# Single hydrophone multipath ranging: Dealing with missing and spurious arrivals

Eva-Marie Nosal and Tom Fedenczuk
Department of Ocean & Resources Engineering
School of Ocean and Earth Science and Technology
University of Hawaii
http://www.soest.hawaii.edu/ore/faculty/nosal





#### Single hydrophone localization

- Data recorded on a single hydrophone can (sometimes) be used to estimate animal location
  - Range + depth for a flat bottom
  - 3D location for azimuth dependent bathymetry
  - Impulsive (or highly stereotyped), high-frequency vocalizations
  - Treat reflection at arriving at a "virtual receiver"



#### "Virtual" receiver





Aubauer et al (2000) JASA 107: 2744-2749

Cato (1998) JÀSA 104: 1667-1678

Thode et al (2002) JASA 112: 308-321

Nosal & Frazer (2006) Appl. Acoust. 87: 1187-1201

Tiemann et al. (2007) JASA 120: 2355-2365

#### Motivation

- Most existing methods require that multipath arrivals are detected and identified/classified (as direct, bottom-reflected, surface-reflected etc).
- This can be difficult & highly time/user-intensive
  - Incorrectly labeled arrivals
  - False arrivals (e.g. with multiple animals)
  - Missed arrivals (e.g. due to directionality)
- My goal:

Automation & robustification!

- South of Honolulu, Oahu
- 30 m seafloor depth
- Hydrophone tethered 5m off seafloor
- 250 kHz sampling rate
- [System details in Tom Fedenczuk's talk]













#### Click train





## Theory



Click 12 3 multipath arrivals





Click 02 2 multipath arrivals





Click 13 4 multipath arrivals





## Thank you

- Funding
  - Office of Naval Research (ONR), Mike Weise &
     Dana Belden
- Engineering/hardware
  - Teknologic Engineering LLC

- Sea state:
  - 9.7s dominant period swell
  - 0.75m significant wave height
  - 5 knot winds
- Sound speed almost constant at 1536 m/s
- Transmit signals:
  - FW sweeps, m-sequences
  - 10-40 kHz
  - ~90dB re. 1 $\mu$ Pa
- Cross correlate transmit signals with (filtered) received signals → Impulse











 Surface reflections can vary rapidly and significantly in arrival time, shape, and magnitude due to dynamic surface wave-field and wave focusing