The production-based approach for the study of humpback whale songs. Overview and Perspectives

7 th Workshop DCLDE SCRIPPS, San Diego July, 13th 2015

CAZAU Dorian

Institut Jean le Rond d'Alembert, Equipe Lutherie-Acoustique-Musique University Pierre and Marie Curie (Paris, France)

Olivier ADAM (UPMC, U-Psud, CNRS) Joy S. REIDENBERG (Mount Sinaï School, NY) Paul R. WHITE (ISVR, Southampton)

Summary

- I. Background : Different approaches for classifying HW sound units
 - 1. Hierarchical approach
 - 2. Computational approach
 - 3. Production-based approach
- II. **Presentation** of the production-based approach
 - 1. Anatomical review
 - 2. Biomechanical modeling
 - 3. Signal processing

III. Perspectives

- **1**. Potential applications
- 2. Conclusion

I – Background on approaches to classify humpback whale sounds

Payne's approach (1)

Definitions (Payne, 1971) :

- Sound unit : minimal continuous sound ;
- **Song** : ordered sequences of individual sound units separated by gaps of silence

Payne's approach (2)

Definitions (Payne, 1971) :

- **Phrase** : succession of few sound units ;
- Leitmotiv : repetition of same phrases in a song

Payne's approach (3) Exemple of a manual classification of sound units

From Au et al. (2006)

Cazau, D.- Production-based approach for HW acoustic behavior

Computational approach (1)

Characteristics

- Built objective, automatic, time-saving methods
- Baseline surveys
 - Suzuki et al. (2006) used information theory techniques to study song structure ;
 - Mazhar et al. (2007) studied individual recognition of HW with SVM
 - Ou et al. (2013) developed a cluster-based learning to classify sound units;

Computational approach (2) Exemple of a clustering of sound units

From Ou et al. (2013)

Cazau, D.- Production-based approach for HW acoustic behavior

Production-based approach (1)

- Observations from data
 - Variable precary structure of sound units
 - Presence of singularities (e.g. vocal non-linearities)

Idea of a sound continuum (Mercado, 2010)

Production-based approach (1)

II – Overview of the production-based approach

Anatomical view: from the outside

Cazau, D.- Production-based approach for HW acoustic behavior

Anatomical view: from the inside

From Cazau et al. (2013)

Four physiological configurations of the sound generator (*Cazau et al., 2013*)

a. Configuration 1

Config 1 : air source are the lungs or the LS, with opened nasal pipes

Config 2 : air source is the lungs , with sealed U-folds

Config 3 : air source are the lungs or the LS, with closed nasal pipes

Biomechanical measures

	$L_0 (\mathrm{cm})$	$T_0 \ ({\rm cm})$	$D_c \ ({\rm cm})$	$E~(\mathrm{kPa})$	ν	$\rho~({\rm kg.}m^{-3})$	$\eta~({\rm Pa.s})$
U-folds cover	6	1	0.2	20140	0.4	1020	1
U-folds body	6	1	1.8	33060	0.4	1020	1
CCF	4	10	0.6	20000	0.4	1020	1

Static modal analysis

First two eigenmodes of the **UF** (left) and the **CCF**

Determining fundamental frequency range

A 3D model of whale acoustic radiation for **formant analysis (1)**

The finite-element method

Supra-laryngeal system

Use continuous equations projected on each finite element, with following advantages

- Smooth, complex and unified geometry
- Can perform mesh generation based on CT-scans
- Complexity of simulations (fluid-structure interaction) adjusted with the mesh resolution

A 3D model of whale acoustic radiation for **formant analysis (2)**

Cazau, D.- Production-based approach for HW acoustic behavior

Biomechanical model with two-masses

After Steinecke 1995

Mechanical equations of motion

$$m_i \frac{d^2 x_i}{dt^2} + R \frac{dx_i}{dt} + K x_i = F_c$$

Aerodynamics relations

$$p_m = p_s - \frac{1}{2} \rho u^2 (\frac{1}{a_m^2} - \frac{1}{a_s^2})$$
 (Bernouilli equation)

1-)

Glottal flow expression

 $p_m = p_2$

$$u_g = \frac{ca\min}{1-k_t} \left(-\frac{a\min}{A^*} - \left[\left(\frac{a\min}{A^*}\right)^2 + \frac{4(1-k_t)}{c^2\rho} \left(P_s^+ - P_e^-\right)\right]^{-0.5}\right)$$

VT coupling

$$p_{s-} = p_{s+-} \frac{\rho c}{A_s} u \qquad p_{i-} = p_{i++} \frac{\rho c}{A_i} u$$

Time-domain wave reflection method for **vocal non-linearities**

Understanding the physics behind frequency-jumps ...

Frequency-jump may be caused by a crossing-over between a formant and the fundamental frequency

Gliding fundamental frequency

3.5

6 (kHz) 2.5 The mysticetes whale « singing into a tube » experiment

1-scale physical model (project at ISVR)

Cazau, D.- Production-based approach for HW acoustic behavior

Detection of anatomy-related acoustic features

Detection of chaos and frequency-jumps

Acoustic analysis Chaoticity in vocalizations

Cazau, D.- Production-based approach for HW acoustic behavior

From functional anatomy to sound unit acoustic properties

Cazau, D.- Production-based approach for HW acoustic behavior

Time-dependent descriptors / identification of temporal events

 Temporal distributions of frequency jumps (on top) and chaos (on bottom) in two different songs

III – Conclusion & Perspectives

Conclusions and Perspectives

- Production-based approach to mysticete acoustic behavior;
- Connection between Anatomy Modelling Acoustics ;
- No anatomy-informed dataset for the moment

Perspectives : relating acoustic analysis with behavioural hypothesis

- Statistic analysis of certain call type occurrences in reference to specific context of sound production (- social function)
- Temporal distribution of anatomy-related acoustic features (- energy cost and vocal skills)
- Calf/adult and female/male vocal repertoire differences (- vocal performance and learning)
- Towards an individual-specific acoustic signature?

References

- Adam, O.; Cazau, D.; Gandilhon, N.; Fabre, B.; Laitman, J. T. & Reidenberg, J. S. New acoustic model for Humpback whale sound production, *Applied Acoustics*, **2013**, *7*4, 1182-1190
- Au, W. W. L.; Pack, A. A.; Lammers, M. O.; Herman, L. M.; Deakos, M. H. & Andrews, K. Acoustic properties of humpback whale songs, *J. Acoust. Soc. Am.*, **2006**, *120*, 1103-1110
- Cazau, D.; Adam, O.; Laitman, J. T. & Reidenberg, J. S. Understanding the intentional acoustic behavior of humpback whales: a production-based approach *J. Acoust. Soc. Am.*, **2013**, *134*, 2268-2273
- Lallemand, X., Latham, J. and Smith J. Building a Singing Whale ISVR project, May 2014
- Mazhar, S.; Ura, T. & Bahl, R. Vocalization based Individual Classification of Humpback Whales using Support Vector Machine OCEANS, 2007
- Mercado, E.; Schneider, J.; Pack, A. A. & Herman, L. M. Sound production by singing humpback whales J.
 Acoust. Soc. Am., 2010, 127, 2678-2691
- Ou, H.; Au, W. W. L.; Zurk, L. M. & Lammers, M. O. Automated extraction and classification of timefrequency contours in humpback vocalizations, *J. Acoust. Soc. Am.*, **2013**, *133*, 301–310
- Pace, F.; Benard, F.; Glotin, H.; Adam, O. & White, P. Subunit definition and analysis for humpback whale call classification *Applied Acoustics*, 2010, 71, 1107-1112
 Cazau, D.- Production-based approach for HW acoustic behavior

Thanks for your attention !