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Problem Statement 

Goal: classify the whale signal from the hydrophone. 

•  Passive acoustic; 

•  Challenge: variation of whale vocalizations, background noise 
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Variation of Whale Vocalizations 

Bowhead whale calls [1] 

Humpback whale calls [1] 

[1] Mobysound data. http://www.mobysound.org/mysticetes.html. 
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Overview 

• Many whale vocalizations frequency modulated and can be 

modeled as polynomial phase signals[2,3].  

 

 

• The intrinsic dimension can be described and estimated by the 

number of polynomial phase parameters.  

• Use low dimension representation for the signals and classify 

them. 

 

 

 

 

[2] I. R. Urazghildiiev, and C. W. Clark. “Acoustic detection of North Atlantic right whale contact calls 

using the generalized likelihood ratio test,” J. Acoust. Soc. Am. 120, 1956-1963 (2006). 

[3] M. D. Beecher. “Spectrographic analysis of animal vocalizations: implications of the “uncertainty 

principle”,” Bioacoustics 1, 187-208 (1988). 
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Dimension reduction 

Linear methods: 

• PCA 

• MDS (Multidimensional Scaling) 

Non-linear methods: 

• Laplacian-Eigenmap 

• Isomap 
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Road map 

p 

n 

Linear model Non-linear model 

PCA MDS 
1

𝑛 − 1
𝑋 𝑋 𝑇 𝑋 𝑇𝑋  

…. Isomap Laplacian-Eigenmap 

X 

𝐿 = exp⁡(𝐷, 𝑡) 

…. 

𝐺 = 𝑈Σ𝑈𝑇, then spectral embedding to 𝑘 dimensions 

Classifier 
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• Denote the data by 𝑋 = [𝑥1, … , 𝑥𝑛] ∈ 𝑅𝑝×𝑛,  

• Covariance matrix:  Σ𝑛 =
1

𝑛−1
𝑋 𝑋 𝑇,  where 𝑋 = 𝑋 −

1

𝑛
𝑋𝑒𝑒𝑇 

• The eigenvalue decomposition: Σ𝑛 = 𝑈Λ𝑈𝑇 

• Choose the top k eigenvalues and the corresponding eigenvectors for Σ𝑛, 

and compute 𝑌 𝑘 = 𝑈𝑘(Λ𝑘)
−1/2 

 

• The PCA compute the top k right singular vectors for 𝑋 . 

 

PCA 

[4] H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal 

of Educational Psychology, 24(4):17–441,498–520 (1933).  
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• Denote the data by 𝑋 = [𝑥1, … , 𝑥𝑛] ∈ 𝑅𝑝×𝑛,  

• The distance matrix:  𝐷𝑖𝑗 = 𝑑𝑖𝑗
2 = ||𝑥𝑖 − 𝑥𝑗||

2.  

• Compute 𝐵 = −
1

2
𝐻𝐷𝐻𝑇, where 𝐻 = 𝐼 − 𝑒e𝑇/𝑛,  the centering matrix. 

• Compute eigenvalue decomposition 𝐵 = 𝑈Λ𝑈𝑇 . 

• Choose top k nonzero eigenvalue and corresponding eigenvector for 𝐵⁡, 
𝑋 𝑘 = 𝑈𝑘(Λ𝑘)

−1/2 

 

 

MDS 

[5] J. B. Kruskal, and M. Wish. Multidimensional scaling. Vol. 11. Sage (1978). 
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• Denote the data by 𝑋 = [𝑥1, … , 𝑥𝑛] ∈ 𝑅𝑝×𝑛,  

• The distance matrix:  𝐷𝑖𝑗 = 𝑑𝑖𝑗
2 = ||𝑥𝑖 − 𝑥𝑗||

2.  

• Compute 𝐵 = −
1

2
𝐻𝐷𝐻𝑇, where 𝐻 = 𝐼 − 𝑒e𝑇/𝑛,  the centering matrix. 

• Compute eigenvalue decomposition 𝐵 = 𝑈Λ𝑈𝑇 . 

• Choose top k nonzero eigenvalue and corresponding eigenvector for 𝐵⁡, 
𝑋 𝑘 = 𝑈𝑘(Λ𝑘)

−1/2 

 

• The relationship between 𝐵⁡and the covariance matrix via 𝑋 : 

𝐵 = 𝑋 𝑇𝑋  ,              Σ𝑛 =
1

𝑛−1
𝑋 𝑋 𝑇 

so the MDS is actually compute the top left singular vectors of 𝑋 .   

 

 

 

MDS 

[5] J. B. Kruskal, and M. Wish. Multidimensional scaling. Vol. 11. Sage (1978). 
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Idea of Isomap 

[6] J. B. Tenenbaum et al. "A global  geometric framework for nonlinear dimensionality reduction." Science 290, 

2319-2323 (2000). 

• For two arbitrary points on a nonlinear manifold, their Euclidean distance in the 

high-dimensional input space may not accurately reflect their intrinsic similarity, 

as measured by geodesic distance along the low-dimensional manifold.  

• The two-dimensional embedding recovered by Isomap, which best preserves the 

shortest path distances in the neighborhood graph.  

The “Swiss roll” data set, illustrating Isomap exploits geodesic paths for 

nonlinear dimensionality reduction. 



Isomap 

• Construct a neighborhood graph G=(X, E, D), based on k nearest 

neighborhood, or ε-neighborhood. 

• Compute 𝐷,  

 

 

• Compute 𝐾 = −
1

2
𝐻𝐷𝐻𝑇, where 𝐻 = 𝐼 − 𝑒𝑒𝑇/𝑛 is the centering matrix. 

• Compute eigenvalue decomposition 𝐾 = 𝑈Λ𝑈𝑇.  

• Choose the top k eigenvalues and eigenvectors and compute 𝑋 𝑘 =

𝑈𝑘(Λ𝑘)
−

1

2. 
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[6] J. B. Tenenbaum et al. "A global  geometric framework for nonlinear dimensionality reduction." Science 290, 

2319-2323 (2000). 



Laplacian-Eigenmap 

• Construct a neighborhood graph G=(X, E, W), based on k nearest 

neighborhood, or ε-neighborhood.  

• Choose the weight: 

𝑤𝑖𝑗 =  𝑒
−
||𝑥𝑖−𝑥𝑗||

2

𝑡 , 𝑖, 𝑗⁡𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0, ⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

• Eigenmap:  

– Construct Laplacian matrix L=D-W, where D=diag( 𝑤𝑖𝑗𝑗∈𝑁𝑖
) 

– Compute eigenvalues and eigenvectors: 

𝐿𝒇 = 𝜆𝐷𝒇 

𝒇 = [𝑓0, … , 𝑓𝑘] corresponds to 𝐷 = diag(𝜆1, …, 𝜆k), 𝜆i  <= 𝜆i + 1 

• Leave out the eigenvector 𝑓0.  

• The m dimensional embedding with (𝑓1, … , 𝑓𝑚). 
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[7] M. Belkin, and P. Niyogi.  “Laplacian Eigenmaps for dimensionality reduction and data 

representation.” Neural computation, 15, 1373-1396, (2003).  



Laplacian-Eigenmap 

• Construct a neighborhood graph G=(X, E, W), based on k nearest 

neighborhood, or ε-neighborhood.  

• Choose the weight: 

𝑤𝑖𝑗 =  𝑒
−
||𝑥𝑖−𝑥𝑗||

2

𝑡 , 𝑖, 𝑗⁡𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0, ⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

• Eigenmap:  

– Construct Laplacian matrix L=D-W, where D=diag( 𝑤𝑖𝑗𝑗∈𝑁𝑖
)  

– Compute eigenvalues and eigenvectors: 

𝐿𝒇 = 𝜆𝐷𝒇 

𝒇 = [𝑓0, … , 𝑓𝑘] corresponds to 𝐷 = diag(𝜆1, …, 𝜆k), 𝜆i  <= 𝜆i + 1 

• Leave out the eigenvector 𝑓0.  

• The m dimensional embedding with (𝑓1, … , 𝑓𝑚). 

• For normalized Laplacian-Eigenmap, we compute Ф: 

𝐷−
1
2 𝐷 − 𝑊 𝐷−

1
2Ф = 𝜆Ф 
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DCLDE 2015 Data 
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Blue whale (# 851)  

Fin whale (# 244)  

[8] DCLDE conference data. http://www.cetus.ucsd.edu/dclde/dataset.html. 



Mapping Data to two dimensions 
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PCA 

Laplacian Eigenmap 

Isomap 

Normalized Laplacian Eigenmap 



Mapping Data to three dimensions 
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PCA 

Laplacian Eigenmap 

Isomap 

Normalized Laplacian Eigenmap 



Eigenvalues (energy) distributions 
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PCA 

Laplacian Eigenmap 

Isomap 

Normalized Laplacian Eigenmap 



ROCs comparisons (2D) 
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KNN  

Logistic regression  

Naïve Bayes  

• We use 5-folds cross validation to 

generate the ROC. That is, 681 blue 

whale sounds and 196 fin whale 

sounds for training, and 170 blue whale 

sounds and 48 fin whale sounds for 

testing. 

 

• We use k=7 for Isomap, and k=7, t=1 

for Laplacian Eigenmap. 



AUCs comparisons 
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KNN  

Logistic regression  

Naïve Bayes  



Plots of adjacency matrix of Laplacian-Eigenmap 
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By systematic spectral re-ordering,  the blue whale data and fin whale 

data are well separated in the adjacency matrix (we use 851 blue whale 

data, and 244 fin whale data). 



Summary 

21 

• Efficient classification of the whale vocalizations from low-

dimensional intrinsic structure. 

• The intrinsic dimension of whale vocalizations can be 

recovered from the eigenvalues energy distribution. 

• The nonlinear dimensional reduction methods work better 

with data of nonlinear structure.  



Future topics 
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• Further develop efficient manifold mappings for more 

complex whale vocalizations, and other acoustic signals. 

• Apply optimization methods to enhance computational 

efficiency for nonlinear dimensional mappings. 
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Backup slides 



Mobysound data 

Humpback whale (#2310) Bowhead whale (#446) 

25 

[1] Mobysound data. http://www.mobysound.org/mysticetes.html. 



Mapping to two dimensions 
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PCA Isomap 

Laplacian Eigenmap 



Mapping to three dimensions 
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PCA Isomap 

Laplacian-Eigenmap 



Eigenvalues energy distributions 
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PCA 

Laplacian Eigenmap 

Isomap 

Normalized Laplacian Eigenmap 



ROCs comparisons (2D) 
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KNN  

Logistic regression  

Naïve Bayes  

• We use 5-folds cross validation to 

generate the ROC. That is, 358 

bowhead whale sounds and 1848 

humpback whale sounds for training, 

and 88 bowhead whale sounds and 

462 humpback whale sounds for 

testing.  

 

• We use k=7 for Isomap, and k=7, t=1 

for Laplacian Eigenmap 

 



AUCs Comparisons 
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KNN Naïve Bayes 

Logistic regression 



Plots of adjacency matrix W of Laplacian-Eigenmap 
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By systematic spectral re-ordering,  the bowhead whale data and 

humpback whale data are well separated in the adjacency matrix (we use 

446 bowhead whale data, and 2310 humpback whale data). 



Local Linear Embedding 

• Construct a neighborhood graph G=(V, E, W),  

– where V is the vertex {𝑥𝑖: 𝑖 = 1,… , 𝑛}; E is the edge { 𝑖, 𝑗 : if 𝑗 is a neighbor 

of 𝑖}, k-nearest neighbors, 𝜀-neighbors; W is the Euclidean distance: 𝑑(𝑥𝑖 , 𝑥𝑗) 

• Local fitting: 
– Compute the weights 

 

– Solve the equation according to Lagrange multipler method: 

 

 

Let 𝑤𝑖 = [𝑤𝑖𝑗1
, … , 𝑤𝑖𝑗𝑘

]𝑇∈ ⁡𝑅𝑘 , 𝑋 𝑖 = [𝑥𝑗1 − 𝑥𝑖 , … , 𝑥𝑗𝑘 − 𝑥𝑖], the local 

covariance matrix                                               , we have: 
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Local Linear Embedding 

• Global alignment 

– Define a n by n weight matrix W: 

 

 

– Compute the global embedding matrix Y: 

 

 

That is construct a semi-definite matrix 𝐵 = 𝐼 − 𝑊 𝑇(𝐼 − 𝑊) and find the d+1 

smallest eigenvectors of B: 𝑣0, 𝑣1, … , 𝑣𝑑, and the corresponding eigenvalues: 

𝜆0, … , 𝜆𝑑,⁡drop the smallest eigenvector which is the constant vector, we have: 

Y=
𝑣1

𝜆1
⁡ , … ,

𝑣𝑑

𝜆𝑑
. 

• Advantage of LLE 

– Neighbor graph: k nearest neighbors is of O(kn). 

– W is sparse; 

– 𝐵 = 𝐼 − 𝑊 𝑇(𝐼 − 𝑊) is positive semi-definite. 
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𝑊 =  
𝑤𝑖𝑗 , 𝑗 ∈ 𝑁𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 


