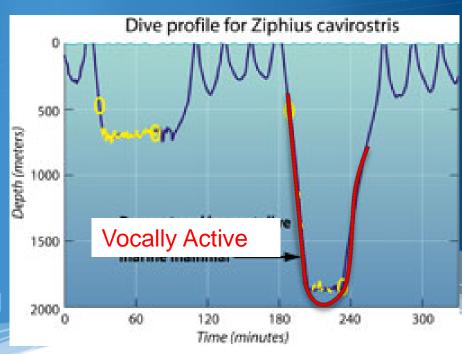
From Clicks to Counts: Using passive acoustic monitoring to estimate the density and abundance of Cuvier's beaked whales in the Gulf of Alaska (GoA)

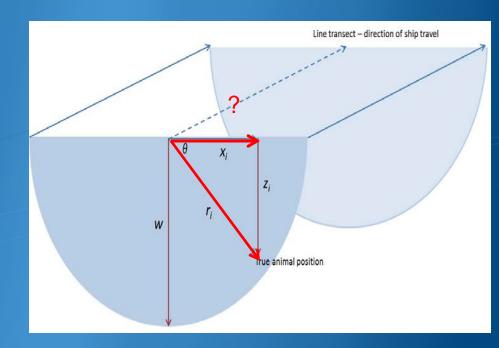
Tina M. Yack^{1*}, Shannon Coates¹, Danielle Harris², Len Thomas², Thomas Norris¹, Elizabeth Ferguson¹, and Brenda K. Rone³

- 1. Bio-Waves, Inc. 364 2nd Street, Suite #3, Encinitas, CA 92024
- 2. Centre for Research into Ecological and Environmental Modelling, The Observatory, Buchanan Gardens, University of St. Andrews, St. Andrews, Fife, KY16 9LZ, United Kingdom.
- National Marine Mammal Laboratory, Alaska Fisheries Science Center 7600 Sand Point Way N.E., Seattle, WA 98115-6349 & Cascadia Research Collective, 218 1/2 W 4th Ave., Olympia, WA 98501

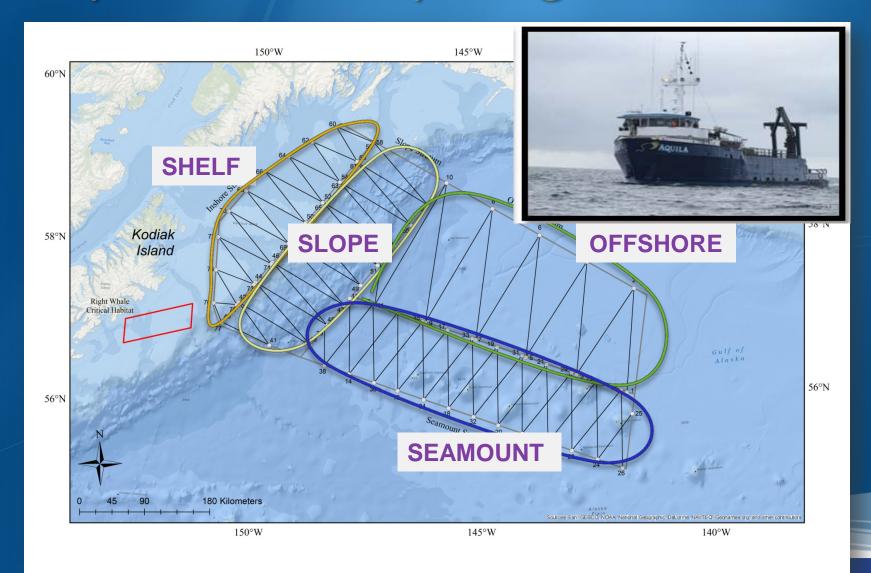
Objectives


- Detect and localize beaked whales and obtain 'perpendicular' distances to individual animals (e.g. acoustic localization).
- Compare 2 distance sampling analytical methods; (1) conventional distance sampling (cds) and (2) distance sampling using a depth distribution model (dsddm) to estimate density and abundance of Cuvier's beaked whales.

Beaked Whale Ecology

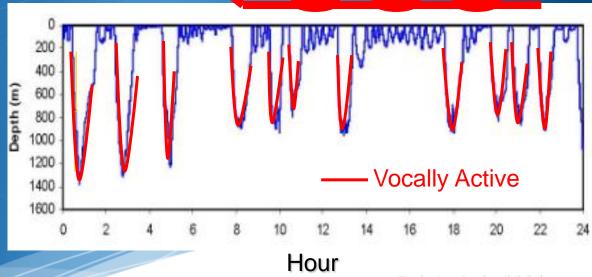

- 3 species of beaked whales occur in GoA
 - -Cuvier's beaked whale (*Ziphius cavirostris*), Baird's beaked whale (*Berardius bairdi*), Stejneger's beaked whale (*Mesoplodon stejnegeri*).
- > Feed on squid & benthic fish
- ➤ Deep-diving: Foraging dive durations > 1 hr @~2000 m
- ➤ Often occur in small groups
- Cryptic surface behavior
- Vocally active during foraging dives

Tyack et al. 2012 http://www.whoi.edu/main/newsreleases/2006?tid=3622&cid=16726


The Problem with Deep Divers

- Unknown animal depth = unknown horizontal distance.
- Problem for any species where dive depths are similar to the detection range.
- Ignoring the problem overestimates distances and underestimates density.

Study Area & Survey Design

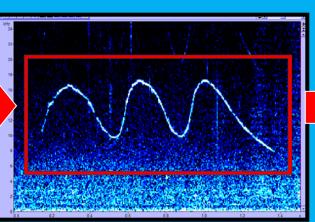

Methods

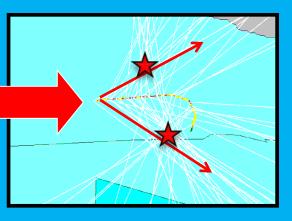
Survey Methods

Acoustic Survey: (24 hrs)

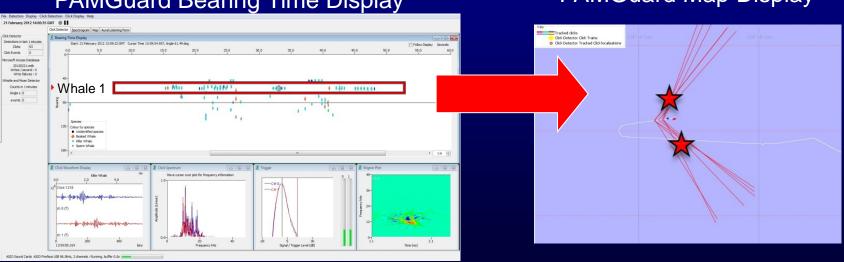
Baird, et al. 2005.

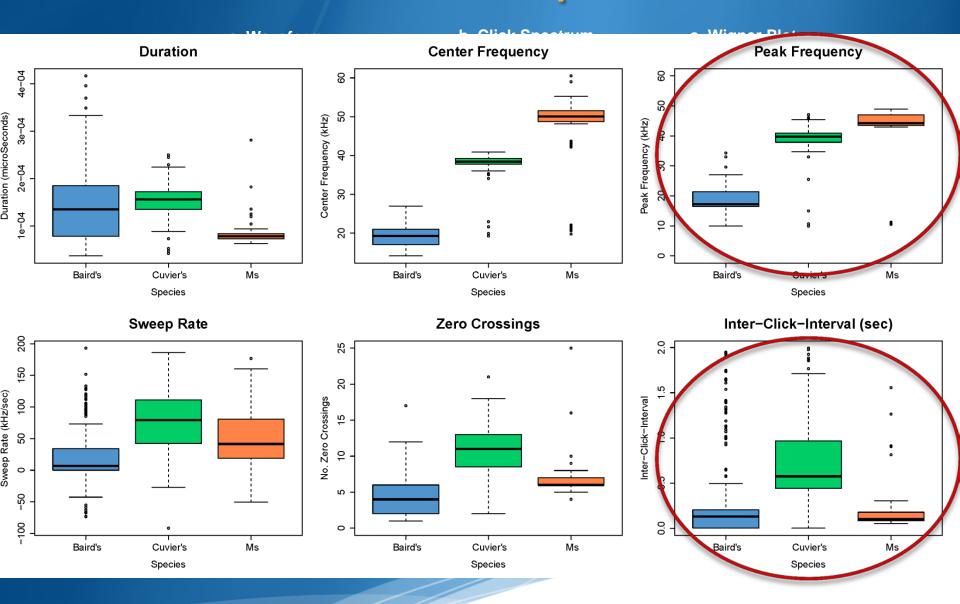
Our Home In the Acoustics Lab



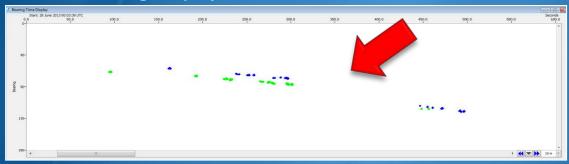

Manual Detection/Tracking

Ishmael

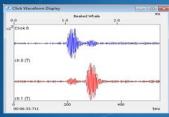

WhalTrak II


Semi-Automated Detection/Tracking

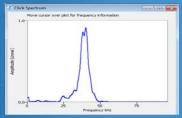
PAMGuard Map Display

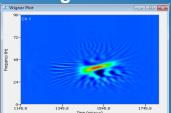


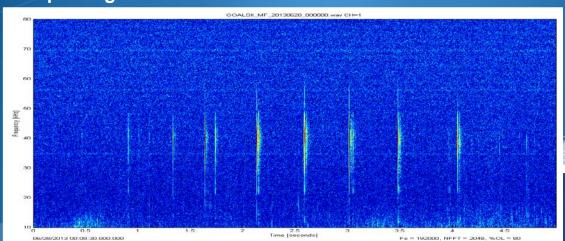
GOA Beaked Whale Species



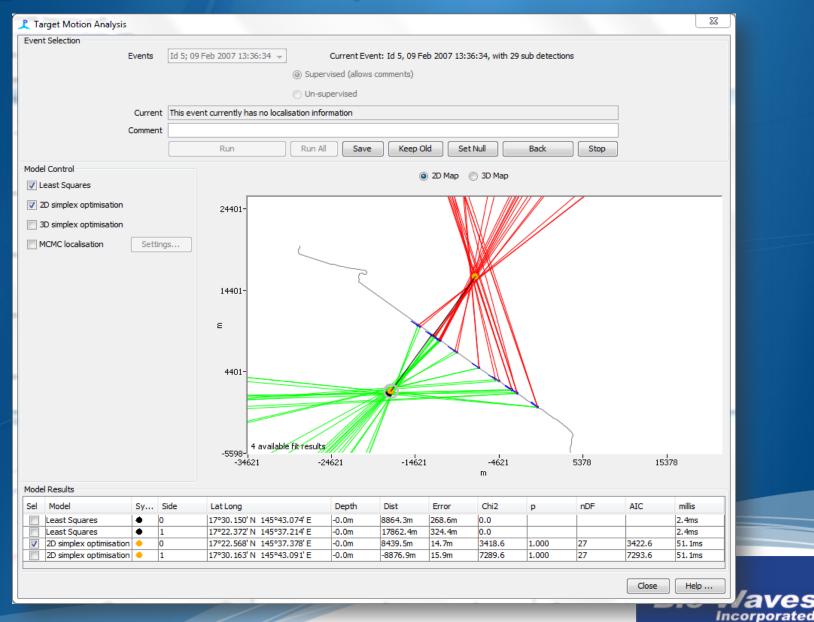
PAMGuard's 'ViewerMode'


I. Time/Bearing Display

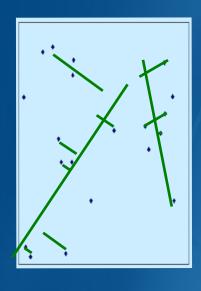

II. Waveform

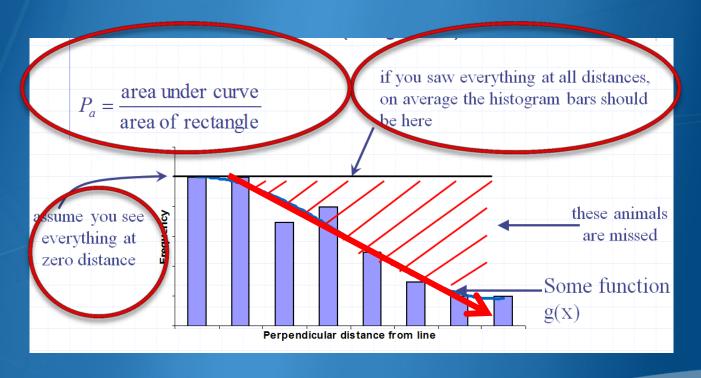

III. Click Spectrum

IV. Wigner Plot



V. Spectrogram

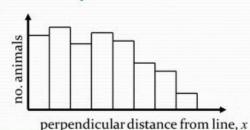



Target Motion Analysis in 'ViewerMode'

Distance Sampling

$$\hat{D} = \frac{n}{a\hat{P}_a}$$

Distance Sampling


Distance sampling (with acoustic data)

Distances, x – perpendicular (lines)

Fit a detection function, g(x), with parameters, ϕ , using maximum likelihood. Assume $\pi_x(x)$ is known

Given an estimator for g(x) i.e., $\hat{g}(x)$, estimate the average probability of detection

Correct *n* for missed detections using *P* and estimate density, *D*

 $L(\phi) = \prod_{i=1}^{n} \frac{g(x_i)\pi_x(x_i)}{\int_0^w g(x)\pi_x(x) \, dx}$

$$\hat{P}_a = \int_0^w \hat{g}(x) \pi_x(x) \, dx$$

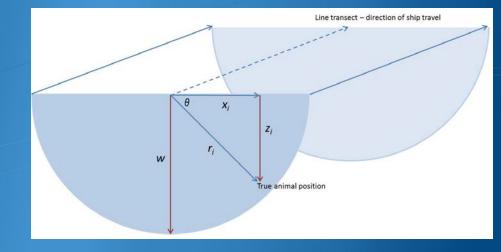
$$\hat{D} = \frac{n}{a\hat{P}}$$

ces, uld

nimals

ction

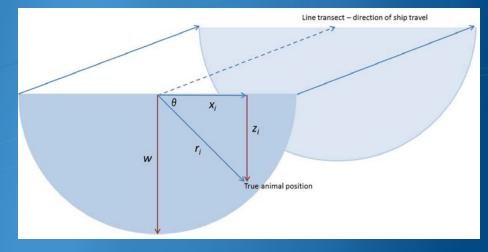
Methods


- Conventional Distance Sampling
 - Distance 6.2 software

- DSDDM Distance 6.2 software
 - Custom R code: Developed by Danielle Harris

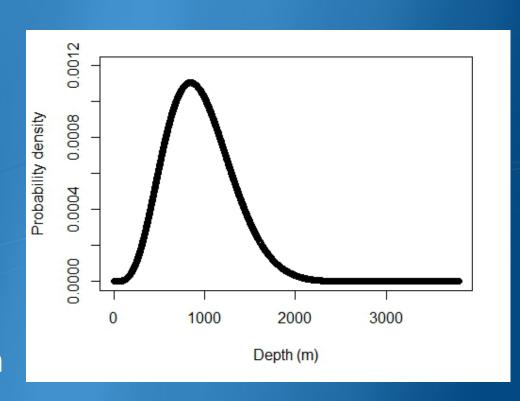
The Problem with Deep Divers

- Unknown depth = unknown horizontal distance.
- Problem for any species where dive depths are similar to the detection range.
- Ignoring the problem overestimates distances and underestimates density.



The Solution

Use DSDDM

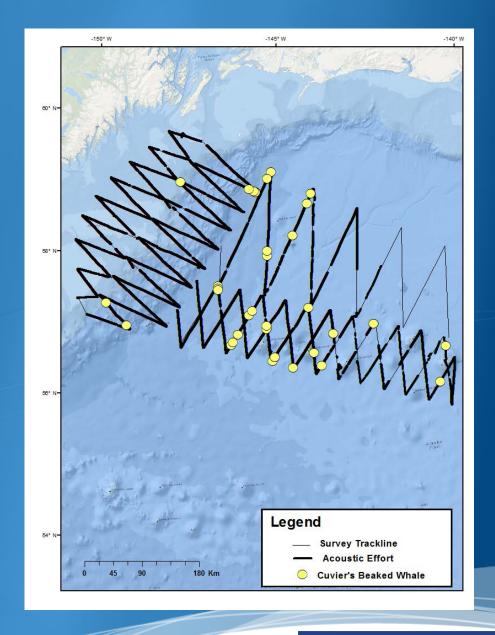

- Issue can be addressed by incorporating a depth distribution into the algorithm to estimate probability of detection.
- Algorithm then works with the slant ranges to animals.
- Still expect horizontal distribution of animals from the transect line is uniform.

Methods

- DSDDM Methods
 - A scaled beta
 distribution used to
 describe depth
 distribution of
 vocalizing animals
 - Based on data from Tyack et al. (2006)
 - Half normal detection function fitted.
 - Model requires constant survey area depth input.

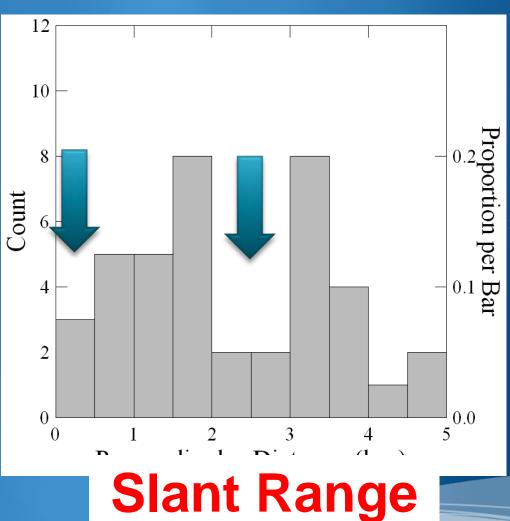
Results

Survey Results

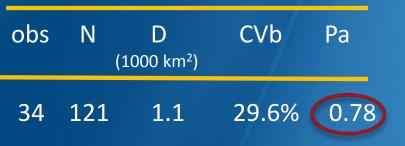

- Survey Effort included:
 - Acoustic Effort: 6,304 km, 426 hours
 - Visual Effort: 4,155 km
- Cuvier's beaked whale encounters included:
 - Acoustic Encounters: 47 (40 localized individuals)
 - Visual Encounters: 1 (1 individual)

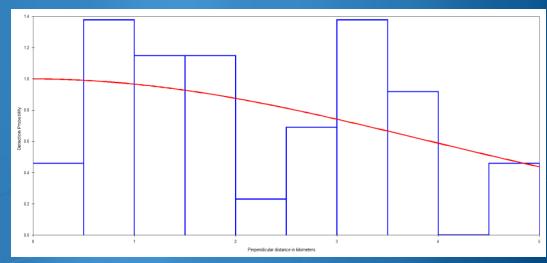
Species Encountered	No. Encounters	No. Localized Encounters	A۱	No. Encounters On Effort vailable for Distance Sampling
Stejneger's beaked whale	14	10		10
Baird's beaked whale	32	29		18
Cuvier's beaked whale	47	43		40*

Results


- Encounter rates varied by strata
 - Seamount strata contained majority of encounters
- Samples by strata
 - Offshore = 8
 - Seamount = 26
 - Slope = 6

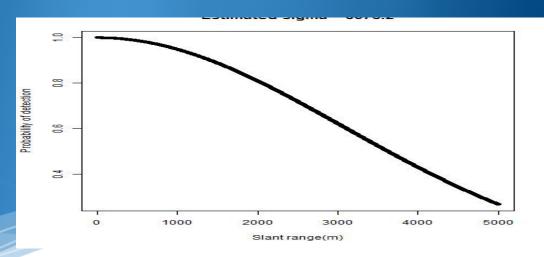
Results


Localizations = 40 total used in analysis



Distance Model Results - Comparison

Half Normal - No Slope Stratum

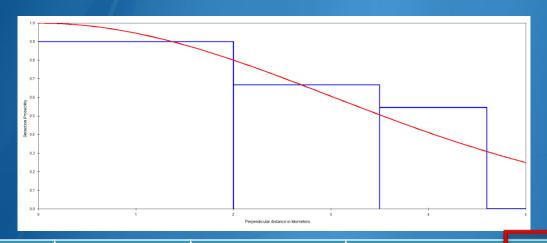


Half Normal - DSDDM

* Density/Abundance estimates shown are not corrected for g(0) ≠ 1; g(0) will be calculated for this survey using methods from Barlow et al. 2013.

Results – Model Comparison

CDS resulted in 20% 'underestimate' of abundance compared to DSDDM


	CDS	DSDDM	CDS	DSDDM	CDS	DSDDM
	Offshore	Offshore	Seamount	Seamount	Pooled	Pooled
Obs	8	8	26	26	34	34
N	57	68	64	77	121	145
N 95% CI	(7-115)	(0-130)	(30-120)	(38-150)	(57-200)	(68-265)
CVb	48.1%	55%	33.3%	34%	29.6%	31%

Density/Abundance estimates shown are not corrected for $g(0) \neq 1$; g(0) will be calculated for this survey using methods from Barlow et al. 2013.

Barlow, J., P. L Tyack, M. P Johnson, R. W. Baird, G. S Schorr, R. D Andrews, and N. A. de Soto. 2013. Trackline and point detection probabilities for acoustic surveys of Cuvier's and Blainville's beaked whales. *The Journal of the Acoustical Society of America* 134(3): 2486-2496.

Can we account for slant range by binning data??

	CDS-BIN Offshore	DSDDM Offshore	CDS-BIN Seamount	DSDDM Seamount	CDS-BIN Pooled	DSDDM Pooled
N	65	68	74	77	139	145
N 95% CI	(20-208)	(60-105)	(40-136)	(60-105)	(72-267)	(119-204)
CVb	53%	52%	31%	30%	32%	27%

^{*} Density/Abundance estimates shown are not corrected for $g(0) \neq 1$; g(0) will be calculated for this survey using methods from Barlow et al. 2013).

Discussion

Model Comparison/Selection

GOALS II – Density

Binning Data can be used address slant range issue until more comprehensive and flexible DSDDM methods are readily available: Resulted in only ~4% 'underestimation' vs. ~20% when data was not binned

า² า² ท²

Conclusions

- Acoustic monitoring methods are a valuable resource for estimating abundance of deep-diving, continuously clicking species.
- Will provide the first line-transect acoustic density estimates for Cuvier's and the first estimates in the GoA.
- DSDDM enabled us to characterize 'underestimation bias' and will be a valuable tool to use in future effort.
- Applicable to other species
 - Baird's acoustic encounters on effort: 18
 - Stejneger's acoustic encounters on effort: 10

Future Work Needs

- Correct estimates for g(0) ≠ 1 (Barlow et al. 2013; g(0) = 0.28 for Cuvier's).
- Tagging of beaked whales in the GoA to provide ground truth of DSDDM depth distribution and proportion of time spent clicking for GoA.
- Continued development of the DSDDM methods to extend to other model types, account for variable depth and allow for multi-covariate distance sampling etc.
- Habitat modeling

Thank you!

Sponsors: We would like to acknowledge the **U.S. Navy Fleet Forces Command** and **NAVFAC-Atlantic** for sponsoring the survey and analysis effort, and **HDR**, **Inc**.(*especially Kristen Ampela*) for support and coordination of all project logistics.

Advice & Support: Douglas Gillespie and Jay Barlow

A special thank you to the tireless and dedicated efforts of the survey acousticians;, Jessica Crance, and Dawn Grebner. A special thank you to John Calambokidis and Cascadia Research Collective for survey planning, coordination, and support. We would also like to thank all of the participants of the survey; Jeff Foster, Annie Douglas, Michael Richlen, Jennifer Gatzke, Ernesto Vasquez and Bridget Watts, and the Captains and crew of the R/V Aquila.

Research

Questions?

