THE 7TH INTERNATIONAL WORKSHOP ON DETECTION, CLASSIFICATION, LOCALIZATION, & DENSITY ESTIMATION 13 – 17 JULY, 2015. LA JOLLA, CA

Automatic analysis of the underwater soundscape characteristic to the Australian Northwest Shelf

Shyam Madhusudhana Christine Erbe Alexander Gavrilov

Outline

- Current PAM trends & how this work differs
- Significance
- Challenges
- Expectations
- Solution Plan
- Current state of affairs

Motivation ... (?)

PAM – Targeted Solutions

Marine Mammals

Snapping shrimp

Fish (type 1) chorus

Fish (type 2) chorus

Mooring

Vessel noise

Rain

Wind

Our Goal – Bigger Picture

Significance

- Unified approach to acoustic monitoring
- Environmental impact assessments
 - Before and after conditions
 - Risk of masking
- Observe ecosystem dynamics
- Archival data historical perspective
- Cues to effects of climate change

Challenges

- Huge Repertoire
 - sounds of interest (how would you define noise?)
 - detection/classification/recognition methods
- Variations
 - source behaviour
 - channel effects
- Unknown sounds & sounds previously not encountered

Desired Characteristics

- Robustness
 - varying interference levels
 - vocalization variations
- Flexibility
 - varying data collection methods
- Adaptability
 - recording sites
- Throughput
 - near real-time speeds

Solution - Where to start?

Spectrogram Correlation

Matched Filters

Spectral Analysis

Hidden Markov Models

Teager-Kaiser Energy Operator

Neural Networks

Dynamic Time Warping

Wavelet Transforms

Rule-based Classifiers

Discriminant Function Analysis

Cepstral Features

Entropy Analysis

Group Delay Function

Gaussian Mixture Models

Hilbert-Huang Transform

Spectrogram Edge Detection

Classification & Regression Trees

Alternate view of the problem

Context - big & small

Detect, then classify ...

First phase - Detection

- Tonal Narrowband signals
- Continuous Broadband signals
- Very-short duration signals

System Architecture

* Madhusudhana et al., J. Acoust. Soc. Am. 137 (2015)

Thank you

• Questions?

