

Detection and propagation range of fin whale calls off Gulf of Cadiz

Andreia Pereira^{1,2,3}, Danielle Harris², Len Thomas², Peter Tyack³, Luis Matias¹

¹Instituto Dom Luiz, Sciences Faculty, University of Lisbon, Portugal
²Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, Scotland, UK
³Sea Mammal Research Unit, University of St Andrews, St Andrews, Scotland, UK

DCLDE WORKSHOP San Diego, 13th July 2015

Study area and dataset

17 OBSs (out of 24)

One day of data (12/21/2007)

OBS04 the 'focal' instrument

Methods

- Sound detection by spectrogram correlation (Mellinger & Clark 2000)
- Sound search between OBSs limited to a 1.5 km/h sound speed

Call search

39 calls
Automated vs manual detection
'Match rate' & Regression

Sequence search

6 calls (intervals: 14, 13, 13, 13, 27)

Results and considerations

1. Call detection:

Differences between automated and manual detection

Degree of directionality of fin whale call propagation

2. Sequence detection:

No detection found on other OBSs at the expected arrival time

