been reported in the Gulf of Mexico, but they are uncommon (estimated population

sizes 49, CV = 0.77, and 323, CV = 0.60, respectively; Mullin, 2007), and probably

infrequently detected on seafloor sensors.

Datasets were strongest for pantropical and Atlantic spotted dolphins, bottlenose

dolphins, and pilot whales, which are common species in the Gulf of Mexico, and

were encountered numerous times. Risso’s dolphin click spectra are well documented

elsewhere (Soldevilla et al., 2008), and are clearly associated with click type E from the

HARP data. Further data is needed to improve the click characterizations for the other

three species, as well as the species not recorded here. For truly comparable data, an

alternative to towed arrays may be necessary.
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6.6 Conclusion

Echolocation click characteristics from towed array recordings of ten delphinids

species commonly found in the Gulf of Mexico were examined for characteristic ICI

distributions and spectral features. These characteristics were compared with click types

extracted from seafloor sensor recordings. Likely matches were found for Stenellid

dolphin and pilot whale click types. Other potential matches were found, but further

data are needed to refine them. Array data is challenging to compare to HARP data,

and further recording efforts would be necessary to fine-tune associations between click

types and species. Possible improvements to the array data collection process, including

gain and array depth adjustments and revised encounter protocols might facilitate future

comparisons.
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(A) Pantropical spotted dolphin (B) Atlantic spotted dolphin

(C) Spinner dolphin (D) Striped dolphin

Figure 6.4: ICI distributions for Stenellid dolphins based on visually identified, single
species array recordings.
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(A) Risso’s dolphin (B) Pilot whale (spp.)

(C) Fraser’s dolphin (D) False killer whale

(E) Rough-toothed dolphin (F) Bottlenose dolphin

Figure 6.5: ICI distributions for Gulf of Mexico delphinid species based on visually
verified, single-species array recordings. Dark lines indicate spectral means, with light
lines indicating one standard deviation above and below the mean.
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Figure 6.6: Representative Risso’s dolphin (Grampus griseus) mean echolocation click
summary spectra from towed array recordings of visually verified encounters. Dark
lines indicate spectral means, with light lines indicating one standard deviation above
and below the mean.

Figure 6.7: Representative pantropical spotted dolphin (Stenella attenuatta) mean
echolocation click summary spectra from towed array recordings of visually verified
encounters. Dark lines indicate spectral means, with light lines indicating one standard
deviation above and below the mean.
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Figure 6.8: Representative Atlantic spotted dolphin (Stenella frontalis) mean
echolocation click summary spectra from towed array recordings of visually verified
encounters. Dark lines indicate spectral means, with light lines indicating one standard
deviation above and below the mean.

Figure 6.9: Representative spinner dolphin (Stenella longirostris) mean echolocation
click summary spectra from towed array recordings of visually verified encounters.
Dark lines indicate spectral means, with light lines indicating one standard deviation
above and below the mean.
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Figure 6.10: Representative striped dolphin (Stenella coeruleoalba) mean echolocation
click summary spectra from towed array recordings of visually verified encounters.
Dark lines indicate spectral means, with light lines indicating one standard deviation
above and below the mean.
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Figure 6.11: Representative pilot whale (Globicephala spp.) mean echolocation click
summary spectra from towed array recordings of visually verified encounters. Dark
lines indicate spectral means, with light lines indicating one standard deviation above
and below the mean.

Figure 6.12: Representative false killer whale (Pseudorca crassidens) mean
echolocation click summary spectra from towed array recordings of visually verified
encounters. Dark lines indicate spectral means, with light lines indicating one standard
deviation above and below the mean.
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Figure 6.13: Representative rough-toothed dolphin (Steno bredanensis) mean
echolocation click summary spectra from towed array recordings of visually verified
encounters. Dark lines indicate spectral means, with light lines indicating one standard
deviation above and below the mean.

Figure 6.14: Representative bottlenose dolphin (Tursiops truncatus) mean echolocation
click summary spectra from towed array recordings of visually verified encounters.
Dark lines indicate spectral means, with light lines indicating one standard deviation
above and below the mean.

Figure 6.15: Representative Fraser’s dolphin (Lagenodelphis hosei) mean echolocation
click summary spectra from towed array recordings of visually verified encounters.
Dark lines indicate spectral means, with light lines indicating one standard deviation
above and below the mean.
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(A)

(B)

Figure 6.16: A. Typical Gulf of Mexico summer sound speed profile collected in July
2011. B: Propagation model for a 20 kHz signal produced at a depth of 5 m based on
profile. The warm surface waters lead to strong downward refraction of sound energy
toward the seafloor, limiting the ranges at which dolphins can be detected using a towed
array.



Chapter 7

Estimating delphinid densities in the

Gulf of Mexico

7.1 Abstract

Delphinid echolocation clicks were recorded at five sites in the Gulf of Mexico

(GOM) over a three year period. Cues were translated into preliminary density estimates

for three species groups including Risso’s dolphin (Grampus griseus), short-finned pilot

whale (Globicephala macrorynchus) and Stenellid dolphins (Stenella spp.)

Two different density estimation methods, click-counting and group-counting

were used. Cue counts were converted into density estimates by factoring in species-

specific cue rates, vocalization probabilities, and seasonally-adjusted click detection

probabilities. Group detections, defined as five-minute time windows containing

detections, were converted into density estimates by factoring in species-specific

group vocalization probability, group sizes, and seasonally-adjusted group detection

probabilities. Group-based density estimates are higher than click-based estimates, but

trends are similar between the two. Further refinement of inputs including group size and

237
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vocal activity is expected to increase agreement between the two methods.

Time series of weekly density estimates using both methods are provided for

three classifiable species at the three slope sites and one shelf site. Seasonal cycles are

apparent for some species, primarily at northern GOM sites. Longer term trends for

deseasoned time series are evaluated using a Theil-Sen linear slope estimator.

7.2 Background

Cue counts alone are not a reliable tool for quantifying the presence of delphinids

at acoustically monitored sites. Numerous factors influence the number of cues detected

at a monitoring site and the relationship between that number and the estimated number

of animals present (Buckland et al., 2001, 2007). Detection probabilities, cue rates, and

sampling effort must be accounted for in order to convert cue counts into an estimate

of local animal density (e.g. Helble et al., 2013a). By incorporating these types of

information we can estimate local animal densities from passive acoustic data, while

accounting for environmental and behavioral parameters and variability.

7.2.1 Density Estimation Through Distance Sampling

Stationary seafloor sensors observe a point in space and the area around that point.

This is known as a point transect (Buckland et al., 2001, 2007). The monitored area

extends out to a maximum detection radius ω , beyond which no cues are detected. The

probability of detecting a cue typically decreases as the distance between the sensor and

the sound source increases. In acoustic applications, this decrease in detection probability

is primarily attributable to acoustic transmission loss whereby the amplitude of a signal

decreases as it travels through the water column.

Density estimation methods for marine mammals using fixed passive acoustic
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sensors have been described by (Marques et al., 2009). First, the number of cues detected

are adjusted to a total estimated number of clicks within range ω using the principles of

distance sampling for the point transect case. False-positive and false-negative rates are

used to further adjust the cue counts.Counts are then converted into an estimate of the

average number of animals present per unit area by factoring in variables such as cue

rate and detection range.

Density estimation using distance sampling relies on a number of assumptions

(Marques et al., 2013):

• On average, animals are uniformly distributed in the area around the sensor.

• Detections are statistically independent events.

• Detection ranges are measured without errors.

• Each detection is a snapshot, considered instantaneous in time.

Two main approaches have been explored for passive acoustic density estimation

(Marques et al., 2013). One method uses each cue as the basis for density estimation

(cue-counting), while the other looks at windows of time, for a group or snapshot

method (group-counting). These methods rely on a different basic metric, but the goal of

estimating local numbers of animals per unit area remains the same.

7.2.2 Cue-Counting Methods

Cue-based density estimation methods use individual click counts as the basic

unit for estimating local density over time. These methods have been used for beaked

whale density estimates (Hildebrand et al., 2015; Küsel et al., 2011; Marques et al., 2009).

In those cases, as in the case described here, the cue is a single echolocation click.
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For site k, and a unit of time t, the number of cues detected at that site, during

that time is nkt . This cue count is adjusted by incorporating ĉk, an estimate of detector’s

false positive rate. Site-specific density D can be estimated using the formula

D̂kt =
nkt (1− ĉk)

π ω2 P̂k Tkt r
(7.1)

where Tkt is the number of time intervals sampled, Pk is the probability of a detecting a

vocal cue produced within the radius ω from the site, and r is the cue production rate.

Some of these variables, including false positive rate and detection probability, are unique

to each site. Cue rate is expected vary between species of interest, and to depend on

behavior. All of the input variables should be as specific to the sites, species, and time

periods of interest as possible.

7.2.3 Group-Counting Methods

The group-based density estimation methods applied here use a unit of time in

which cues were, or were not detected, as the basic unit for density estimation (Marques

et al., 2013). This method has been used for beaked whale density estimation (Hildebrand

et al., 2015, submitted). Rather than counting individual cues, the presence or absence of

cues is used to determine whether or not a group of animals was present during a specific

time bin. The assumption of instantaneity is more tenuous with this approach, because

animals must be assumed not to move during the time window used. A short time window

or bin is therefore preferable. The group-counting approach has the advantage of being

more robust to cue rate variability than the click-counting approach, but relies on an

estimate of group size.
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The estimated density D̂k of animals at site k during a period of time t is given by

D̂kt =
nkt(1− ck) ĝk

π ω2 P̂k P̂va Tkt
(7.2)

where nkt is number of positive bins, ck is the proportion of false positive bins. An

estimated group size ĝk is used to convert from positive bins to a number of animals, and

the probability that a group is acoustically active P̂va replaces the individual cue rate in

equation 7.1. As for the cue counting method, ω is the maximum detection range of

calls, P̂k is the probability of a detecting a vocalizing group within radius ω , and Tkt is

the number of time intervals sampled at site k during time period t.

7.2.4 Goals of this Chapter

The goal of this chapter is to generate preliminary estimates of site-specific

densities for Risso’s dolphin (Grampus griseus), Stenellid dolphins (Stenella spp.), and

short-finned pilot whales (Globicephala macrorynchus) on a weekly basis, throughout

the three-year monitoring period. Density time series are analyzed for seasonality and

long term trends.

Two density estimation approaches, cue and group counting are implemented

for comparison. Density estimates are based on cue and bin counts from Chapter 4,

which are adjusted using detection probabilities and radii from Chapter 2, and with cue

rates from Chapters 3 and 5, and group sizes from the literature. Click-based species

classifications are based on Chapters 5 and 6. Cumulative error rates are estimated by

assembling the known variances across the various inputs.

Preliminary local density estimates are reported, however further refinements are

needed to reconcile estimates obtained using the two methods. Limitations, data gaps,

and future improvements are discussed.
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7.3 Methods

Only nocturnal periods between local sunset and local sunrise were used for

density estimation, so as to simplify behavioral assumptions. The dominant behavior

during nocturnal periods was assumed to be foraging. Three delphinid types could

be identified from echolocation clicks in the passive acoustic recording data. These

included Risso’s dolphin (Grampus griseus), Stenellid dolphins (Stenella spp.), and

short-finned pilot whales (Globicephala macrorynchus). Detections were translated into

density estimates for the three slope sites MC, GC, and DT, and the deepest shelf site

DC. Density estimates were not computed for the shallowest shelf site MP because the

two species known to inhabit that area, bottlenose dolphins (Tursiops truncatus) and

Atlantic spotted dolphins (Stenella frontalis) (Fulling et al., 2003), could not be reliably

distinguished.

Click counts, false positive rates and dead time adjustments were obtained from

the analyses described in Chapter 4. Click types associated with the three species of

interest were determined based on the analyses described in Chapters 5 and 6.

7.3.1 Detection Probability Estimation

Detection probabilities P̂k were obtained for each site from the Monte Carlo

simulation described in Chapter 2. Both the probability of detecting a click, and the

probability of detecting a group were computed (Tables 2.4 and 2.8). Deep diver model

estimates were used for pilot whale and Risso’s dolphin calculations. Shallow diver model

estimates were used for Stenellid dolphins. January detection probability estimates were

used for the months of November through March. July detection probability estimates

were used for the months of April through October.
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7.3.2 Cue Rate Estimates

Click Method

Individual cue rates r are a function of the probability that an animal is actively

echolocating Pv, and animal’s click rate when vocally active cr. The mean and variance of

cr for each species and site was obtained from the inverse of the species and site-specific

peak inter-click intervals (ICI) in Chapter 5. For each species, a mean and variance for Ip

was computed by repeatedly selecting a subset of 5% of the ICIs obtained for that species’

click type. The subset was binned into 50 millisecond intervals between 0.01 and 0.3

seconds, and the peak ICI for the subset was defined as the most populated bin. This

process was repeated 100 times, and the mean and standard deviation were computed for

the resulting set of peaks. The minimum allowed ICI was increased to 0.04 seconds at

site DC due to false positives which interfered with ICI calculation.

The second input, Pv, was estimated in Chapter 3 by comparing the expected

number of clicks per bin to the actual number of clicks per bin for localized encounters

(similar to Van Parijs et al., 2002). Currently, there is little or no further vocalization

probability data for delphinids in the literature.

Group Method

No data is currently available on group vocalization probability P̂va for delphinids.

Since only nocturnal detections are considered, the dominant behavior across all groups

is assumed to be foraging, and therefore echolocation probability is expected to be high.

In order to achieve a conservative density estimate from the group method, vocalization

probability at night is assumed to be 100%, i.e. at least one animal in a group will

echolocate at some point in a five minute interval.
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7.3.3 Group Size Estimates

Mean species-specific group sizes (Table 7.1) were obtained from Mullin and

Fulling (2004). Mullin and Fulling’s estimates were based on visual survey data from the

Gulf of Mexico (GOM; Mullin and Fulling, 2004).

Group size estimates (ĝ) for eastern and western slopes were combined, and

combined variances were computed using the delta method:

var(ĝ) =
1
n2

n

∑
i=1

var(ĝi) (7.3)

where ĝi is each individual estimate i = 1...n and n is the total number of estimates being

combined (Powell, 2007). For Stenellid dolphins, group size estimates for all GOM

Stenellid species were combined using this method.

Table 7.1: Estimated group sizes from (Mullin and Fulling, 2004)

Species N Mean CV

Stenella spp. 110 60.7 0.22

Globicephala spp. 6 34.2 0.32

Grampus griseus 27 7.0 0.14

7.3.4 Classification Errors

Classification error rates are not currently known. Labeled click detections, are

needed to estimate these error rates. Classification error rates are not incorporated here,

however understanding classification errors is critical for accurate estimation, particularly

for rarer species (Caillat et al., 2013). Classification error rates likely differ between

species, and between methods. See discussion for further analysis.
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7.3.5 Cumulative Error Estimates

An approximation of the delta method (Seber, 1982; Powell, 2007) was used to

estimate cumulative error for each density estimate (Marques et al., 2009):

ˆvar(D̂kt) = D̂2
kt{CV 2(n̂kt)+CV 2(ĉk)+CV 2(ŝ)+CV 2(P̂v)+CV 2(P̂k)} (7.4)

where CV (x) is the coefficient of variation of the random quantity x, (i.e., the standard

error of the estimate of x divided by the estimate itself).

7.3.6 Trend analysis

Trend analysis was done in R (R Core Team, 2015), using the ’openair’ package

for time series analysis (Carslaw and Ropkins, 2012, 2015). Each data point in the fitted

time series is a monthly average of daily density estimates. Interpolated time series data

for each species at each site were deseasonalized using a seasonal trend decomposition

procedure (STL; Cleveland et al., 1990). First, monthly mean densities are computed,

and linear interpolation is used to fill in any gaps in the time series. The time series (Yv)

is then decomposed into seasonal (Sv), trend (Tv), and remainder (Rv) such that

Yv = Tv +Sv +Rv (7.5)

where v = 1 to N.

The STL process involves repeatedly running the data through two recursive

loops. In each pass of the inner loop, the seasonal and trend smooths are updated. In the

outer loop, robustness weights are computed, after the inner loop has completed, and

these weights are used to improve the seasonal and trend components in the next inner

loop pass. The inner loop consists of six steps that run for k iterations:
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1. A detrended time series is computed as Pv = Yv−Tv, where Tv is initialized to zero

on the first pass.

2. Pv reorganized as a cycle-subseries Cv on a 12-month scale, and smoothed using a

one-dimensional locally weighted regression (loess) filter (Cleveland and Devlin,

1988).

3. A low pass filter is applied to Cv to generate the filtered cycle-subseries Lv.

4. The seasonal component Sv is computed as Cv− Lv, to remove low frequency

signals from the seasonal component.

5. A deseasonalized time series Tv is computed as Yv−Sv.

6. The deseasonalized time series is smoothed using a loess filter.

In the outer loop, the remainder Rv is computed using the inner-loop outputs as

Rv = Yv−Sv−Tv

Robustness weights ρv are computed for each time point, such that weights are small if

Rv is large. The weights are then factored in to the loess filter in steps 2 and 6 on the next

iteration of the inner loop.

Theil-Sen slope estimates for linear trends in the time series (Sen, 1968; Thiel,

1950), were computed for the deseasoned data. The Theil-Sen method estimates the slope

of a dataset (x,y) by computing the median slope y j−yi
x j−xi

between all pairs of points (i, j) in

the set.

A 95% confidence interval for the slope is given by the interval containing the

middle 95% of the pairwise slope estimates. The Theil-Sen approach was chosen because,
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unlike simple linear regression, it is insensitive to outliers and is accurate for skewed

data.

7.4 Results

7.4.1 Accounting for Detector Dead Time

Detector dead time adjustments had relatively large effects on counts for the shelf

site DC. Total adjusted counts were over 4% higher than original counts at this site for

Stenellid dolphins and over 2% higher Risso’s (Table 7.2). This was due to the long

lockout period implemented for detection purposes in shallow conditions (Figure 4.15).

Slope site counts were negligibly affected, due to the much shorter lockout period used

there, with increases on the order of a few hundredths of a percent for all slope sites and

species.

7.4.2 Cue rate estimates

Mean active click rate estimates (r) based on ICI were consistent across sites for

Stenellid dolphins and pilot whales, and more varied for Risso’s dolphins (Tables 7.4,

7.6 and 7.8). Stenellid dolphins were estimated to produce approximately 15 clicks per

second per individual when actively clicking, at all slope sites, and 14 clicks per second

at site DC, based on classified clicks. Variability around the mean was low in all cases.

Pilot whales were estimated to produce seven clicks per second on average, at slope sites.

Risso’s dolphin mean active click rates were highest at site MC, at eight clicks per animal

per second and lowest at sites DC and DT, at roughly five clicks per second. Variance

was low at all sites.
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Table 7.2: Effect of detector dead time adjustment on total counts.

Site Species Total Counts Adjusted Total Counts % Increase

MC Stenellid dolphin 7,241,631 7,244,434 0.04

Pilot whale 654,037 654,229 0.03

Risso’s dolphin 341,860 341,920 0.02

GC Stenellid dolphin 2,514,023 2,514,473 0.02

Pilot whale 600,752 600,933 0.03

Risso’s dolphin 44,766 44,781 0.03

DT Stenellid dolphin 4,284,210 4,284,963 0.02

Pilot whale 278,658 278,739 0.03

Risso’s dolphin 486,500 486,529 0.01

DC Stenellid dolphin 5,512,109 5,772,245 4.72

Risso’s dolphin 134,339 138,297 2.95

7.4.3 Group Size Estimates

Group sizes (ĝ) are predicted to be largest for Stenellid dolphins, with a mean of

60.7 animals per group, and lowest for Risso’s dolphins at an expected mean of seven

animals per group (Tables 7.5, 7.7 and 7.9). Group size variability is fairly high for

Stenellid dolphins, reflecting what is typically seen in the field. Variability is also high

for pilot whales due to at least in part to small sample size.

7.4.4 Density estimates

Stenellid dolphins

Mean group-based Stenellid dolphin density estimates across the entire period

were between six and ten times larger at all sites than click-based density estimates
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(Tables 7.4 and 7.5). CVs were approximately three times larger for the click-based

method than for the group-based method.

Stenellid dolphin densities were higher on average at site MC than at the

neighboring northern slope site GC. Daily and weekly density estimates from both

methods increased in summer and decreased in winter (Figure 7.1), although this seasonal

shift appeared to break down somewhat during the first half of the monitoring period.

Stenellid densities were highest at site MC in summer between April and September

(Figure 7.2). Densities declined rapidly in fall, remained low through December, and then

began to ramp up beginning in January. Theil-Sen slope estimates indicated a significant

increase in Stenellid dolphin densities at site MC over the three year period, with a rate

of increase of 81 animals per 1000 km2/year using the group method and seven animals

per 1000 km2/year according to the click method estimates (Figure 7.3).

Mean Stenellid dolphin densities were two to three times lower at site GC than

at site MC depending on the density estimation method used (Tables 7.4 and 7.5). A

regular, seasonal density shift was seen at site GC (Figure 7.10), similar to the pattern

at site MC. Average densities were higher in the spring and summer months, between

March and September, and lower in winter, between October and January (Figure 7.11).

Theil-Sen slope estimates indicated no significant change in Stenellid densities at site

GC over the three year monitoring period (Figure 7.12).

Mean Stenellid dolphin densities at site DT were comparable to densities at the

northern slope site MC (Tables 7.4 and 7.5). A weak seasonal density shift was seen at

this site, with the same overall pattern of higher densities in summer (March through

August) as the other two slope sites (Figure 7.20). However, fewer total days were

monitored at site DT than the other slope sites, due to longer servicing intervals. Only

one full winter season was monitored at site DT without interruption, therefore seasonal

trends may not be accurate. A reduction in estimated density at site DT is apparent in
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the time series between the end of 2011 through 2012 (Figure 7.19). Theil-Sen slope

estimates indicated no significant change in Stenellid densities at site DT over the three

year monitoring period (Figure 7.21).

At the shelf site DC, mean Stenellid densities across the monitoring period were

comparable with densities at slope site GC (Tables 7.4 and 7.5). Both density estimation

methods suggest year-round presence with an increase in summer, between July and

September (Figure 7.29). This seasonal pattern is weak in the first half of the time series,

becoming more distinct in the second half (Figure 7.28). Theil-Sen slope estimates

indicated a significant increase in Stenellid dolphin densities at site DC over the three

year period, with rates of increase of 71 animals per 1000 km2/year based on group

method estimates, and nearly 10 animals per 1000 km2/year according to the click method

estimates (Figure 7.30).

Pilot whales

Mean pilot whale densities were similar across all three slope sites (Tables 7.6

and 7.7). Pilot whales were not detected at shelf site DC. The group model average

predicted densities were five to eight times higher than the click-based density estimates.

CVs are approximately two times larger for click-based estimates than group-based

estimates. Both estimates place pilot whale densities far below Stenellid dolphin densities.

Mean pilot whale densities were very similar at sites MC and GC, with estimates

between two and 10 animals per 1000 km2 depending on the method used. A seasonal

shift, with higher densities between March and August was seen at both sites (Figures 7.5

and 7.14). This seasonal shift grew more pronounced over the course of the monitoring

period at site MC (Figure 7.4). At site GC, the seasonal increase was consistent during

the first three summers monitored, but was relatively weak in the summer of 2013

(Figure 7.13).
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Theil-Sen slope estimates indicated a significant increase in pilot whale densities

at site MC over the three year period, with rates of increase between 1.5 and 6.4 animals

per 1000 km2/year depending on the density estimation method (Figure 7.6). In contrast,

a small decrease in pilot whale densities, on the order of one to two animals per 1000

km2/year was seen at site GC (Figure 7.15). However the decrease was only significant

according to the click-based density estimates (Table 7.3).

Click-based estimates put mean pilot whale densities lower at site DT than at the

two northern slope sites. This was difference was not seen in the group-based estimates

(Tables 7.6 and 7.7). This is likely because pilot whale clicks were detected in low

numbers throughout the year, and this low-level presence was scaled up by the group-

based method more than the click-based method. No seasonal trend was seen in the

group-based density estimates, while click based estimates predicted small peaks in

March and October (Figure 7.23). As previously mentioned, gaps in the time series at

this site limit the identification of seasonal trends.

No significant change in pilot whale densities was seen at site DT over the course

of the monitoring period (Figure 7.24). Pilot whale densities decreased during 2012,

relative to the periods before and after (Figure 7.22). (Recall that Stenellid dolphin

densities decreased at this site during the same period). Daily and weekly density

estimates from the click-based method at site DT are more variable and wider ranging

than those obtained from the group method.

Risso’s dolphins

Group and click-based density estimates of mean Rissos’ dolphin density were

similar within sites indicating overall agreement between the models (Tables 7.8 and 7.9).

Risso’s dolphin presence was seasonal at all sites. At site MC, they were predominantly

detected between March and June, when densities peaked at approximately four animals
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per 1000 km2 (Figure 7.8). Theil-Sen slope estimates indicated a significant decrease in

click-based Risso’s dolphin density estimates of approximately -0.4 animals per 1000

km2 per year, or -22%, over the three year monitoring period (Figure 7.9). No significant

change was found in the group-based density estimates at this site.

Mean Risso’s dolphin densities were lowest at site GC. Average densities rose

to between 0.5 and 1 animal per km2 between March and August, and then decreased

to nearly zero in other months (Figure 7.17). The click-based method indicated a

significant decrease in abundance over the monitoring period of -0.2 animals per year or

approximately -29% (Figure 7.18). No significant change was found in the group-based

density estimates at this site.

Mean Risso’s dolphin densities were highest at site DT, but presence there was

highly intermittent, and the average is not a good indicator of expected densities at any

given time (Figure 7.25). Risso’s dolphin densities spiked in November, at this site,

briefly reaching between 30 and 60 animals per 1000 km2 (Figure 7.26). A smaller influx

of animals was seen in June and July. Outside these periods, Risso’s dolphin densities

were near zero. Both density estimation methods indicated a small increase in Risso’s

dolphin densities at this site over the course of the monitoring period, however it was

only significant according to group-based estimates, which put the increase at roughly

0.9 animals per 1000 km2/year (Figure 7.27). Due to gaps in the time series and high

density variability at this site, the long term trend is not particularly robust.
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7.5 Discussion

7.5.1 Density Estimation Input Variables

Six main variables were needed for each of the density estimation methods, and

each fell along a spectrum of robustness. Click and bin counts are robust at the level

of a detection, but lack of information on classification error rates is a serious issue.

Classification errors can affect density estimates by assigning a portion of signals to

the wrong species. The effect on more more abundant species is less drastic than that

on rarer species, for which density estimates vary wildly in response to small changes

in classification error rates. No classifier is perfect, therefore misclassifications are

undoubtedly having an effect on the density estimates presented here. The magnitude of

that effect is not yet determined. The collection of labeled seafloor sensor recording data

on which to run the classifier, in order to evaluate error rates, remains a priority.

A second issue relating to classification is the question of how to deal with time

bins in which multiple species have been identified. Here, if both click type B1 and

B2 were identified in a bin, for example, the bin was counted only once, i.e. one group

of type B was present. If both click type B1 and type E2 were identified, the bin was

counted twice, i.e. one group of type B and one group of type E were present. However,

since mixed species groups are common in the GOM, and some species are particularly

well known for foraging together, further refinements might be necessary. Likewise, if

type B1 and B2 are later determined to be associated two different species of Stenellid

dolphin, the question of how to handle cases multi-species bins will need to be revisited.

Detection probability model predictions for the click method were ground-truthed

with the available data (Chapter 3), although pilot whales were not encountered in

the groundtruth recordings. More verification is needed to determine how well the

model predicts group detectability. This would likely require a system of multiple,
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simultaneously recording, multi-channel instruments, deployed for long enough to track

multiple encounters with each species of interest. Multiple instruments are required in

order to resolve the question of whether a group is undetectable at on a given sensor

because too distant, or because no group is present in the area.

Group detectability likely varies as a function of group size, and group sizes

may or may not be normally distributed around a mean. The group sizes used in these

calculations are fairly robust given the amount of visual survey data that went into

Mullin and Fulling’s estimates (Mullin, 2007). One consideration is that all group size

information was collected during summer cruises in daylight hours. If group size varies

by time of day, or seasonally, this variabilty would not be reflected in the group size

estimates.

A second group size issue is the possible difference between the visual and

acoustic definition of a group. For acoustic purposes, a group is the total number of

animals of one species within maximum detection radius ω at one time. The visual

definition of a group from Mullin and Fulling may be integrated across more space and

time than appropriate for an acoustic estimate. The main viewing platform from which

group sizes were estimated visually in the Mullin and Fulling study had a height (c) of

14.5 m.

If the earth is assumed to be a perfect sphere with radius r, The maximum visual

v range from this vantage point is computed as

v =
√

(r+ c)2− r2 (7.6)

Approximating the radius of the earth at 6378 km, v equals 13.6 km, for a total viewing

area of 580 km2. In contrast, our maximum click detection radius is estimated at 5 km,

for a total monitoring area of 79 km2. Because of the larger area monitored, visual group
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size estimates may be high compared to acoustic group size estimates. Visual estimates

may also be biased toward larger group sizes, because larger groups are more easily

spotted than smaller groups. In contrast, some visual surveys are very granular in their

definition of groups, and may identify multiple groups of the same species in the vicinity

of a vessel.

At this time, there is does not seem to be an obvious solution to the acoustic

group size issue. For species that typically travel in large groups, including Stenellid

dolphins and other small delphinids, acoustic tracking of individual animals for counting

purposes would require very high spatial resolution, because the animals seem to travel

in tight clusters.

Group size is also difficult to deconvolve from vocal activity. Given robust cue

rate data, it might be possible to estimate group size from click counts, however cue rates

are currently tenuous. The active click rate portion of cue rate is fairly robust and based

on a large amount of ICI data. The probability that an animal is actively vocal remains

obscure. Individual cue rates may vary as a function of group size (e.g. Götz et al., 2006),

behavior and/or environment.

The method used in Chapter 3 to estimate individual probability of vocal activity

is not ideal, because it is dependent on estimates of other inputs such as click rate and

detectability and therefore suffers from errors in those estimates. Risso’s and Stenellid

dolphin estimates of vocal activity using this method are comparable to estimates for

beaked whales in the region (Hildebrand et al., 2015), however further refinements are

necessary. Acoustic tag data are likely the best option for resolving the cue rate question

(e.g Marques et al., 2009), however delphinids are difficult and expensive to tag, and

few successful examples currently exist. A relatively large number of samples across

behaviors, time periods, and locations will be needed to comprehensively address this

question. Nonetheless, forthcoming work by other research groups may address this data
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gap in the near future.

In these calculations groups were assumed to be vocally active 100% of the time.

That is, at least one animal in the group is actively clicking during the period of a bin.

Since only nocturnal data were used for density estimation purposes, and groups were

likely foraging, this assumption is reasonable for now but not ideal.

7.5.2 Density Estimation Assumptions

The assumptions required for density estimation based on distance sampling

methods were mentioned previously. The first was that animals are, on average, uniformly

distributed around each sensor. Without extensive localization data, this assumption

cannot be verified for this dataset. However, we currently have no reason to expect a

non-uniform distribution of animals within the small area in which echolocation clicks

were detected.

The second assumption was that detections are statistically independent events,

i.e. given that one click was detected, we are no more or less likely to detect another.

This assumption is violated in the group-based method because a minimum number of

clicks are required in a time bin, before that click is deemed positive. This will lead to a

small negative bias in our group-based density estimates. Given a perfect detector, this

minimum number of detections would be unnecessary, however in practice, removing

this threshold would make the group-based method highly sensitive to false positives

in the click detection data. Similarly, in the click-based method, isolated clicks were

pruned from the dataset because they could not be classified. This will also lead to a

slight negative bias in density estimates, however the magnitude is expected to be very

small, because individual clicks have much less significance than time bins.

The third assumption was that detection ranges are measured without errors.

Because we used a simulation, rather than localization, to estimate distances in this case,
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this assumption has more to do with the accuracy of our model in estimating detection

probabilities than to actual distances. The detection probability estimates are not perfect,

therefore this assumption is violated, but the direction of resulting bias is unknown. The

model accuracy can likely be improved, as more and better input parameters become

available, however, the ideal solution to this violation is to be able to localize each

detection, rendering the model unnecessary. Current constraints make localization-ready

sensors impractical in most cases, however future work may find ways to move away

from detection probability simulation.

The final assumption is that each detection represents an instant in time. The

point of this assumption is that we need to be able to assume that nothing moves in or

out of our monitoring area during a detection. This is fine in the case of the click-based

method because each click is so short in duration that animal movement is not a concern.

In the case of the group-based method, however, it is possible that a group could enter or

leave the monitored area during a five-minute window. In practice, we are assuming that

each group was present for the entire five minute bin in which they were detected, which

will lead to an overestimation of densities using the group-based method. Because the

five minute time window is relatively small, and a group is relatively large, the amount of

bias this violation introduces is expected to be minimized. An estimate of the magnitude

of the bias might be possible given a better understanding of group travel speeds during

detectable behaviors.

7.5.3 Density Estimates

The two methods used to estimate local delphinid densities, group-counting and

cue-counting, have different strengths and weaknesses. The group counting method has

the advantage of being insensitive to click rate fluctuations, and generally functions as

an averaging window, compared to the peaky, highly variable click method predictions.
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Predicting detection probabilities is more straightforward for the cue-counting method

however.

Here, two methods predict similar trends in relative density for each site and

species pair over time, and similar seasonal shifts. They differ however in the magnitude

of the densities they predict for Stenellid dolphins and pilot whales. This is not surprising

given refinements needed for some of the input parameters as listed above.

The Risso’s dolphin density estimates agree fairly well between the two

approaches, and gives us an indication of where the other estimates are falling short.

Unlike pilot whales and Stenellid dolphins, Risso’s dolphin group sizes are small, the

animals are relatively independent and dispersed in the field, and we have a fairly good

estimate of vocalization probability from our tracking data (Chapter 3). Stenellid dolphins

and pilot whales are highly social and are found in large groups with a wide range of

behaviors.

The takeaway message from this work is that density estimation for highly social

delphinids will likely require a more complex behavioral model than the one implemented

here. Rather than using a static value for vocalization probability in our density estimates,

we would likely have better results if we incorporated vocalization probability into the

Monte Carlo simulations. Within the model framework, estimates of group spread, group

size, vocalization rates and rotation could be varied as a function of behavior. As more

data on these variables becomes available, we expect the Stenellid dolphin and pilot

whale density estimates from the two methods to converge.

Comparing the PAM-based density estimates to existing estimates based on visual

surveys provides further insight on the accuracy of our numbers. In 2009, NOAA stock

assessments estimated the number of pelagic Stenellid dolphins in the GOM at around

64,000 with a CV of 0.27, based on summer visual surveys (Waring et al., 2013). If

animals were uniformly distributed in the survey area, this number would predict an
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average of roughly 200 animals per 1000 km2, in summer. However, our data suggest

that animals are not uniformly distributed, and some areas, like Mississippi Canyon have

higher relative Stenellid densities than others. The NOAA estimates provide the sense

that the Stenellid dolphin densities predicted by the group method are probably a little

high, but not unreasonable, and that the cue-based estimates are likely low.

Summer stock assessments for Risso’s dolphin and pilot whales estimated their

numbers at approximately 2,400 for both species in 2009, with CVs of 0.57 and 0.66

respectively (Waring et al., 2013). If animals were uniformly distributed in the US

GOM, one would expect approximately 8 animals per 1000 km2 in summer. The density

estimates presented here support similar numbers, however because Risso’s dolphin

densities are strongly seasonal, average estimated densities over a year are much lower

than the stock assessment estimates.

Each sensor in this study provided a long term, detailed look at a specific site.

In exchange for temporal coverage, we sacrificed the kind of spatial coverage that a

visual survey can achieve. As a result, we can draw definite conclusions about what

happened at the sites we monitored, but cannot extrapolate what we see there to the larger

GOM ecosystem. A future goal is to move from local animal densities, to estimates

of population size and total abundance, while retaining temporal resolution. This will

require more sensors, distributed across a wider variety of monitoring sites (e.g. Koblitz

et al., 2014), and will increase the need for automated methods to make sense of the

increasing amounts of data. Mobile passive acoustic sensors may also improve our ability

to estimate population sizes (e.g. Bingham et al., 2012).

7.5.4 Population Density Trends

The fundamental question underlying this work is whether dolphin population

sizes in the GOM were affected by the Deepwater Horizon Oil spill event. However,
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comparable pre-spill or baseline density estimates do not exist. Nonetheless, we can draw

a few conclusions from these data. First, it is clear that the spring and summer months,

when the spill was occurring, are the times when dolphin densities are highest in the

northern GOM. Stenellid dolphins, Risso’s dolphins and pilot whales were all present at

the site closest to the wellhead (site MC) while surface oil was present.

In the three years since the oil spill, Stenellid dolphin and pilot whale densities

have been increasing at the site MC, and Risso’s dolphin densities have stayed fairly

constant. Stenellid dolphin densities also increased at site DC, to the east of the spill

over the same period. The rates of increase at sites MC and DC are likely too large to

be explained by reproduction rates, and may instead reflect a period of avoidance of the

area, followed by a return.

Pilot whale densities decreased at site GC, while they were increasing at site

MC, which is consistent with possible avoidance of site MC during the early part

of the monitoring period. The click-based method indicated a significant increase in

Stenellid dolphin populations at site GC, but no such increase was seen in the group-based

estimates, so it is unclear if densities of Stenellid dolphins were increasing at all northern

sites. The support for the density increase is more significant at sites MC and DC than at

site GC, and no significant change was seen at site DT, which was furthest away from the

spill site.

In the first half of the three year monitoring period, seasonal cycles for all three

species were weak at sites MC and DC. This may have been due to habitat variability

unrelated to oil, however seasonal cycles did not appear to be disrupted during the same

period at site GC, to the west of the spill site, where oil was not observed. .



262

7.6 Conclusion

Density estimates for delphinid species provide insight into seasonal and long

term trends at specific sites. Accounting for detectability and cue rate allows time series

to be compared between sites. Group-based density estimates are slightly higher than,

yet comparable to density estimates based on NOAA data. Click-based density estimates

are comparable to group-based estimates for Risso’s dolphin, but are likely too low for

the highly social species including Stenellid dolphins and pilot whales. More complex

behavioral models are needed to accurately estimate densities for these species using

click-based methods.

The data indicate seasonal increases in delphinid densities at most sites in spring

and summer months, between April and August. Significant increases in density are seen

at sites north and east of the Deepwater Horizon spill site during the monitoring period,

was well as a possible interruption of seasonal cycles in the first half of the time series.

Density increases are absent or less significant at sites to the south and west of the spill

site, and seasonal cycles appear to be more stable.



263

Ta
bl

e
7.

4:
St

en
el

la
sp

.
de

ns
ity

es
tim

at
io

n
in

pu
ts

fo
r

cl
ic

k
m

et
ho

d.
L

oc
al

an
im

al
de

ns
ity

(D̂
)

at
ea

ch
si

te
is

co
m

pu
te

d
as

a
nu

m
be

r
of

an
im

al
s/

10
00

km
2 .T

he
nu

m
be

ro
fc

lic
k

co
un

ts
(N

kt
)i

s
ad

ju
st

ed
by

fa
ls

e
po

si
tiv

e
ra

te
(c

k)
,a

nd
th

en
di

vi
de

d
by

th
e

nu
m

be
ro

fs
ec

on
ds

of
m

on
ito

ri
ng

ef
fo

rt
(T

kt
),

th
e

ac
tiv

e
cl

ic
k

ra
te

(c
r)

,t
he

pr
ob

ab
ili

ty
of

vo
ca

liz
at

io
n

(P
v)

,t
he

ar
ea

m
on

ito
re

d
(2

π
ω

2 )a
nd

th
e

pr
ob

ab
ili

ty
of

de
te

ct
in

g
a

cl
ic

k
w

ith
in

th
at

ar
ea

(P
k)

.V
al

ue
s

ar
e

si
te

an
d

sp
ec

ie
s-

sp
ec

ifi
c

w
he

n
po

ss
ib

le
.

Si
te

D̂
N

kt
T

kt
c k

c r
P v

ω
P k

m
ea

n
C

V
cl

ic
k

co
un

ts
se

c
m

ea
n

C
V

m
ea

n
C

V
m

ea
n

C
V

km
m

ea
n

C
V

M
C

48
.1

3
0.

64
7,

24
4,

43
4

46
,1

26
,5

00
0.

01
0.

39
15

.4
0

0.
00

0.
19

1.
6

5
0.

01
4

0.
50

G
C

22
.9

5
0.

69
2,

51
4,

47
3

42
,4

66
,2

00
0.

02
0.

26
15

.4
0

0.
00

0.
19

1.
6

5
0.

01
1

0.
64

D
T

45
.9

4
0.

63
4,

28
4,

96
3

33
,0

76
,5

00
0.

02
0.

25
15

.4
0

0.
00

0.
19

1.
6

5
0.

01
2

0.
58

D
C

37
.3

4
0.

40
5,

77
2,

24
5

31
,4

77
,8

00
0.

06
0.

15
14

.0
0

0.
04

0.
19

1.
6

5
0.

02
2

0.
36

Ta
bl

e
7.

5:
St

en
el

la
sp

.d
en

si
ty

es
tim

at
io

n
in

pu
ts

fo
rg

ro
up

m
et

ho
d.

L
oc

al
an

im
al

de
ns

ity
(D̂

)a
te

ac
h

si
te

is
co

m
pu

te
d

as
a

nu
m

be
ro

f
an

im
al

s/
10

00
km

2 .T
he

nu
m

be
ro

fp
os

iti
ve

fiv
e

m
in

ut
e

bi
ns

(N
kt

)i
s

ad
ju

st
ed

by
fa

ls
e

po
si

tiv
e

bi
n

ra
te

(c
k)

,a
nd

th
en

di
vi

de
d

by
th

e
nu

m
be

r
of

bi
ns

of
m

on
ito

ri
ng

ef
fo

rt
(T

kt
),

th
e

gr
ou

p
si

ze
(ĝ
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Figure 7.1: Density estimates for Stenellid dolphins at site MC. A: Group-method
results. B: Click method results. Grey line indicates daily density estimates, blue
squares are weekly density estimates with red error bars indicating standard error. Grey
rectangles indicate gaps in recording effort.
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Figure 7.2: Mean density estimates and 95% confidence intervals of the mean by month
for Stenellid dolphins at site MC. Left: Group method estimates; Right: Click method
estimates.
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Figure 7.3: Theil-Sen slope estimates (solid red line) for deseasonalized Stenellid
dolphin density time series at site MC, with 95% confidence intervals (dashed red lines).
Blue dots are monthly averages of daily density estimates. Top: Group method time
series; Bottom: Click method time series.
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Figure 7.4: Density estimates for pilot whales at site MC. A: Group-method results.
B: Click method results. Grey line indicates daily density estimates, blue squares are
weekly density estimates with red error bars indicating standard error. Grey rectangles
indicate gaps in recording effort.
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Figure 7.5: Mean density estimates and 95% confidence intervals of the mean by
month for pilot whales dolphins at site MC. Left: Group method estimates; Right: Click
method estimates.
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Figure 7.6: Theil-Sen slope estimates (solid red line) for deseasonalized pilot whale
density time series at site MC, with 95% confidence intervals (dashed red lines).
Blue dots are monthly averages of daily density estimates. Top: Group method time
series;Bottom: Click method time series.
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Figure 7.7: Density estimates for Risso’s dolphins at site MC. A: Group-method results.
B: Click method results. Grey line indicates daily density estimates, blue squares are
weekly density estimates with red error bars indicating standard error. Grey rectangles
indicate gaps in recording effort.
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Figure 7.8: Mean density estimates and 95% confidence intervals of the mean by month
for Risso’s dolphins at site MC. Left: Group method estimates; Right: Click method
estimates.
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Figure 7.9: Theil-Sen slope estimates (solid red line) for deseasonalized Risso’s dolphin
density time series at site MC, with 95% confidence intervals (dashed red lines). Blue
dots are monthly averages of daily density estimates. Top: Group method time series;
Bottom: Click method time series.
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Figure 7.10: Density estimates for Stenellid dolphins at site GC. A: Group-method
results. B: Click method results. Grey line indicates daily density estimates, blue
squares are weekly density estimates with red error bars indicating standard error. Grey
rectangles indicate gaps in recording effort.
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Figure 7.11: Mean density estimates and 95% confidence intervals of the mean by
month for Stenellid dolphins at site GC. Left: Group method estimates; Right: Click
method estimates.
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Figure 7.12: Theil-Sen slope estimates (solid red line) for deseasonalized Stenellid
dolphin density time series at site GC, with 95% confidence intervals (dashed red lines).
Blue dots are monthly averages of daily density estimates. Top: Group method time
series; Bottom: Click method time series.
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Figure 7.13: Density estimates for pilot whales at site GC. A: Group-method results.
B: Click method results. Grey line indicates daily density estimates, blue squares are
weekly density estimates with red error bars indicating standard error. Grey rectangles
indicate gaps in recording effort.
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Figure 7.14: Mean density estimates and 95% confidence intervals of the mean by
month for pilot whales dolphins at site GC. Left: Group method estimates; Right: Click
method estimates.
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Figure 7.15: Theil-Sen slope estimates (solid red line) for deseasonalized pilot whale
density time series at site GC, with 95% confidence intervals (dashed red lines). Blue
dots are monthly averages of daily density estimates. Top: Group method time series;
Bottom: Click method time series.
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Figure 7.16: Density estimates for Risso’s dolphins at site GC. A: Group-method
results. B: Click method results. Grey line indicates daily density estimates, blue
squares are weekly density estimates with red error bars indicating standard error. Grey
rectangles indicate gaps in recording effort.
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Figure 7.17: Mean density estimates and 95% confidence intervals of the mean by
month for Risso’s dolphins at site GC. Left: Group method estimates; Right: Click
method estimates.
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Figure 7.18: Theil-Sen slope estimates (solid red line) for deseasonalized Risso’s
dolphin density time series at site GC, with 95% confidence intervals (dashed red lines).
Blue dots are monthly averages of daily density estimates. Top: Group method time
series; Bottom: Click method time series.
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Figure 7.19: Density estimates for Stenellid dolphins at site DT. A: Group-method
results. B: Click method results. Grey line indicates daily density estimates, blue
squares are weekly density estimates with red error bars indicating standard error. Grey
rectangles indicate gaps in recording effort.
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Figure 7.20: Mean density estimates and 95% confidence intervals of the mean by
month for Stenellid dolphins at site DT. Left: Group method estimates; Right: Click
method estimates.



279

year−month

an
im

al
s 

pe
r 1

00
0 

km
2

0

200

400

600

800

2011−01 2011−07 2012−01 2012−07 2013−01 2013−07

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●−25.43 [−161.32, 140.78] units/year 

year−month

an
im

al
s 

pe
r 1

00
0 

km
2

0

50

100

2011−01 2011−07 2012−01 2012−07 2013−01 2013−07

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●
●

●

● ●
●

●
●

●
●

●

● ●
●

●

●
●

●

●
●

●
●

●

−17.35 [−30.58, 1.36] units/year +

Figure 7.21: Theil-Sen slope estimates (solid red line) for deseasonalized Stenellid
dolphin density time series at site DT, with 95% confidence intervals (dashed red lines).
Blue dots are monthly averages of daily density estimates. Top: Group method time
series; Bottom: Click method time series.
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Figure 7.22: Density estimates for pilot whales at site DT. A: Group-method results.
B: Click method results. Grey line indicates daily density estimates, blue squares are
weekly density estimates with red error bars indicating standard error. Grey rectangles
indicate gaps in recording effort.
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Figure 7.23: Mean density estimates and 95% confidence intervals of the mean by
month for pilot whales dolphins at site DT. Left: Group method estimates; Right: Click
method estimates.
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Figure 7.24: Theil-Sen slope estimates (solid red line) for deseasonalized pilot whale
density time series at site DT, with 95% confidence intervals (dashed red lines). Blue
dots are monthly averages of daily density estimates. Top: Group method time series;
Bottom: Click method time series.
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Figure 7.25: Density estimates for Risso’s dolphins at site DT. A: Group-method results.
B: Click method results. Grey line indicates daily density estimates, blue squares are
weekly density estimates with red error bars indicating standard error. Grey rectangles
indicate gaps in recording effort.
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Figure 7.26: Mean density estimates and 95% confidence intervals of the mean by
month for Risso’s dolphins at site DT. Left: Group method estimates; Right: Click
method estimates.
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Figure 7.27: Theil-Sen slope estimates (solid red line) for deseasonalized Risso’s
dolphin density time series at site DT, with 95% confidence intervals (dashed red lines).
Blue dots are monthly averages of daily density estimates. Top: Group method time
series; Bottom: Click method time series.
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Figure 7.28: Density estimates for Stenellid dolphins at site DC. A: Group-method
results. B: Click method results. Grey line indicates daily density estimates, blue
squares are weekly density estimates with red error bars indicating standard error. Grey
rectangles indicate gaps in recording effort.
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Figure 7.29: Mean density estimates and 95% confidence intervals of the mean by
month for Stenellid dolphins at site DC. Left: Group method estimates; Right: Click
method estimates.
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Figure 7.30: Theil-Sen slope estimates (solid red line) for deseasonalized Stenellid
dolphin density time series at site DC, with 95% confidence intervals (dashed red lines).
Blue dots are monthly averages of daily density estimates. Top: Group method time
series; Bottom: Click method time series.
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Figure 7.31: Density estimates for Risso’s dolphins at site DC. A: Group-method
results. B: Click method results. Grey line indicates daily density estimates, blue
squares are weekly density estimates with red error bars indicating standard error. Grey
rectangles indicate gaps in recording effort.
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Figure 7.32: Mean density estimates and 95% confidence intervals of the mean by
month for Risso’s dolphins at site DC. Left: Group method estimates; Right: Click
method estimates.



287

year−month

an
im

al
s 

pe
r 1

00
0 

km
2

0

1

2

3

2011−01 2011−07 2012−01 2012−07 2013−01 2013−07

●

●

●

●

●

●

●

●

●

●
● ●

● ● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

0 [−0.22, 0.28] units/year 

year−month

an
im

al
s 

pe
r 1

00
0 

km
2

0

1

2

3

4

5

2011−01 2011−07 2012−01 2012−07 2013−01 2013−07

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

● ● ● ●

●

●
●

−0.08 [−0.28, 0.16] units/year 

Figure 7.33: Theil-Sen slope estimates (solid red line) for deseasonalized Risso’s
dolphin density time series at site DC, with 95% confidence intervals (dashed red lines).
Blue dots are monthly averages of daily density estimates. Top: Group method time
series; Bottom: Click method time series.
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