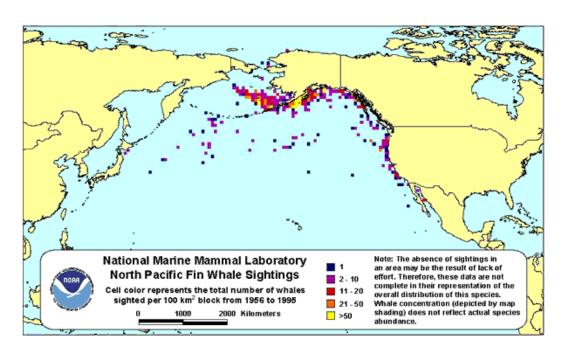
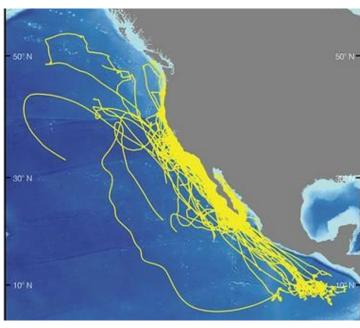


Passive Acoustic Monitoring





- Blue whale and fin whale population sizes are declining.
- Vocalizations found from passive acoustic monitoring can provide massive amounts of data on population sizes and migratory patterns.

A Problem

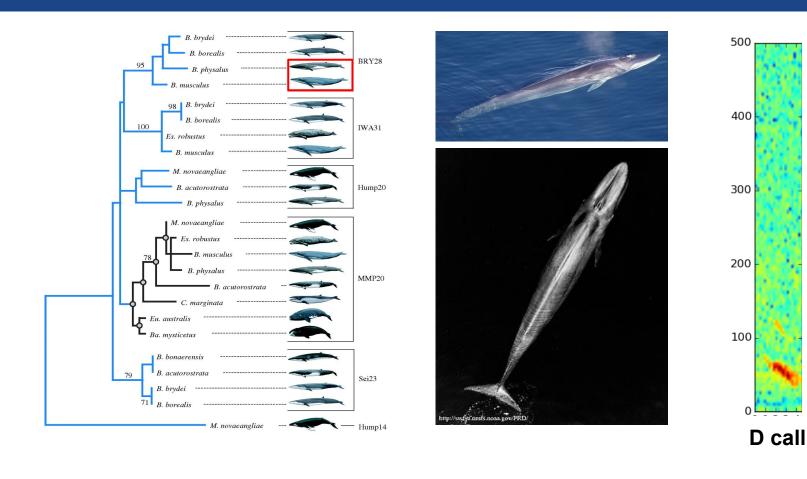
"Since the fin whale detectors can be triggered by blue whale calls, a separate detection algorithm for blue whales is being developed to allow for differentiation between the two."

Weirathmueller, Wilcock, Soule (DCLDE 2011)

"Finally, ambiguity could arise in distinguishing blue whale D calls from fin whale 40-Hz calls in an LTSA even though D calls have a distinctly broader bandwidth (Oleson et al. 2007)"

Širović, Williams, Kerosky, Wiggins, and Hildebrand (2013)

Fin Whales and Blue Whales



- Closely related species, so call production may be similar
- Evidence suggests that the fin whale 40-Hz call may be feeding call, similar to the blue whale D call

(Watkins (1981); Sirovic, Williams, Kerosky, Wiggins, and Hildebrand (2013))

500

400

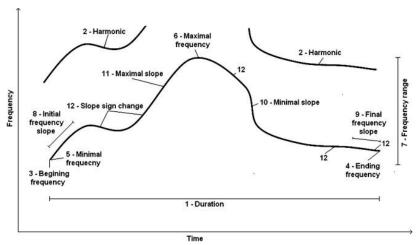
300

200

100

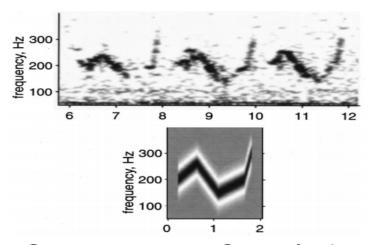
40-Hz

Whistle Classification



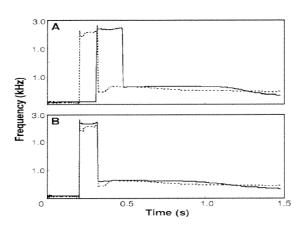
Feature Selection

(Gannier et al., 2000)



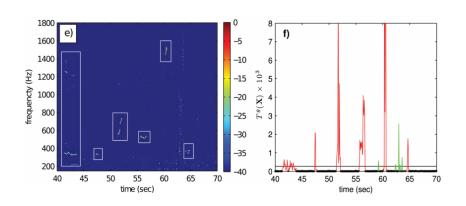
Spectrogram Correlation

(Mellinger & Clark, 2000)



Dynamic Time Warping

(Deecke & Janik, 2006)

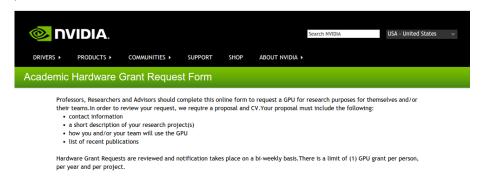


Generalized Power-Law

(Helble, Ierley, D'Spain, Roch, Hildebrand, 2012)

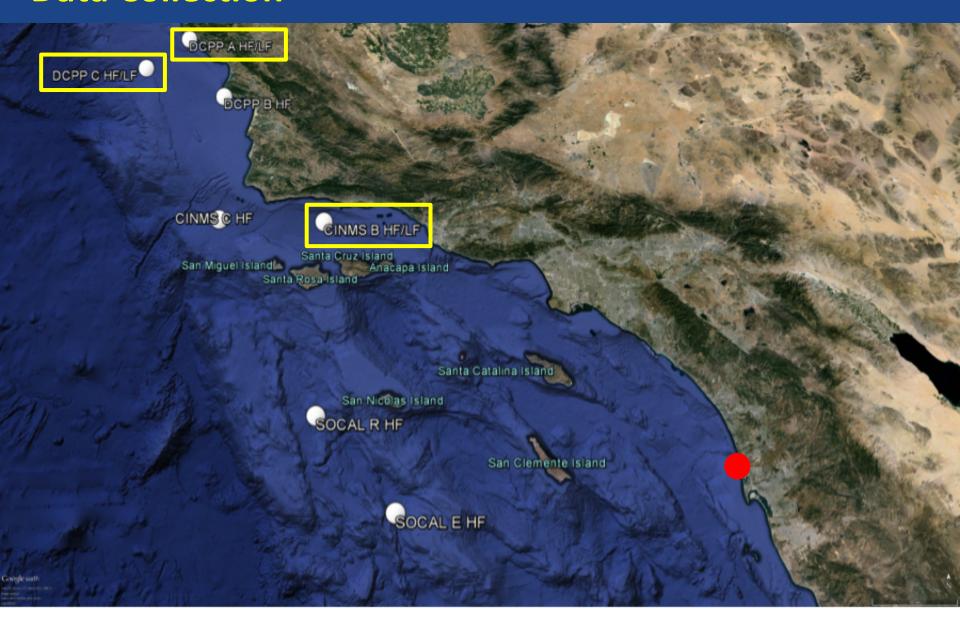
GPU and Deep Learning Packages

- Shallow Network:
 - Recognizing transient low-frequency whale sounds by spectrogram correlation (Mellinger, Clark 2000)
- Deep Network:
 - Practical deep neural nets for detecting marine mammals (Nouri, DCLDE 2013)



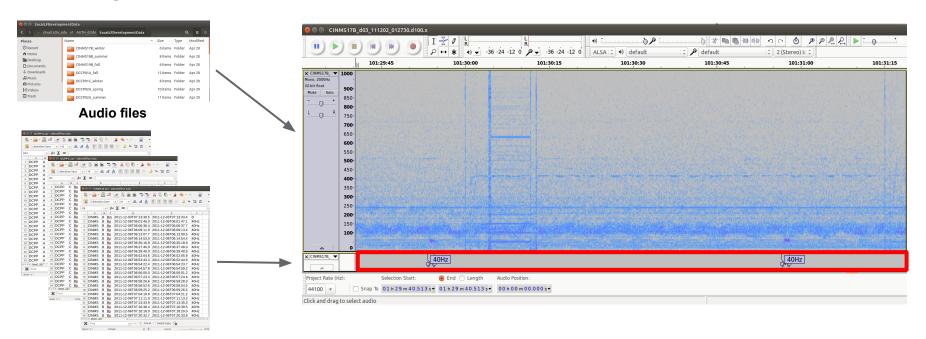
Academic Hardware Grant Request Form

Data Collection



Dataset Creation

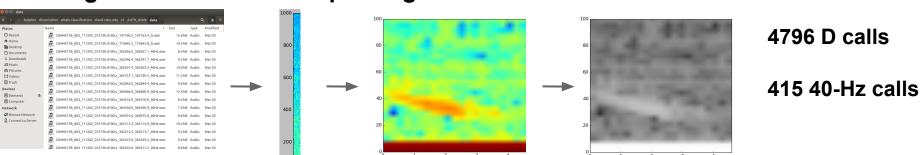
Creating annotation files for each audio file for visual inspection



Annotations

All vocalizations

Creating audio dataset and spectrogram dataset

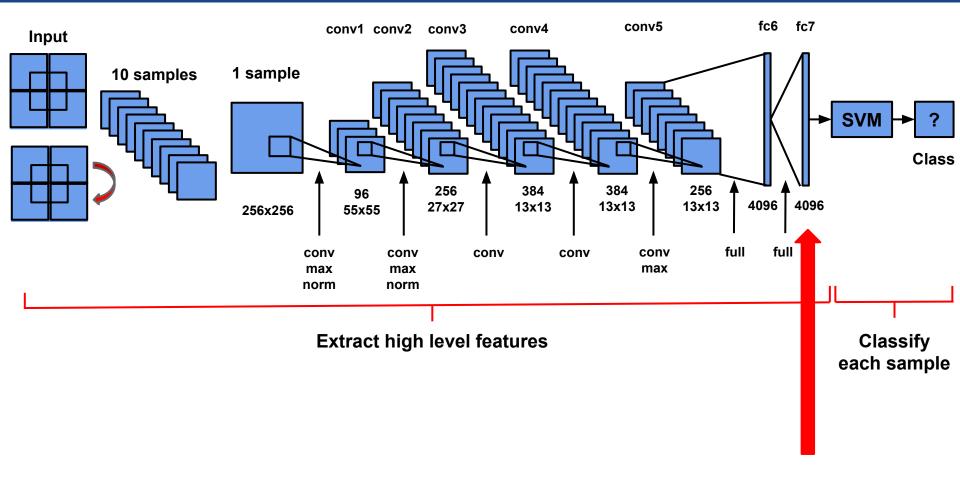


Spectrograms (<100 Hz)

Scaled (0-255) as image

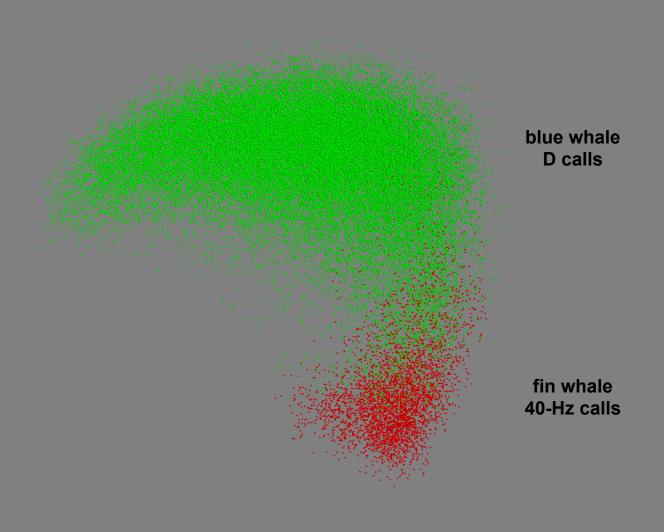
8

AlexNet + SVM

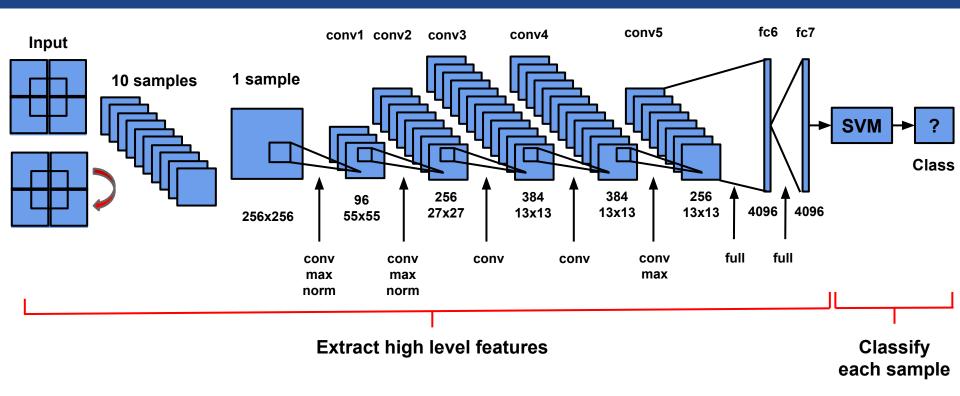


4096-dim feature vectors

fc7 Feature Vectors in 2D (PCA)



AlexNet + SVM



- Linear SVM (C=0.0625)
- 10-fold cross-validation
- For each image, classify each sample as 0 (fin) or 1 (blue)
 - Take average of 10 samples and label call blue if > 0.5

Results

Confusion Matrix

Predicted True	Blue whale	Fin whale
Blue whale	4738	58
Fin whale	66	349

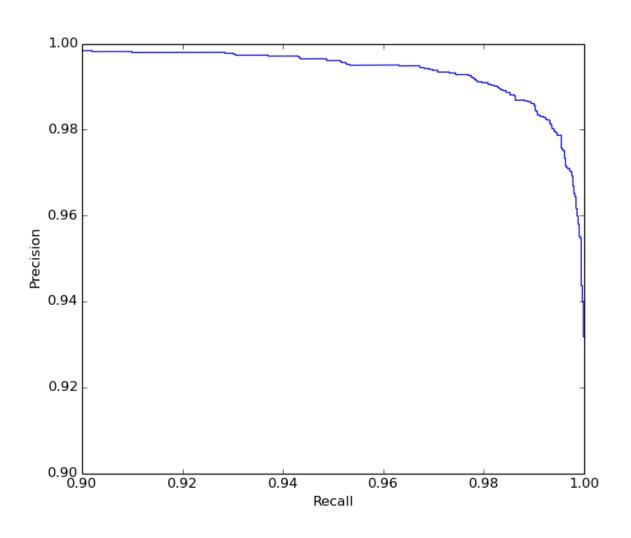
97.62% Accuracy

For blue whales: 98.63% Precision

98.79% Recall

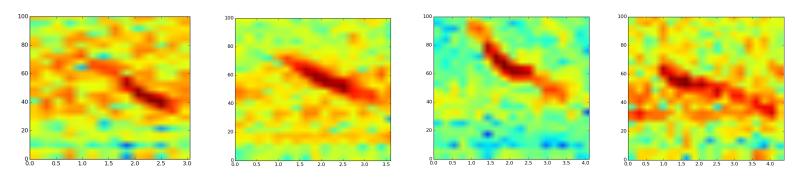
Results

Precision Recall Curve

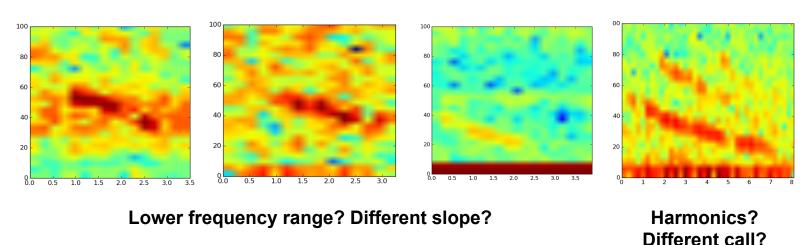


Results

Correctly classified blue whale D calls



Misclassified blue whale D calls



Future Directions

- Compare this method with other classification methods
- Clean up noise in spectrogram before classification
- Obtain more data from noisier environments to make the detectors more robust
- Add in detection: Use GPL detector (Helble et al. 2012) and then classification on the found calls.
 - Determine the time savings for users

Contributions

- Created more targeted classification datasets
- Used deep learning methods for a novel whistle classification task
- Very good performance in accuracy, precision, and recall
- Easy to modify researchers can add in additional categories: 50-Hz calls and other false tonal detections

Support

Elizabeth Vu Tyler Helble John Hildebrand **Edwin Hutchins Christine Johnson**

Funding

