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Executive Summary  
 

Passive acoustic monitoring (PAM) provides extensive datasets to examine the behavioral 
response of cetaceans to anthropogenic sound. Using broadband passive acoustic monitoring, the 
full range of cetacean sounds and the sounds of naval and other anthropogenic sources are 
recorded. We have been collecting high-frequency PAM data in the Southern California 
(SOCAL) region since 2006. Within this dataset are many instances of anthropogenic sound as 
well as cetacean presence at the locations of naval training.  

We present a progress report on the detailed analysis of sonar impact on blue whales and beaked 
whales, and the development of methods to investigate the potential impacts of sonar and other 
anthropogenic activities on calling animals. The basis for this effort is previously collected PAM 
data from four sites in the years 2006 to 2015. Recording effort at these sites varied between 674 
and 2,284 days per site, resulting in 19 years of continuous acoustic recording during 79 
instrument deployments and 227 TB of acoustic data. As part of the work in this progress report, 
automated routines have been established and/or modified to detect and classify acoustic signals 
of blue whales (Balaenoptera musculus) and Cuvier’s beaked whales (Ziphius caviostris) as well 
as Mid-Frequency Active (MFA) sonar pings and explosions. This has the advantage to 
minimize bias known to occur when multiple human analysts annotate acoustic data manually. It 
will allow a finer granularity of acoustic detections, in the case of blue whales to the call level of 
B and D calls, beaked whales to the individual click level, for MFA sonar to single ping events, 
and for explosions to the single explosion level. With this granularity we will be able to compute 
detailed signal parameter descriptions for a subsequent multi-variate statistical analysis. The 
complete data preparation requires a total of ~1,100 days of computing time and ~300 person-
days of manual editing. We are currently about 66% of the way through this process. 

After this preparatory process is completed, future analysis will address the range ambiguity. 
Beaked whales have a narrow detection range of <2 km around the sensor yet blue whales can be 
heard over several tens of km. We will reduce detection range for blue whales to reach a range 
similar to beaked whales by selecting for high received level calls of animals near the sensor. 
Range of the MFA sonar source can be estimated assuming a nominal source level of 235 dB re 
1 µPa @ 1 m. In the case of a sonar detection, which tends to be much further away from the 
recorder than the animal, the received level at the recorder can be used as a proxy for the 
received level at the animal. We are in the process of determining appropriate thresholds for 
received levels to define and reduce this range and received level discrepancy. 

Several multi-variate statistical approaches will be explored to account for natural temporal and 
spatial variability in call densities, e.g., caused by species or population level variability in 
seasonality, habitat preference, behavioral context of calling, and individual variability. Equally, 
a statistical framework to document and quantify potential changes in the acoustic behavior due 
to MFA sonar needs to incorporate potential impact of other anthropogenic signals, such as 
explosions and ship noise. 
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I. INTRODUCTION 
 

The potential for anthropogenic sound to disrupt activities of marine mammals is an issue of 
concern to the Navy, particularly with regard to Mid-Frequency Active (MFA) sonar (NRC, 
2003). Traditional studies of anthropogenic impact have measured disturbance by either visually 
observing an absence of whales near a sound source, observing whales travelling away from a 
sound source, or whales acting in an unusual manner while exposed to a man-made sound. More 
recently, attaching electronic tags to the animals during controlled exposure experiments has 
allowed more detailed measures of reaction to disturbance (Tyack et al., 2011; DeRuiter et al., 
2013; Goldbogen et al., 2013).  

Passive acoustic monitoring (PAM) is an alternative approach to examine the behavioral 
response of marine mammals to anthropogenic sound. Acoustic recorders are used to document 
both the production of sound by the animals, and the presence of the potentially disturbing 
anthropogenic sound. PAM data overcome several of the limitations of controlled exposure 
experiments, namely the availability of realistic sound sources, the relatively small sample sizes 
on a limited range of species and the specter of possible research effects. To date, we have barely 
scratched the surface of the PAM data that are available for behavioral response research. 
Melcon et al. (2012) analyzed data from one species (blue whale), one call type (D call) at site M 
(Figure 1), covering a single season over a period of two years; their results suggest that naval 
sonar may suppress blue whale vocal activity at received levels of >120-130 dB re: 1µPa.  

The purpose of this effort is to expand the analysis of behavioral impact of sonar using PAM 
data collected in the SOCAL region to four strategic sites where there are long-term recordings 
and different levels of MFA sonar detections. A major advantage of these long-term data sets is 
the large sample size for signals of interest. There have been 100,000s of sonar pings recorded 
during these deployments. Their received levels at the recorders range from ~100 dB re: 1µPa up 
to 165 dB re: 1 µPa, thus providing a broad range of intensities to assess sonar impacts at 
different levels. 

The goal of this study is to examine existing PAM data for acoustic behavioral response of blue 
whales (Balaenoptera musculus) and Cuvier’s beaked whales (Ziphius caviostris) to sonar 
operations in an area of frequent naval activity. We will develop models to investigate the 
interplay between acoustic behavior and sonar parameters such as duration of sonar event, sound 
exposure level (SEL), and maximum received sonar sound pressure level (SPL). Within this 
report we will document progress in data preparation, on the development of automated detection 
methods, and in defining signal parameters for future model development. 

II. METHODS 

A.  Acoustic data collection 
Since 2006 high-frequency acoustic recording packages (HARPs) have been deployed in the 
Southern California Bight, the continental shelf region between Point Conception and the 
Mexican border. This area includes the Southern California Offshore Range Complex, a zone of 
frequent naval training exercises, with San Clemente Island as a focal point for much of this 
activity. HARPs recorded underwater sounds from 10 Hz up to 100 kHz, covering all cetacean 
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and anthropogenic signals of interest. Four sites (designated E, H, M, N) were chosen for the 
MFA sonar impact analysis (Figure 1) that have either high (H, N), medium (M), or low (E) 
numbers of MFA sonar detections and intensities (e.g., Debich et al., 2015). Previous ONR-
funded work showed that blue whale calls are regularly detected at these sites using PAM 
(Širović et al., 2015) and they are within primary habitat for Cuvier’s beaked whales in SOCAL 
(Baumann-Pickering et al., in prep.).  

 

 Figure 1. Acoustic recorder sites off Southern California used in this study.  

 

B.  Automated detection of acoustic signals 
We are in the process of detecting and classifying the acoustic signals with automated routines to 
minimize the bias known to occur when multiple human analysts annotate acoustic data 
manually. This additional processing will allow a finer granularity of acoustic detections, in case 
of beaked whales to the individual click level and for MFA to single ping event, and will thus 
enable detailed signal parameter descriptions to be computed.  

1. Cetacean signals 
Blue whale B calls (Širović et al., 2015) and Cuvier’s beaked whale echolocation click 
encounters (Baumann-Pickering et al., in prep.) recorded through the end of 2012 were 
processed previously under ONR grants. Additional years of data were analyzed as a part of this 
project’s effort and for Cuvier’s beaked whale density estimation effort also supported by U.S. 
Pacific Fleet (Hildebrand et al., 2016).  

Blue whale B and D calls 
Blue whale B calls were automatically detected using spectrogram correlation (Mellinger and 
Clark, 2000). This method cross-correlates a time-frequency kernel representation of a call with 
a spectrogram of the recording; a detection event occurs when the correlation value exceeds the 
specified threshold for a specified duration, in the case of this detector, 5 s. The performance of 
the automatic detector is affected by seasonal and inter-annual shifts in call frequency 
(McDonald et al., 2009) and seasonal changes in call abundance (Širović, 2016). To account for 
these changes and keep rates of missed and false calls as consistent as possible, multiple kernels 
and thresholds were used for each year and site. 
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To achieve a more complete view of blue whale calling behavior, an effort to detect blue whale 
D calls was also expended for this project. To automatically detect these, a generalized power-
law (GPL) detector (Helble et al., 2012) was adapted. A unique feature of the GPL detector is 
that it performs well on non-stereotypical calls, such as D calls. The detector was fine-tuned to 
perform at less than 9% missed call rate. However, all detections had to be verified to identify 
any false detections. The verification was performed using a graphical user interface tool that 
enables the analyst to review time-condensed spectrograms containing the detections and to 
accept or reject each detection. Through this process, only true calls remain in the dataset for 
subsequent analysis. 

Cuvier’s beaked whale FM pulses 
Beaked whales are known to produce frequency-modulated (FM) echolocation pulses that are 
distinguishable to the species or FM pulse type level (Baumann-Pickering et al., 2013b). Beaked 
whale encounters (start and end times of acoustic FM pulse bouts separated by one hour) were 
initially automatically detected and then classified to the species or signal type level with an 
analyst-assisted software (Baumann-Pickering et al., 2013b), also eliminating false encounters. 
The rate of missed encounters for this detector has been shown to be approximately 5% in 
SOCAL recordings. All Cuvier’s beaked whale acoustic encounters were reviewed in a second 
analysis stage to remove false detections of individual FM pulses and provide a consistent 
detection threshold. FM pulse detections occurred when the signal in a 10 – 100 kHz band 
exceeded a detection threshold of 121 dB pp re: 1µPa. FM pulses within the acoustic encounters 
were manually reviewed using comparative panels showing long-term spectral average, received 
level, and inter-pulse interval of individual FM pulses over time, as well as spectral and 
waveform plots of selected individual signals. Within each encounter, false detections were 
removed by manual editing, for instance, when the detections were identified as being from 
vessels, sonars, sperm whales or delphinids, owing to inappropriate spectral amplitude, inter-
click interval, or waveform. In addition, this step provided another check on beaked whale 
species classification, and remaining misidentified or false encounters were corrected or 
removed.  

 

2. Anthropogenic signals 

Mid-Frequency Active (MFA) Sonar 
Wiggins (2015) defined metrics for quantifying MFA sonar occurrence and levels within PAM 
data collected by HARPs. MFA sonar was determined to be comprised of constant-frequency 
and frequency modulated ‘pings’ that often occurred in groups of pings, termed ‘packets’ 
(Figure 2). These packets repeated with intervals >20s over periods of hours, termed ‘wave train 
events’. Parameters that were defined as relevant to describe pings were MFA sonar peak-to-
peak (pp) and root-mean-square (rms) received levels (RLpp and RLrms, respectively), sound 
exposure levels (SEL), and signal duration. Inter-ping and inter-packet intervals were examined. 
A cumulative SEL (CSEL) was defined as the sum of the ping SELs for each wave train event. 
All of these parameters may be relevant in the context of multi-variate statistical modeling as 
they each contain information of different granularity that may be explanatory for a potential 
acoustic response of blue or Cuvier’s beaked whales. 
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The Wiggins (2015) report identified the need for further automation of MFA sonar detections as 
manual identification of MFA sonar activity was required, resulting in considerable effort hours 
expended by trained analysts and potential discrepancies in analysis threshold and accuracy 
between analysts.  

As an improvement to this process, MFA sonar was detected using a modified version of the 
silbido detection system (Roch et al., 2011) designed for characterizing toothed whale whistles. 
The algorithm identifies peaks in time-frequency distributions (e.g. spectrogram) and determines 
which peaks should be linked into a graph structure based on heuristic rules that include 
examining the trajectory of existing peaks, tracking intersections between time-frequency 
trajectories, and allowing for brief signal drop-outs or interfering signals. Detection graphs are 
then examined to identify individual tonal contours looking at trajectories from both sides of 
time-frequency intersection points. ONR-funded modifications to the published system consisted 
of a noise regime change detection system, and statistical analyses of graphs and tonal contours 
for characteristics that removed 57% of the false positives with negligible impact on detected 
calls (MacFadden, 2015; MacFadden and Roch, in prep.).  

For MFA sonar detection, parameters in silbido were adjusted to detect tonal contours ≥ 2 kHz 
(in data decimated to a 10 kHz sample rate) with a signal to noise ratio ≥ 5 dB and contour 
durations > 200 ms with a frequency resolution of 100 Hz (Figure 3). The primary MFA sonar in 
use by the United States Navy, the AN/SQS-53C, is operated on surface ships and generates 
tones and sweeps having typical durations of 0.5 to 2 s with frequencies near 3.5 kHz, at nominal 
source levels of 235 dB re 1 µPa @ 1 m (United States Navy, 2008 ,Vol. 2). This type sonar 
dominates the data set used in this study; however, the filtering process and signal data rate in 
this detection process excluded a number of lower or higher frequency MFA sonar devices.  

In this frequency range, the detector frequently triggered on noise produced by instrument disk 
writes that occurred at 75 s intervals. Over several months, disk write detections dominated the 
detections, but they were eliminated using an outlier test. Histograms of the detection start times, 
modulo the disk write period, were constructed and outliers as identified by a non-parametric 

Figure 2. Example synthetic 
spectrogram from Wiggins (2015) 
showing a four-pings MFA sonar 
packet composed of two 
frequency-modulated and two 
constant-frequency pings. 
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outlier test (Emerson and Strenio, 1983) were discarded. This removed some valid detections 
that occurred during disk writes, but as the disk writes and sonar signals are uncorrelated, this 
process is expected to only have a minor impact on analysis. As the detector did not distinguish 
between sonar and other tonal signals within the operating band, analysts manually examined 
detection output. The manual examination was performed using a graphic user interface that 
displayed 30-min panels showing long-term spectral average, received level, and inter-detection 
interval of individual detections. Analysts would accept or reject contiguous sets of detections 
based on those displayed characteristics.  

 

 

Figure 3. MFA sonar ping detections. Detections (colored lines) are shown over a gray scale 
spectrogram. Detector has a 100 Hz resolution, while spectrogram is plotted with 10 Hz 
resolution. The MFA sonar pings are in general well detected, however some are fragmented, for 
instance, with multiple segments covering the long ping. 

 

Explosions 
Effort was also directed toward finding explosive sounds in the data including military 
explosions, shots from sub-seafloor exploration, and seal bombs used by the fishing industry 
(Figure 4). Explosions were detected automatically using a matched filter detector on data 
decimated to 10 kHz sampling rate. The time series was filtered with a 10th order Butterworth 
bandpass filter between 200 and 2,000 Hz. Cross correlation was computed between 75 seconds 
of the envelope of the filtered time series and the envelope of a filtered example explosion (0.7 s, 
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Hann windowed) as the matched filter signal. The cross correlation was squared to ‘sharpen’ 
peaks of explosion detections. A floating threshold was calculated by taking the median cross 
correlation value over the current 75 seconds of data to account for detecting explosions within 
noise, such as shipping. A cross correlation threshold of 3*10-6 above the median was set. 
Consecutive explosions had to be separated by at least 0.5 seconds to be detected. A 300-point 
(0.03 s) floating average energy across the detection was computed. The start and end above 
threshold was determined when the energy rose by more than 2 dB above the median energy 
across the detection. Peak-to-peak (pp) and root-mean-square (rms) received levels (RL) were 
computed over the potential explosion period and a time series of the length of the explosion 
template before and after the explosion. The potential explosion was classified as a false 
detection and deleted if: 1) the dB difference pp and rms between signal and time AFTER the 
detection was less than 4 dB or 1.5 dB, respectively; 2) the dB difference pp and rms between 
signal and time BEFORE signal was less than 3 dB or 1 dB, respectively; and 3) the detection 
was shorter than 0.03 or longer than 0.55 seconds. The thresholds were evaluated based on the 
distribution of histograms of manually verified true and false detections. A trained analyst 
subsequently verified the remaining potential explosions for accuracy. Explosions have energy as 
low as 10 Hz and often extend up to 2,000 Hz or higher, lasting for a few seconds including the 
reverberation. 

 

Figure 4. Two explosions, most likely seal bombs, are shown as (above) spectrogram, and 
(below) time series. 
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III.  PROGRESS 
 

The recording effort at sites H, M, N, and E from 2006 to 2015 varied between 674 and 2,284 
days per site, cumulatively resulting in 19 years of continuous recordings over 79 instrument 
deployments and 227 TB of acoustic data.  

Automatic detectors are being run on all deployments and output is being manually scrutinized 
as described within the Methods section. This generated millions of counts of acoustic signal 
detections to date. The complete data analysis requires a total of ~1,100 days of computing time 
and ~300 person-days of manual editing, not including the upkeep of computing infrastructure or 
potential trouble-shooting of computing irregularities. We are currently about 66% of the way 
through this process (Figure 5). 

Detectors for blue whale B calls, Cuvier’s beaked whales, and explosions have been well tested 
and are fully operational. New detectors developed and applied for the first time within this 
effort are detectors for blue whale D calls and MFA sonar. The detector performance for D calls 
was optimized (see Methods section). The performance of the MFA sonar detector has yet to be 
quantified in detail using manually ground-truthed data. An initial inspection showed that the 
detector operated well at identifying MFA sonar activity. In the 11 deployments analyzed to date, 
false positives were due to humpback whale calls, delphinid whistles, nearby ship passages, and 
some explosions. As all of these signals overlap in frequency with the MFA, this overlap was not 
surprising. The new approach using a modified version of silbido as MFA sonar detector is a first 
step towards full automation. However, the detector frequently fragments MFA sonar pings into 
multiple detections and it traces MFA sonar ping echoes (Figure 3). In order to compute 
previously defined MFA sonar parameters, we are currently working on resolving this issue and 
quantifying possible errors. Another improvement offered with the silbido MFA sonar detector is 
the possibility to extract frequency content and determine number of sweeps and tones. 
Optimally, the analysis will be expanded to include MFA sonar > 5 kHz (e.g., AN/SSQ-62 
DICASS sonobuoys) and low frequency active (LFA) sonar < 1 kHz. 
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Figure 5. Status of analysis for MFA sonar, explosions, blue whale B and D calls, and Cuvier’s beaked whales over 19 years of 
continuous acoustic recordings, consisting of 227 TB of data in 79 deployments. 
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A potential advantage of controlled exposure experiments over PAM impact analysis approaches 
is the precise knowledge of the location of the source and the animal being studied. This can be 
addressed in a PAM impact analysis by using received sound level as a proxy for the range 
between the sensor and the sonar. If we assume a nominal source level of 235 dB re 1 µPa @ 1 
m (United States Navy, 2008 ,Vol. 2), sonar can be detected at a large distance (~20-50 km). 
Likewise, it is possible to estimate the animal range from the sensor using received level and 
other call characteristics. The detection range to Cuvier’s beaked whales is generally small based 
on the high-frequency content of the signal (<2 km). In the case of blue whales, detection range 
can be restricted to calls with high received levels and hence animals close to the sensor within 
similar distances as beaked whales. By limiting the range to detected animals, we can limit the 
sonar-animal range ambiguity to a few kilometers. In the case of a sonar detection that is much 
further away from the recorder than the animal, the received level at the recorder can be used as 
a proxy for the received level at the animal. We are in the process of determining appropriate 
thresholds for received levels to define and reduce this range and received level discrepancy. 

Preliminary data screening of acoustic encounters of blue whales (B calls) and Cuvier’s beaked 
whales (FM pulses) in relation to MFA sonar wave train events shows numerous accounts of 
overlapping whale signaling during periods of MFA sonar activity (Figure 6 and 7). It quickly 
becomes apparent that the relationship of MFA sonar and the acoustic behavior of these whales 
is complex and requires inclusion of several potentially relevant variables. A multi-variate 
statistical approach will be needed to account for natural temporal and spatial variability in call 
densities, e.g., caused by species or population level variability in seasonality, habitat preference, 
behavioral context of calling, and individual variability. Equally, a statistical framework to 
document and quantify potential changes in the acoustic behavior due to MFA sonar needs to 
incorporate potential impact of other anthropogenic signals, such as explosions (Figure 8) and 
ship noise.  
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IV. Conclusion 
 

Major progress has been achieved on standardized, automated detection of all acoustic signals of 
interest to generate an unbiased dataset with reproducible output. We are automating the 
detection of MFA sonar pings to better quantify single pings and further improve MFA metrics. 
Processing of the remaining data sets is underway. Relevant acoustic parameters for all signals 
have been defined and subsets of data are ready to start the exploration of multi-variate statistical 
methods to test for impact of MFA sonar on the acoustic behavior of blue whales and Cuvier’s 
beaked whales. 

 

 

Figure 6. Spectrogram (upper panel) of Cuvier’s beaked whale FM pulses (vertical lines, peak 
at ~40 kHz) along with MFA sonar wave train event near 3 kHz. Received level of each MFA 
sonar ping over the same time is shown on the lower panel. 
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Figure 7. Daily acoustic encounters of A) blue whale B calls (blue bars) and B) Cuvier’s beaked 
whale FM pulses (blue bars) and daily wave train events of MFA sonar (red bars) during each 
day of deployment. Grey shading indicates nighttime. Horizontal pink shading indicates no data. 
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Figure 8. Occurrences of explosions (blue) over four years at site H, west of San Clemente 
Island. Explosions were predominantly detected at night, indicating relation to fishery activity 
and use of ‘seal bombs’ (from Baumann-Pickering et al., 2013a). 
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