

Detection and Classification of blue and fin whale calls using the PAMGuard Whistle and Moan detector

Douglas Gillespie

Outline

- The Challenge (You know this already)
- The Detector (You heard this in 2011)
- Classification (Pretty simple)
- Results (really bad !)
- Conclusions and Comment (Then I'll shut up)

The Challenge

Blue Whale D Calls-

McDonald et al, J. Acoust. Soc. Am., Vol. 109, No. 4, April 2001

Fin Whale 40Hz Calls -

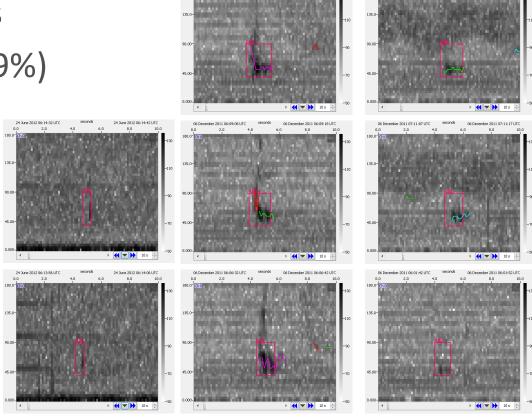
Širović et al., Mar Biol. 2013; 160(1): 47–57.

Training Data

- 66 days (1600 hours) training data
- 4506 blue whale D calls
- 320 fin whale 40Hz calls

The Detector

- PAMGuard Whistle and Moan Detector*
 - Data decimated to 1kHz sample rate
 - 256pt FFT with 50% overlap
 - 3.9Hz, 128ms advance
 - Five noise reduction / threshold stages
 - Connected region search
 - Output is outline of tonal calls.



*Gillespie, D., Caillat, M., Gordon, J., and White, P. (2013). "Automatic detection and classification of odontocete whistles," J. Acoust. Soc. Am., 134, 2427–2437.

Fin Whale 40Hz calls

- 320 marked calls
- Detected 285 (89%)

Blue Whale D Calls

- 4506 marked calls
- Detected 4455(99%)

The tricky bit ...

- 400,000 other detected sounds between 30 and 120 Hz.
 - Self noise
 - Other whale calls
 - Missed whale calls
 - Other

Classify based on contour shape

Contour Parameters

- Classify with multivariate classifier and with regression trees.
 - Results broadly similar for both

Results

Confusion Matrix		Output (%)		
		Noise	40Hz	D
Input	Noise	90	7	3
	40Hz	26	65	9
	D	8	11	81

- 1. Why are these results so poor?
- 2. Would such a detector / classifier still be useful?

Is it useful?

- 1600 hours data (96k minutes, 576k 10s clips)
- Blue whale D calls
 - 25% precision, 4506 calls
 - Approx. 18,000 candidate detections
- Fin whale 40Hz calls
 - 1% precision, 360 calls
 - Approx. 36,000 candidate detections
- Would you rather ...
 - View 96k 1 minute spectrogram ?
 - View 576k 10 second spectrograms ?
 - View 54k (36k+18k) 10 second spectrograms?
- Even a poorly performing detector has the potential to drastically reduce the amount of data a human must analyse.

Why is it performing poorly? Examples of Errors (D calls)

False Detections

Missed Detections

Examples of Errors (40Hz)

False Detections

Missed Detections

- Hard drive noise
- Real whale sounds not marked by the operator
- Noise

"False" Detections "Missed" Detections

- Low SNR
- Broken calls
- Poor contour tracking
- Marking noise as calls

Future Plans

 Spectrogram based detector / classifier not well suited to very short pulses.

 Consider treating them as clicks and running a time domain based click detector as we would for

odontocete clicks.

Summary / Concluding remarks

- Very challenging dataset, particularly the 40Hz calls
- Detecting is relatively easy it's not detecting all the other c*** that's difficult
- While performance is poor, checking a few thousand short clips may still be of more use than browsing an entire dataset (user effort reduction)
- Any results from these detectors / classifiers are very specific to this hardware since the dominant source of noise is from the hardware.
 - Don't use equipment with noise at 40Hz if you want to detect 40Hz signals.
- I'd like to know a lot more about how the dataset were annotated.
- Good null datasets are needed since there seemed to be a lot of missed calls and general inconsistency in the annotation process – we're trying to train detectors to match a flawed human rather than actual truth.
- This leads into Fridays discussions on how to make better training sets.

Thanks to

Sound and Marine Life JIP for continued PAMGuard funding support

UCSD for their work in providing the data set

