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Executive Summary

Low-frequency (10 1000 Hz) ambient noise spectrum level measurements were nmeide at
sitesover a period of about 7 yed007i1 2014)offshore of North Carolinand Floridaon the
Atlantic seaboard continental shelf and slofée-averaged ambient spectrum levels for the six
sites are similar (within 10 dB) with levels around@®dB re 1uP3Hz near 1000 Hz, 785

dB re 1pP4Hz at 100 Hz, and ~885 dB re 1p@’/Hz at 20 Hz.

Instrument strummingpresumably from tidal and ocean current flaffected five of the six

sites, including a@eep (~900 m) water site nebe region wheréhe Gulf Stream heads

northeast offshore. The sixth site, the other deep (r950ater site, had minimal or no

acoustic masking from flow induced strumming and showed spectrum levels similar to those of
other deep water recordings, including whale call seasonality, distance shipping, and correlation
with wind events.

Introduction

Ocean lowfrequency (10 to 1000 Hz) ambiemtise provides a measure of both anthropogenic
and naturasourcesuch asounds from ships, seismic exploratiarhale callsandnear sea
surface wind and wavéds.g, Hildebrand, 2000 To measure these sounds, hydrophone sensors
aretypically deployedwith a recordeto provide a description of the regional soundscape.
Hydrophone deployment degthndgeographicalocatiors areimportantfor the types and levels

of sounds recordedhallow water recordings can often have bigitound pressure levelsan
deepersitee wi ng t o s tldseeprozireity to® @ moi8y sea surface; on the other hand,
McDonaldet al. (2006 showedhat for a deep water site theNortheast Pacific exposed to the
Asian-North American commercial shipping lamesise levelsvere~20 dB greateat 4050 Hz

than for a nearby (~165km) shallow water sithout such exposur@icDonaldet al, 2008.

Other examples of sigpecific ambient noise measures include: lcoahmercial shipping
(McKennaet al, 2012, under arctic icéRothet al, 2019, tropical Central and WesterRacific
(Gi r etali, 4013 andships and airgunisi the Gulf of Mexico (Wiggins et al., in preparation).
Oftenbaleenwhale callsare easily identified in lovirequency ambient noise spectra@ses or
spectral spikes,ush as blueBalaenoptera musculydin (B. physalus and humpback
(Megaptera novaeangliaevhales whereashigherwind speeds are correlated witicreased
broadband soundevels 200 Hz(e.g.,McDonaldet al, 2008 Gi r etali 4013.

Offshore of the Atlantic Coast statesesage ocean ambient sound speoh levels were
measured between 10 and 1000 Hz ataiations orboththe continental shednd slope over a
7 year periodThis report summarizthese measuneens showirg overall site averages are
similar with levels within 10 dB of each other for frequencies above 20 Hz, includingssidpe
deep watesites.



Methods

Passive acoustic monitoring for the presence of marine mammals, anthropogenic sounds, and
ambient noise has been conducted in the Atlantic offshore of North Carolina since 2007 and
offshore of Florida since 2009 using Hifflequency Acoustic Recording Pades(HARPs-
Wiggins and Hildebrand, 20D Over a 7 year period, Z4ARP dedoyments accounting for

about 3D0 days of recordingsere made at six primary sites (Figures 1 & 2; Tabl&ite 1 is
offshore ofCape Hatteras, North Carolina; Sited2 are i n the US Navy®o
OPAREA;Sites®% ar e in the US Navyodés Jacksonvill
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Figure 1. Alantic continental shelf and slope acoustic monitositgs See Table 1 for
deployment names and site deptbBentour lines are at 200, 1000, 2000, and 3000 m deep.
Darker shading is deeper depths, land mas®oigl medium gray on left.



Table 1. HARP site deployment names, depths, analysis periodsyauer ofanalysis days.

Site Deployment| Depth[m] AnalysisPeriod # Days
1 Hatteras
HATO1A 950 03/16/12¢ 04/10/12 | 26
HATO02A 970 10/10/12 ¢ 04/30/13 | 203
HATO3A 970 05/30/13¢ 03/14/14 | 289
518
Cherry Point
2 Shallow
USWTRO1A 162 10/10/07 ¢ 01/16/08 | 99
USWTRO02B 232 05/31/08 ¢ 09/10/08 | 103
USWTRO3A 179 04/25/09 ¢ 08/08/09 | 106
USWTRO4A 335 11/09/09 ¢ 02/23/10 | 107
USWTRO5A 174 07/30/10¢ 03/02/11 | 216
631
Cherry Point
3 Deep
USWTRO6E 952 08/19/11¢11/30/11 | 104
USWTRO7E 914 07/14/12 ¢ 10/01/12 | 80
USWTROS8E 853 10/25/12 ¢ 06/29/13 | 248
432
Cherry Point
4 South
USWTRO040 335 11/09/09 ¢ 04/19/10 | 162
USNTRO5D 338 07/30/10¢ 02/23/11 | 209
371
Jacksonville
5 West
JAX01B 37 04/02/09 ¢ 09/04/09 | 156
JAX04B 38 03/10/10¢ 08/18/10 | 162
JAX05B 37 08/27/10¢ 01/31/11 | 158
JAX06B 37 02/02/11¢07/13/11 | 162
638
Jacksonville
6 East
JAX01A 82 04/02/09 ¢ 09/15/09 | 167
JAX02A 83 09/17/09¢ 12/15/09 | 90
JAX03A 89 02/22/10¢ 07/29/10 | 158
JAX05A 91 08/27/10¢01/24/11 | 151
JAX06A 91 02/02/11¢07/13/11 | 162
JAX09C 94 05/13/13¢ 06/19/13 | 38
JAX10C 88 02/18/14¢ 08/22/14 | 186
952
Total 3542
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Figure 2. Atlantic HARP analysis periods (effort) for the six sites from October 2007 to October
2014.

HARPs are autonomous marine recorders capable of recording a wide range of sounds (10 Hz
100 kHz) continuously over long periods (morithk year) with calibrated hydrophoné&uring

a deployment, HARPs record sound pressuer the 10 HZ 100 kHz fregiency banaver

time. To facilitate processing miénd low frequency ambient noise, the datarevdecimated

by a factor of 10@ produce an effective bandwidth of 1@000 Hz.These decimatetime
serieswere transformed into the spectral domaith a fast Fourier transformsing theWelch
(1967 methodincorporated into thacoustic analysis software packagéon
(cetus.ucsd.edu/tenologies_Software.hthandthe high-level programing language MATLAB
(www.mathworks.com Spectrum levels were calculated in 1 Hz bins over 5 ssamidg a

Hann window andaved as Longerm Spectral Averagds T SA - Wiggins and Hildebrand,
2007). These 5 s LTSA spectral slices were used as a basis for longer terral svectrgesfor
example, onalay,onemonth, or overalkite averages. HARP dataehl are written in 75 s
segmentsproviding 15 spectraklices of 5 seconds eachio avoid electronic selioisefrom

disk writes contaminating the spectomly the middle 5 spectralicesof each segment were
usedfor averaging. Averages were calculated over each full day and partial days over 90%
complete. Days with less complete recordings and those clearly contaminated, typically at the
end and beginning of a recording when the hydrophoneaotas the water ofocal deployment
ship sounds were intense and long lasting, were removed and not usedlysrs.

Contaminated daikaveraged spectra were easilynitited by comparing to overatleploymett
averaged spectra thaotingand removingextreme outliersDaily-averaged spectra also were
corrected for the calibrated instrument transfer functidm sound pressure level spectral power
density (dB re 1pP#Hz).

To provide a means of evaluating seasonal spectral variabdity;aleragd spectra were
further processeimto monthlyaverages and plotted using the same monthly color scheme for
eachof the 21 deployments so that months from different years and sites could be conripared
example, Augusis always the same col@range)ndependent of site or yealt is important to
note that while incomplete days have been removed from anahspplete months were not.
It is possible to have only one or a few days at thenp@ag or end of a deploymeused for the
monthly-averageestimate, potentially biasing those incomplete moréivigraged spectra.

Overall siteaveraged spectrum level®wme obtained by averaging the daglyeraged spectra to
avoid biases introduced by incomplete monidweragess notecbove. Table 1 shows the
relative effort for analysis days per site. Site 6, Jacksorialte had the greatest effortith 7
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deploymeis andover 9% days while site 4had the fewestwith onlytwo deploymend for ~370
days The rest of the sitemerebetweem00-600 days.

Resultsand Discussion

Site-averaged ambient spectrum levels for the six AtlabboastHARP siteswere similar

(within 10 dB)with levels around 665 dB re 1pP&Hz near 1000 HZ70-75 dB re 1uPaHz at

100 Hz, and-85-95 dB re 1uP&Hz at 20 HZFigure 3) Monthly-averaged ambiersound
pressurespedrum levels are shown for all Zieployments grouped per sitetie Agpendix The

two deep water sites (1 andi8d a flatter shape below about 60 Hz than the shallow water sites,
and bothsites showeda peak around 20 Hidsoappearingseasonally in the monthlgverages

(see Appendices Al and A3yhichweredue tofin whale calls.

All sites, except site 1, ehigh levels (>95 dBe 1uP&/Hz) at10 Hz. Hgh spectrum levels

below 30 Hzawerel i kel y caused by ocean currents and

from these currents.it® 3, while relativey deep(~900 n), also appeadto be subject to ocean
currents, perhaps caused by deep components nbttievard travelingsulf Stream. Site 1
(~960 m), on the other hand, had relatively Epectrunievels below 30 Hz (885 dB re
1uP&/Hz) allowing better sigakto-noise ratio (SNR) for the 20 Hin whalecalls

Theband around 40 Hz isften associated witpropulsion sounds fromommerciakhips. Sites

1 and 3 wee exposedo the deep water where distahipping sounds propagate wels shown
by the humpof increased levels nedb Hz Higher levelsat 3050 Hz for site 3nay have been
caused by local shipping. Site 5, on the other harsithealowest levels (<80 dB re 1 4fdz)
around 40 Hz becaud#s shallow(37 m)deployment sitevasshielded from dep ocean shipping
noise,may havehadlesslocal shipping trafficand less cable strumming. In comparison to site
5, site 6 which was nearbybut deepe(~90 m) hadhigher leveldelow 500 Hz perhaps owing
to higher ocean currents farther offsh@#e 4 had the highest sitaverage levels at 10 Hz,
approaching 110 dB re 1pu#z, but alsahe lowest levels above 100 H260 dB re 1uPaHz
potentially relatingo it having thdowest sampling effort~370 days) andhe site location.

At frequenciesibove 200 Hz, wind is a common source and can be correlated with spectrum
levels. The site monthigveraged spectrum levels in the Appendix show that this relationship
appeas to hold best for site 1, while all other sites appear to be affected by strgratritrese
higher frequencies or are at locations insensitive to noise generated by local wind.
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Figure 3. SiteaveragedAtlanticambient spectrum levelSite 1 tone ~20 Hz is relatedfio

whale calling.High levels at 10 Hz are due ¢@ean currentsElevated levels near 40 Hz are
typically commercial shipping related. Levels >200 Hz often are correlated with wind speed.
See Figure 1 for site locations and Table 1 and Figure 2 for site effort.



Conclusions

Measuringdeepocean ambient noige challenging offshore of the Atlantic Coast states because
of the large expanse of the continental shelf, especially offshore of Florida. Shallow water
deployments typically have higher ambient noise ebelcause theydrophone sensas in
closeproximity to the sound sources at or near the sea surfemefive of the six sites in this
report,tidal and subsurface ocean currents causstlument strummingesulting in increased
sound spectrunelek, even at the degp-900 m)site 3. Instrument degn could be modified to
reduce strumming, but flow noise from these strong currents would still have an acoustic
masking effectvith high spectrum levelacross the bandAlternatively, the sound pressure time
series could be filtered to remove periedstrumming, butesultswould likely become biased

to low flow conditions such as during slack tidea@xing and waning moon cles when tidal
flows are lowor become correlated with the seasonality of the Gulf Stfleam However
evaluating data durg low strum periods may lvequiredto find discrete sounds of interest in
the recordings

The deepest siteff CapeHatterag~960 mi site 1), showed sound spectrum levels with
characteristics similar to other deep water sites, including marine maseasnality (20 Hz),
commercial shipping (40 Hz) and local wind (>200 HZhe lack of strumming at this site
suggests that the deep currents affecting the other deepmaiioring location (sit8&) are
minimal or not presenas the direction of théulf Stream changes and heads northeast before
reachinghe location ofite 1.
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A2. Site 2 Cherry Point Shallow
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A3. Site 3 Cherry Point Deep
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A4. Site 4Cherry Point South
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Ab. Site 5 Jacksonville West
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