Detection and recognition of Atlantic cod grunts

Ildar Urazghildiiev, and Sofie Van Parijs

The 7th International DCLDE Workshop 13–16 July 2015 La Jolla, CA www.jasco.com

Introduction

Goal:

To design an automatic grunt detection and recognition algorithm that processes yearlong passive acoustic data.

Method:

Two-step data processing algorithm consisted of signal detection and recognition.

Signal Detection

The detection algorithm computes detection statistic with a bank of 2-D linear filters $z(t)=\max -p |u(t,\lambda \downarrow p)|/2$

Signal Recognition

Feature extraction:

The prominent visual features of grunts are the three or more harmonics separated by 50-80 Hz in the frequency domain. We extract these features with two spectrogram transformations. The first is:

 $S \downarrow 1(t) = \sum f = 1 \uparrow N \downarrow f = X(f,t)$

where X(f,t) is the spectrogram in dB.

The second is based on the 2-D function:

 $P(f,\alpha) = \sum \tau = t - 0.05 \uparrow t + 0.05 \ M(f + \tau \alpha, \tau)$

Feature extraction:

We recognize signals with features extracted from $S\downarrow 1$ (*t*) and $P\downarrow 1$ (*f*):

 $x \downarrow 1 = T$, (duration) $x \downarrow 2 = f \downarrow P$, (peak frequency) $x \downarrow 3 = SNR$, (SNR) $x \downarrow 4 = \delta \downarrow f$, (inter-harmonic interval)

 $x\downarrow 5 = \min -m = 1..3 \ r \downarrow m$, (peak-to-min ratio) $x\downarrow 6 = A \downarrow max / A \downarrow min$, (peak-to-peak ratio)

Signal Recognition

Feature testing:

We tested features using a maximum likelihood algorithm with subjective likelihood functions. We assigned the feature vector $\mathbf{x} = [x \downarrow 1, ..., x \downarrow 6] \uparrow T$ to Atlantic cod when

 $W(\mathbf{x}) = exp\{-\sum n=1 \uparrow 6 \mid d \downarrow n \uparrow 2\} \geq C$

where

 $\begin{aligned} d \downarrow n \uparrow 2 = \{ \blacksquare 0, x \downarrow n \in [m \downarrow n1, m \downarrow n2] @ (x \downarrow n - m \downarrow n1) \uparrow 2 / 2 \sigma \downarrow n1 \uparrow 2, x \downarrow n < \\ m \downarrow n1 @ (x \downarrow n - m \downarrow n2) \uparrow 2 / 2 \sigma \downarrow n2 \uparrow 2, x \downarrow n > m \downarrow n2 \end{aligned}$

is the *n*th weighting function specifying subjective likelihood function.

Signal Recognition

Feature testing:

Subjective likelihood functions of (a) duration, $x \downarrow 1$, (b) SNR, $x \downarrow 3$, (c) peak-to-min ratio, $x \downarrow 5$, (d) peak-to-peak ratio, $x \downarrow 6$.

The 7th International DCLDE Workshop

Test Results

Performance of the automatic detection and recognition algorithm

Data set	N _{tot}	N _{sig}	N _{noise}	N _d	P _d	N _{fa}	P _{fa}	AUC
MARU 1	9722	7353	2369	5625	0.76	26	0.011	0.96
MARU 2	940	8	932	8	1	17	0.018	0.99
MARU 3	1175	18	1157	18	1	30	0.025	0.99
SNR < 3 dB	15057	905	14152	382	0.42	118	0.008	0.947
SNR 310 dB	15751	5710	10041	4564	0.8	874	0.087	0.935
SNR > 10 dB	2630	810	1820	751	0.93	294	0.161	0.955
Total	33438	7425	26013	5697	0.77	1286	0.049	0.951

The 7th International DCLDE Workshop

Thank you!

Ildar.urazghildiiev@jasco.com

The 7th International DCLDE Workshop