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I. Introduction 
Cetaceans produce a wide variety of sounds, each presenting different sets of challenges in 
detection, classification, and localization.  In general, baleen whales, or mysticetes, tend to have 
lower frequency calls.  While the calls themselves tend to be simpler than those of some other 
species, the low frequency environment is a challenging one.  Mysticete calls typically have high 
source levels (>180 dB re 1 µPa) and can travel over hundreds of kilometers.  In contrast, 
toothed whales and dolphins, the odontocetes, tend to produce sounds that are higher in 
frequency and thus limited to propagation over short distances on the order of kilometers.  For 
most odontocetes, sounds tend to be more variable than those of the majority of their mysticete 
counterparts. 

Analysis algorithms must typically deal with a great deal of acoustic clutter, signals that may 
mask the detection of the sounds of interest.  Examples of clutter include anthropogenic signals 
(e.g. sonar, ship traffic), natural phenomena such as rainfall or wind and waves, recording 
instrument noise (e.g. cable strumming), distortions of the signal itself due to multipath 
propagation, and calls from other species.  Acoustic clutter is particularly difficult in lower 
frequency bands as many of the sources of clutter tend to be concentrated in this range.  In 
addition, as low frequency energy is absorbed less quickly than that of high frequencies, the low 
frequency calls tend to travel farther and are thus susceptible to distortion as a result of long 
distance propagation effects.   

The early focus of the whale acoustics lab from Scripps Institution of Oceanography (SIO) was 
on the detection of mysticete calls, primarily using energy ratio matches (Burtenshaw et al., 
2004; Širović et al., 2004) or spectrogram correlation following the work of Mellinger and Clark 
(2000).  In 2006, with the start of the collaboration between labs at SIO and San Diego State 
University, we began using methods inspired from speech recognition technologies.  This 
brought new ways of thinking about feature extraction and statistical machine learning 
techniques.  We have elected to organize the review by theme rather than project and separate 
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our discussion broadly into signal representation, classification, and localization.  While we do 
cite other groups upon whose work we have built, this is a review of work by our labs rather than 
a general literature review. 

II. Representation:  Call properties and feature extraction 
One of the most difficult tasks in designing pattern recognition algorithms is to determine what 
makes a particular call distinct.  For calls that are highly stereotyped, that is with little variation 
between productions, primary features include duration and frequency information (e.g. peak or 
trajectory).  The received level is rarely of importance unless distance to the animal has been 
estimated and a reverse propagation model can infer an estimate of the source level.  Calls that 
are variable in nature require different techniques.  Some of the features can be similar, but 
capturing the essence of a call is much more difficult. 

For any call type, one must consider what are the other potential calls or phenomena that might 
have similar measurements.  When these occur in the same geographic region as the call of 
interest, they can be a source of confusion for the ensuing classification algorithm.  In general, 
the goal is to try to select features that not only describe the call of interest, but provide contrast 
to any other type of signal that is likely to occur. In our labs, we have focused our attention 
largely on detecting distinct, stereotyped calls with minimal distortions, but when propagation 
distortions were present, sometimes they were used to calculate valuable information on the 
location of the calling animal, as described below (section II.A). 

It is important to note that many times when we believe a call to be highly stereotyped, it is not 
necessarily so.  A good example of this can be seen in the vocalizations produced by blue whales 
(Balaenoptera musculus). B calls produced by these animals in the North Pacific appear to be 
very consistent when examined over a short time scale.  However, it has been shown by 
McDonald et al. (2009) that there is a worldwide trend by most blue whale populations to shift 
their B call frequencies lower every year.  For populations in the North Pacific, where we have 
the longest time series, the dominant frequency of B calls declined by 31% in the period from 
1963 to 2008.  This makes the design of what would appear to be a very simple call to recognize 
significantly more difficult.  As a solution, instead of a static call detection kernel, year-specific 
kernels have been applied for the automated detection of blue whale B calls (Oleson et al., 
2007b).  In addition, when working with low-frequency calls, propagation effects can severely 
distort the call and the arrival of different modes or paths can cause a call to be smeared 
temporally (Figure 1).   
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Figure 1 - Examples of multipath arrivals of blue (A) and fin (B) whale calls from the Antarctic marked with arrows 
(from Širović et al. 2007) and modes of North Pacific right whale up calls overlaid with synthetic received calls from 
normal-mode modeling at two distances (C and D) distances (from Wiggins et al. 2004). Note that mode four is not excited 
in either spectrogram, and only modes two and three are above the background noise at 56 km range (D).  Permission 
pending. 

The calls of humpback whales (Megaptera novaeangliae), odontocete whistles, and echolocation 
clicks all fall in the category of calls that are highly variable.  As an example, the received level, 
duration, and frequency content of echolocation clicks varies dramatically depending on the 
angle of the echolocation beam to the receiving hydrophone (Au, 1993; Au et al., 2012a; Au et 
al., 2012b; Lammers and Castellote, 2009).  This presents a significant challenge for feature 
extraction.  One must either find features that are invariant to the orientation of a free ranging 
odontocete and the receiving hydrophone or one must develop models that characterize the range 
of signals that can be received.   

To date, nobody has been able to develop a set of features for echolocation clicks that are 
invariant to axis orientation or solve the inverse problem, which would enable us to develop 
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features with respect to orientation.  Much of our lab’s classification work with odontocetes has 
focused on their echolocation signals.   With respect to feature extraction, our work has had two 
principal directions:  1) characterizing spectral signals by trends or mean spectra and 2) 
developing low dimensional representations that capture the shape of individual click spectra.   

A. Properties of stereotyped mysticete calls 
To describe stereotyped, mysticete calls in a way that enabled us to distinguish them from other 
calls and phenomena, we have generally employed relatively simple measurements of the 
frequency and temporal characteristics, as well as the patterning. The basic set of frequency 
features that have been measured included start and stop frequency.  In calls that have multiple 
parts with variable level of frequency modulation, start and stop frequency of each part of the 
call was measured.  Thus for blue whale B calls from the northeastern Pacific, four values were 
reported (Oleson et al., 2007b).  Similarly, three start and end frequencies were used to describe 
blue whales calls from the Antarctic (Širović et al., 2004).  In contrast, fin whale (B. physalus) 20 
Hz pulses and Pacific right whale (Eubalaena japonica) up-calls are simpler, and a single 
frequency pair is sufficient (Munger et al., 2005; Širović et al., 2004).  In conjunction with 
frequency, start and end time of each segment is measured, allowing us to define durations of 
each part of the call and creating a kernel that can be used in automatic detection.  These features 
were generally measured from spectrograms generated with appropriate frequency (≤1 Hz) and 
temporal (≤0.1 s) resolution. 

Another valuable parameter to describe regularly repeated songs produced by some mysticetes 
(e.g. blue and fin whales) is the inter-pulse interval (IPI).  This is the interval between the start of 
subsequent individual calls in a sequence of stereotyped calls.  While the IPI is not always 
constant over time or space, it can be useful for identifying calling sequences from an individual 
animal. 

B. Echolocation click trends and mean spectra 
When spectra of a longer echolocation sequence are sorted by peak frequency, it becomes 
apparent by how much the received spectra of echolocation clicks can vary.  An example of this 
is shown below (Figure 2) for Risso’s dolphins (Grampus griseus).  In this figure, individual 
echolocation clicks have been detected and their spectra are displayed consecutively after 
ordering them by peak frequency.  Some of the variation in peak frequency can be attributed to 
the animals themselves (variation from one animal to another or between individual clicks), but 
most of the variation is likely due to orientation and to a lesser extent distance. 
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Figure 2 – Variability in the spectra of Risso's dolphin (Grampus griseus) echolocation clicks recorded on a HARP.  
Clicks are sorted by peak frequency.  The solid black line shows the peak frequency for each click.  Banding patterns in 
the sorted spectra due to spectral peaks in the click structure of some odontocetes such as Risso’s dolphin become 
apparent in this type of visualization. 

By examining these stacked spectra, it became apparent to us that some species tend to have 
spectral peak and notch structure in many, but not all of their echolocation clicks.  The first two 
species we found this for were Risso’s and Pacific white-sided dolphin (Lagenorhynchus 
obliquidens) clicks (Soldevilla et al., 2008).  While it is not known conclusively, we believe this 
spectral structure to be in off-axis clicks, and the aforementioned work by Lammers and 
Catellote (2009) as well as Au et al.  (2012a; 2012b) lends some credence to this hypothesis.   

Not all species have such distinct spectra, and some species such as bottlenose (Tursiops 
truncatus) and common (Delphinus spp.) dolphins have highly variable echolocation click 
spectra that are quite difficult to classify based on characteristics of individual spectra (Roch et 
al., 2011b).  One technique that has shown some promise is comparison of averaged spectra.  
While individual clicks vary greatly, we compared the mean spectra of three species: melon-
headed whales (Peponocephala electra), bottlenose dolphins, and Gray’s spinner dolphins 
(Stenella longirostris longirostris).  Melon-headed whale echolocation clicks had the lowest peak 
and center frequencies, spinner dolphins had the highest frequencies and bottlenose dolphins 
were nested in between these two species.  Feature differences were enhanced by reducing 
variability within a set of single clicks by calculating mean spectra for groups of clicks.  A 
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subsequent discriminant function analysis over grouped spectra showed the ability to correctly 
discriminate between 93% of melon-headed whales, 75% of spinner dolphins and 54% of 
bottlenose dolphins.  The results also showed, however, that these differences in averaged 
echolocation click spectra of delphinids are small and easily overwritten by minor differences 
introduced through imperfectly calibrated recording instrumentation.   

Recent advances have shown that this technique is particularly useful in the description and 
discrimination of species-specific beaked whale echolocation signals.  Over the past decade, 
research has revealed that most beaked whales use a species-specific frequency modulated (FM) 
upswept echolocation pulses to forage and sense their environment. Based on recordings from 
animal-attached, suction-cup acoustic archival tags and from towed hydrophones during 
concurrent visual surveys, acoustic descriptions have been made for FM pulses from Baird’s 
(Berardius bairdii) (Baumann-Pickering et al., submitted; Dawson et al., 1998), Blainville’s 
(Mesoplodon densirostris) (Aguilar de Soto et al., 2012; Johnson et al., 2006; Johnson et al., 
2004; Madsen et al., 2005), Cuvier’s (Ziphius cavirostris) (Zimmer et al., 2008; Zimmer et al., 
2005), Gervais’ (M. europaeus) (Gillespie et al., 2009), Longman’s (Indopacetus pacificus) 
(Rankin et al., 2011), Deraniyagala’s (M. hotaula or M. ginkgodens hotaula) beaked whales 
(Baumann-Pickering et al., 2010b), and Northern bottlenose whales (Hyperoodon ampullatus) 
(Wahlberg et al., 2011).  Likewise, Stejneger’s beaked whale (M. stejnegeri) FM pulses were 
recorded with bottom-moored autonomous acoustic instruments and linked to the species based 
on geographic location and exclusion of other species (Baumann-Pickering et al., 2012b).  We 
developed a software tool to manually classify acoustic encounters with FM pulses in long-term 
data sets, likely produced by beaked whales, to certain beaked whale species (Baumann-
Pickering et al., 2012a).  We used histograms and median values of a number of signal 
parameters and an overlay of mean spectra to assign a species label to an acoustic encounter 
(Figure 3). 
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Figure 3 – Example of classification tool used to label an acoustic encounter consisting of 1431 Cuvier’s beaked whale (Zc) FM 
pulses. Top panel: Mean spectra of all automatically detected FM pulses of the example encounter denoted by black bold line.  
Mean spectra of templates for all other FM pulse types are denoted as thin dashed lines with the exception of Zc, which is shown 
as a thin solid black line to highlight the similarity with the example encounter. Middle panel: Histograms of peak frequency 
(left, pfr) and inter-pulse interval (IPI, right) with median values for peak, center frequency (cfr), duration (dur), and IPI. Bottom 
panel: mean spectra of encounter (left, solid line) and mean noise before each FM pulse (left, dashed line), with median peak-to-
peak received level in dB re 1 µPa (ppRL) over all FM pulses in the encounter. Concatenated spectrogram of all FM pulses sorted 
by peak frequency showing variability (right). 

 

C. Representations of echolocation signals 
Our examination of click spectra has focused on developing compact representations of spectra.  
Once a click has been identified (section III.A.3), spectra are extracted.  We typically window 
the signal with a Hamming window and then zero-pad the click to a standard length (usually 
1200 µs).  A discrete Fourier transform (DFT) is computed and compensation for the acquisition 
system’s transfer function characteristics is applied.  As the low end of the spectrum tends to be 
fairly noisy and does not appear to be a distinguishing feature in most echolocation clicks, we 
typically band pass the spectrum in the frequency domain between 10 and about 90 kHz.  Most 
of our data is sampled at 192 or 200 kHz and the upper limit is simply to reduce any weak 
aliasing that may be left from the roll-off of our anti-alias filter.   

Using the vector of spectral magnitudes across this frequency range would represent a very high 
dimensional feature space.  At 200 kHz, there are 120 frequency bins between 0 Hz and the 
Nyquist rate, and our band-pass filter only discards about 20% of these.  High dimensional 
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features are problematic for classifier systems.  In a high dimensional space, it is very difficult to 
obtain enough data to robustly model a distribution and it becomes easy for models to be 
overtrained.  As a consequence, one of the goals in feature extraction is to reduce the number of 
parameters to the minimal number needed and to ensure as much as possible that there is not 
redundant information in those features.   

A common method for reducing the number of features is to use principal components analysis 
(for details, see Duda et al., 2001).  This method analyzes the variance-covariance matrix of a 
data set and finds its eigenvectors and eigenvalues.  The eigenvectors can be used to form a new 
basis set and the data is projected onto the eigenvectors, forming a new set of coefficients.  
Unlike the original basis set, the bases with larger eigenvalues account for more of the variance 
of the data.  This provides a convenient method to reduce dimensionality.  One can discard the 
coefficients with the smallest associated eigenvalues and typically still preserve most of the 
variance in the dataset.   

While principal components analysis is attractive, it assumes that one can estimate the 
covariance of the data, something that is not necessarily easy to do as there are many factors that 
are not necessarily linked to the production of the echolocation click that can affect how the 
features vary.  A naïve example of this can be seen by considering the effects of using data from 
uncalibrated hydrophones where the signals have not been adjusted for differences in the transfer 
functions of the receiving systems (not recommended).  Consider features derived from a single 
hydrophone versus data drawn from two independent deployments of hydrophones with different 
frequency response curves.  If features are drawn from echolocation click spectra, there will be a 
single bias in the single hydrophone data set and two in in the multiple hydrophone data.  The 
mean of both data sets will be biased, but the second will contain a bias term that is a 
combination of both hydrophone biases.  Consequently, one would expect the variances in the 
second set to be larger and principal components analysis of the second data set will reflect this 
change.  While this particular example is controllable, there are other situations such as 
differences in high frequency attenuation that are not.  As a consequence, while the principal 
component directions might reflect those of the measured dataset, they might not reflect those of 
the actual distribution of echolocation clicks. 

As an alternative to the use of principal components, we use cepstral (pronounced n) 
analysis as a method of reducing this to a more manageable dimension.  Cepstral analysis was 
developed independently by the two different groups (Bogert et al., 1963; Oppenheim, 1964).  
Oppenheim and Schafer (2004) provide a nice history of the parallel development.  The name 
cepstral is derived from reversing the first syllable of spectral.  The original goal of the Bogert et 
al. effort was to examine the effects of echoes in seismic events, and it was shown that the 
cepstrum was effective for identifying echo onsets.  Oppenheim took a different approach and 
focused on the use of homomorphic transforms as a means of blind separation for signals that 
had been multiplied or convolved.  The groups learned of one another’s work and a number of 
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applications for the technique were developed such as the extraction of pitch from speech and the 
separation of the vocal tract response from a periodic glottal source.  Cepstral features have been 
shown to be asymptotically independent (Merhav and Lee, 1993) and are widely used in speech 
processing systems (Huang et al., 2001; Jurafsky and Martin, 2009; Rabiner and Juang, 1993).   

While there are still many open questions about how odontocetes produce echolocation clicks, 
there has been direct observational evidence (Cranford et al., 2011) suggesting strongly that, in 
at least one species (Turisiops truncatus), pulses are generated at the phonic lips.  Pressure from 
the intranarial passages most likely brings the lips into vibration and while each of the two pairs 
of lips can be controlled independently, the driving pressure appears to be coupled.  While this 
occurs in a different anatomical structure than the vocal folds of other mammals, the process is 
somewhat similar and suggests that cepstral analysis may be an appropriate method of analysis 
for echolocation clicks.   

The real-valued cepstrum (as opposed to complex) is derived by taking either the forward 
(Bogert et al., 1963) or inverse (Oppenheim, 1964) discrete Fourier transform of the log 
magnitude spectrum.  In practice, the discrete cosine transform (DCT) is often used which 
assumes symmetry and lets the practitioner use only the positive frequency coefficients.  There 
are different forms of DCT depending upon the symmetry assumptions, with the one typically 
used for the cepstrum being the DCT-II which concentrates more energy in the lower index 
coefficients (Huang et al., 2001): 
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where ]·[wX is the discrete Fourier transform of the windowed signal.  One way to think of the 
cepstrum is as a Fourier analysis of a spectral signal.  Consequently, the 0th coefficient (which by 
tradition is not considered a cepstral coefficient) represents the sum of the energy in the log 
spectrum and is thus related to the energy in the original time series.  When considering the 
Fourier analysis of the log spectrum, the lower order coefficients are responsible for the overall 
shape of the log spectrum and higher coefficients are responsible for quickly changing elements 
of the spectrum.  Thus, by omitting the higher order cepstral coefficients, the remaining ones 
contain an intrinsic representation of the remaining spectra (Figure 4).   

We have found empirically for a variety of odontocete species recorded in the Southern 
California Bight (Roch et al., 2011b) that including more than the first fourteen cepstral 
coefficients did not provide any further improvements to classification error rate.  
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Figure 4 – Spectrum of a long-beaked common dolphin (Delphinus capensis) echolocation click.  The cepstral 
representation of this click is shown as in inset where most of the energy can be seen to be concentrated in the first 
coefficients of the quefrency axis.  Reconstructions of the spectrum are shown using only the first four (dashed) and 
fourteen (dash-dot) quefrencies.  (Coefficient zero was retained in each case to preserve the frequency offset.)  A small 
number of coefficients contain most of the information about the click.  From Roch et al. (2011b), permission pending. 

III. Detection and Classification 
Traditionally, researchers in the bioacoustics community consider detection and classification as 
separate problems.  A detector is a method for detecting a signal of interest, such as a call, or 
sequence of calls, without attempting to determine the specifics of the detected signal.  In 
contrast, classification is the process of assigning one of a finite number of classes, a class label, 
to a detected signal.  Class labels are highly dependent upon the question a researcher is trying to 
address.  Valid labels for a single call produced by a blue whale might be:  blue whale call, B 
call, song component, etc.  The first of these examples might be of interest to someone 
considering density estimation or mitigation while the last class label might be more appropriate 
to people researching behavior. 

A consequence of the great variety in the specificity of class labels is that the distinction between 
detection and classification can easily become blurred.  One can see a detector as a form of 
classifier with coarse class labels, and while we will use the traditional term “detector,” the 
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difference between detection and classification is sometimes artificial.  Following tradition, we 
will discuss detection and classification separately, but the reader is encouraged to think about 
the overlap between these two not so disparate problems. 

A. Detection 
Cetaceans produce a variety of signal types.  Mysticete calls are usually frequency modulated or 
pulsed calls.  Odontocetes produce tonal calls that are referred to as whistles,  and impulsive 
signals known as echolocation clicks.  When the clicks are produced in rapid succession, they are 
referred to as burst pulses.  In the case of beaked whales whose echolocation signals have a 
frequency modulated (FM) sweep, we have referred to these as echolocation FM pulses 
(Baumann-Pickering et al., 2010a).  As the detection techniques for these different signal 
categories are quite different, we will describe them separately. 

1. Mysticete calls 
Automatic detection of mysticete calls in our labs has been focused on blue whale B calls, 
Antarctic-type blue whale calls, fin whale 20 Hz pulses, North Pacific right whale up calls 
(Eubalaena japonica), Bryde’s whale (B. edeni) Be4 calls, and humpback whale calls 
(Megaptera novaeangliae). Most detection of blue whale calls has been based on the 
spectrogram correlation method (Mellinger and Clark, 2000).  Spectrogram correlation works 
reasonably well for stereotyped blue whale calls.  In some cases such as the Western Antarctic 
Peninsula, where the background is relatively quiet, this method performs exceedingly well 
(Širović et al., 2004).  In a noisier environment, interference from shipping noise can be a 
problem since the flat tonal nature of these calls, and their relatively long duration, make them 
difficult to distinguish from ships.  In the Southern California Bight, fortunately, B calls have 
slight frequency modulation over the course of the call, which enabled development of a kernel 
that distinguishes the calls from ship noise (Oleson et al., 2007b; Wiggins et al., 2005). Bryde’s 
whale Be4 calls, on the other hand, are more similar to ships lacking the frequency modulation, 
and thus are harder to detect automatically (Kerosky et al., 2012).  

Spectrogram correlation relies on the stability of the call, and as previously mentioned, even the 
highly stereotyped blue whale calls change slightly over time (McDonald et al., 2009) and 
require annual adjustment for change in call frequency (Oleson et al., 2007b).  Spectrogram 
correlation is also difficult when calls appear in very large numbers.  Fin whale 20 Hz pulses can 
occur in such volume that they are not individually distinguishable, and in this case we have 
successfully detected these calls by comparing acoustic power in the frequency band 
representative of fin whale 20 Hz pulse calls to noise in adjacent bands (Širović et al., 2004).  
Another approach is to find peaks in a spectrogram and link them together, an approach that we 
used for blue whale B and D calls (Madhusudhana et al., 2008).  This technique was later 
extended to odontocete whistles as described in the next section. 

Humpback whale calls have significant variation, making them less amenable to spectral 
correlation techniques.  In the Southern California Bight, there are relatively few competing calls 
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in the bandwidth of humpback whale calls.  Consequently, we have been able to design a 
generalized power-law detector for these vocalizations (Helble et al., 2012).  The power-law 
detector, first proposed by Nutall (1994), is a statistical test that compares the hypothesis that a 
signal occupies a certain number of frequency bins in a spectrogram slice to a null hypothesis of 
no signal present.  Nutall showed that raising the spectral magnitude to higher powers is more 
effective for many signal types, and proposed an appropriate exponent (2.5) when the number of 
bins is completely unknown.  In Helble et al. we introduced steps to reduce the contribution of 
both near constant frequency and impulsive signals as well as a post processing step that groups 
detection frames and accepts or rejects them as humpback whale calls based on simple criteria 
such as signal length.      

Most mysticete calls discussed thus far are relatively common.  When this is the case, it is 
possible to minimize the ratio of missed detections and false alarms, without the fear of losing 
important calls.  On the other hand, when dealing with rare species, such as the North Pacific 
right whale (Eubalaena japonica), and their very rare calls, the ideal detector would not miss any 
calls.  In the case of North Pacific right whale up calls, the most useful spectrogram correlation 
yielded high numbers of false alarms and low numbers of missed calls, but generally it was 
useful for finding time periods with these calls (Munger et al., 2005; Munger et al., 2008).  
Subsequent manual scanning of data around times with confirmed positive detections was used 
for detection of calls.  So while the automatic detector was not a good way to reliably detect 
calls, it was a good tool for identifying times around which more manual effort needed to be 
focused, thus leading to overall decrease in the analysis effort. 

If the goal of the study is not to document presence of calling animals on a very short time scale 
(minutes to hours), or count the number of calls, more generalized spectral methods can be used 
for detection of calling baleen whales. Burtenshaw et al. (2004) had acoustic data that were 
already spectrally averaged and thus could not be used to extract individual calls and their 
features from the data.  Instead, they used energy in a band representative of blue whale B calls 
(48 Hz) as a proxy for the presence of calling blue whales. Similarly, monthly spectra compared 
well to individual detections when used for longer time-scale estimation of the presence of 
calling blue and fin whales around Antarctica (Širović et al., 2009).  

 

2. Odontocete whistles 
The whistles of odontocetes are complex and frequently only partially observable.  The missing 
portions of a whistle can be attributed to masking events (e.g. ship noise for low frequency 
whistles), high-frequency attenuation, and the high source level of echolocation clicks (e.g. Au 
and Snyder, 1980, observed a peak to peak source level of 220 dB re 1 µPa in bottlenose 
dolphins) which can saturate columns of the spectrogram.  In addition, the whistles sometimes 
display nonlinearities such as sudden changes in fundamental frequency (often referred to as 
steps). 
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We developed two whistle detection algorithms that attempted to address some of these issues 
(Roch et al., 2011a).  One of our goals in this work was to provide a common test bed that other 
researchers could use.  Many researchers do not have access to large datasets and consequently 
have published results on a handful of examples.  We wished to provide a resource that would 
enable groups to have access to extensive annotated test sets in the hopes that it would enable the 
development of more robust algorithms.  To this end, we developed an annotation tool to permit 
analysts to annotate dolphin whistles by specifying knots in cubic splines.  We used this tool to 
annotate over 30,000 whistles from common dolphins, melon-headed whales, bottlenose 
dolphins (Tursiops truncatus), and spinner dolphins (Stenella longirostris longirostris).  These 
whistles, and their annotations have been donated to the bioacoustics community and are 
available from the Moby Sound archive (http://www.mobysound.org, Mellinger and Clark, 
2006), and were used for the whistle detection task in the 2011 Detection, Classification, 
Localization, and Density Estimation of Marine Mammals Using Passive Acoustics workshop. 

We also defined a number of metrics to gauge the performance of whistle detectors.  We used the 
concepts of precision and recall (Duda et al., 2001), precision being the rate of detections that are 
correct (false positive rate = 1 - precision) and recall being their rate at which valid detections are 
made as compared to the number of expected detections.  In addition to these basic metrics, 
several qualitative ones were defined:  coverage, fragmentation, and deviation (Figure 5).  
Whistle detectors may not detect the entire whistle or may detect it as fragments, and the first 
two metrics are designed to measure these phenomena.  The last metric provides a measurement 
of how closely the detector whistle contour follows the analyst detected one by measuring the 
average difference in frequency and provided Matlab-based software (available on Moby Sound 
along with the workshop data) to compute these metrics. 
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Figure 5 - Metrics used to characterize detections.  The Venn diagram on the left shows the overlap between the detected 
tonals and ground truth (analyst annotated) data.  Recall computes the rate of correct detections relative to the ground 
truth while precision is the rate of detections that were correct.  The exaggerated caricatures of a call and associated 
detections on the right illustrate the quality metrics.   Average deviation is the mean frequency deviation between the 
tonal call and detection(s).  As systems may detect a call in multiple pieces, or fragments, the number of fragments per 
call is recorded.  Coverage is an indication of the percentage of the tonal that was detected.   From Roch et al. (2011a) , 
permission pending. 

Both whistle detectors used a common signal processing chain for spectrogram generation, noise 
compensation, and peak selection.  The first detector was based on particle filters, a form of 
Bayesian filtering.  The basic idea of Bayesian filtering in this context is that given a set of 
sample time×frequency peaks from a distribution that is a local estimate of the whistle contour, 
they can be used to estimate the posterior distribution of the next peak.  The posterior 
distribution estimate is then used as a prior distribution for the following peak.  In particle filters, 
each of these peaks has an importance weight attached to it that determines its contribution to the 
posterior estimate.  An update function adjusts the weights and gradually throws out samples as 
they become less important, attaching higher weight to new samples.  We also updated samples 
based upon a motion model once the contour was of sufficient length. 

The second detector was based upon a graph representation of the contours.  When multiple 
animals vocalize simultaneously, their whistles may intersect.  To our knowledge, all of the 
whistle tracking algorithms prior to our graph detector handle whistle crossings based upon the 
evidence prior to the intersection.  In our work, when whistles cross, we simply consider this to 
be a node in a graph.  As new time×frequency peaks are found, they are added to paths in 
existing graphs or if they are too far away, new graphs are formed (Figure 6).   
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Figure 6 – Graph representation of whistles.  Stylized common dolphin contours are shown above with two whistle 
crossings (squares).  Circles represent beginnings (solid) or ends (dashed) of graphs.  When a new node is discovered the 
graph can be extended from one of the end points if it is consistent with the local history of the whistle (e.g star A).  When 
processing advances to the point that it is no longer reasonable to add a peak (e.g. star B), the interior nodes are examined 
to determine how the crossings should be resolved.  

The common signal processing chain permitted a direct comparison between the two algorithms.  
On a subset of over 3000 whistles (those annotated at the time that the experiments were 
conducted), both algorithms showed good recall (70% particle filter and 80% graph) and 
reasonable precision (61% particle filter and 80% graph) with good quality metrics. The vast 
majority of the false positives were for very short detections, although other transient signals 
such as echo sounders proved problematic. 

The annotation tool, graph detection algorithm, and scoring metrics are part of the silbido1 
detection suite that is publicly available at http://roch.sdsu.edu. 

  

3. Odontocete echolocation clicks 
Our echolocation click detector is based upon the Teager energy operator (Kaiser, 1990).  The 
Teager energy operator, sometimes called the Teager-Kaiser, energy operator, is based on a 
model of the energy to drive a mass spring oscillator.  Each sample estimate of Teager energy 
only requires the current acoustic sample and its previous and subsequent neighbor.  Thus, it 
responds rapidly to changes in energy such as those produced by echolocation clicks.  Some of 
the assumptions for the underlying model are not met for echolocation clicks, but the Teager 

                                                
1 Silbido is Spanish for whistle. 
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energy operator has been shown empirically to be an effective basis for echolocation click 
detectors and is widely used. 

Our implementation was developed at about the same time as the Teager energy click detector 
proposed by Kandia and Stylianou (2006) who were the first to publish results.  While our click 
detector uses the same energy operator, it has several differences from the one proposed by 
Kandia and Stylianou.  We use a two stage detection model, where the spectral content of longer 
frames (10 ms) are examined for sufficient energy in the click bandwidth.  When regions with 
possible echolocation clicks are identified, the time domain signal is high-pass filtered and the 
Teager energy operator is used to determine possible click regions.  Each of these regions is 
grown using an energy growth algorithm  similar to that described by Au (1993).  When clicks 
are too close together, we only retain the first one to prevent the selection of echoes.  Due to 
Kandia and Stylianou’s publication, the algorithm was never published separately, but is 
described more fully in some of our other papers (Roch et al., 2011a; Soldevilla, 2008).     

B. Classification 
Due to the ambiguity between the terms detection and classification, many of the detectors 
previously discussed can be thought of as classifiers.  For example, the spectrogram correlation 
methods are making the classification decision that a recording segment is either a specific call 
of interest or not. 

Our two-stage classifier work consists of detector, which one can think of as a classifier with 
very broad class labels (e.g. echolocation click or something else), followed by a classifier 
designed to learn more about the specifics.  Our first foray into this type of classification system 
was a paper that asked the simple question of whether or not there was a gestalt to the auditory 
scene associated with vocalizing odontocetes that would permit one to determine the species 
producing the calls (Roch et al., 2007).  Rather than attempt to derive features from individual 
clicks or whistles, which has been the focus of our later work, we simply applied an energy-
based signal detector and extracted cepstra from relatively long 21 ms windows.  A Gaussian 
mixture model (GMM) classifier exhibited reasonable performance, with an error rate ranging 
from .25 to .33 depending upon testing conditions for a three species task.   

Later work focused on individual calls, specifically echolocation clicks.  Our first effort in this 
area used the aforementioned Teager click detector and then examined the performance of 
support vector machines (SVM) and GMM classifiers (Roch et al., 2008) on data from the 2007 
Detection, Classification, and Localization of Marine Mammal Using Passive Acoustic 
Monitoring workshop. Both classifiers were comparable although the GMM exhibited a slight 
edge.  The system was named the best performing system of the conference (Moretti et al., 
2008).  Subsequent unpublished work examined a variety of classifiers, including the well-
known adaptive boosting (Freund and Schapire, 1999), although our experiments showed that 
most of these classifiers did not perform significantly better than any of the others that we had 
already used.   
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As a consequence, we turned our attention to feature extraction and published a study focusing 
on small odontocetes (Roch et al., 2011b).  In this study, we significantly reduced the 
dimensionality of the features we used and began reporting the results based on randomization of 
training and test data, stressing the importance of ensuring that data from a single acoustic 
encounter was never split across the training and test set.  

	  

IV. Localization  
After a cetacean call has been detected and classified, it can often be useful to know where the 
calling animal is located in space.  Localization is necessary when estimating the source level of 
a calling animal, but it can also be useful for answering a variety of ecological questions, such as 
those related to population estimation or habitat modeling.  The basic method for resolving the 
location of a sound source uses an array of recorders and the difference in the time of arrival of 
the signal to multiple elements of the array.  Usually, the signal needs to be received on at least 
three elements in the array if the exact location is to be calculated.  If some elements have 
directional capabilities, that number can be reduced.  For example, only two DIFAR (DIrectional 
Fixing And Ranging) sonobuoys can be sufficient to localize a source.  Alternatively, we were 
also able to use special propagation characteristics in the environment for determining the range 
to the calling whales using calls received at a single instrument.  

Time difference of arrival of a signal to multiple receivers has been used for localization of blue 
whales and sei whales (B. borealis) in the Antarctic (McDonald et al., 2005; Širović et al., 2007), 
although in the case of sei whales, DIFAR sonobuoys were also used for localization. DIFAR 
sonobuoys have also been used in the Bering Sea to find right whales (McDonald and Moore, 
2002) and in the Southern California Bight to assist in finding blue whales (Oleson et al., 2007a). 

In shallow water, well mixed environments, waveguide propagation creates range-dependent 
waveform dispersion.  When frequency modulated sounds travel in a waveguide, the difference 
in travel speeds at different frequencies, with lower frequencies traveling slower, results in 
different arrival times of individual modes.  By modeling propagation in such an environment, it 
is possible to determine the distance to the source from the characteristics of the received signal 
for low frequency signals.  One such shallow water environment with waveguide propagation is 
the Bering Sea.  Wiggins et al. (2004) used this characteristic of the propagating environment in 
the Bering Sea to determine ranges to North Pacific right whales producing up calls using calls 
recorded at a single instrument.  While they were not able to localize on individual whales, the 
range information was sufficient to calculate source level of the up calls (Munger et al., 2011). 

In deep water, we were able to determine the range to a calling animal using multipath arrivals of 
a call also to a single instrument.  When a call travels from the source to the receiver, it can 
travel in the direct path, but it can also bounce from the ocean bottom and the surface.  The latter 
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paths are longer than the direct path and thus take longer time, resulting in multiple arrivals of 
the same call to one instrument.  By measuring the difference in the time of arrival of the 
different paths to the receiver, it is possible to determine the range to the source. This method has 
been applied to fin whale 20 Hz pulses in the North Pacific and the Antarctic (McDonald et al., 
1995; Širović et al., 2007), as well as on the down swept portion of blue whale calls in the 
Antarctic (Širović et al., 2007), to determine the range to the calling animals over 10s of km, 
establish a pattern in calling by a number of individuals, and estimate call source levels. 

Occasionally, it is possible to use multiple methods for localization or ranging to calling animals, 
which can serve as verification of the methodologies.  In the Antarctic, we were able to calculate 
distances to calling blue whales using time difference of arrivals and multipath propagation and 
found that the two results were different by not more than 7% (Širović et al., 2007).  In the 
Bering Sea, the comparison of time difference of arrivals to normal mode propagation ranging 
yielded results, which were on average within 12% of each other (Munger et al., 2011). 

V. Summary 
The last ten years have shown tremendous growth in the capabilities of detection, classification, 
and localization algorithms, both in our labs and the field in general.  Many algorithms have 
moved from the field of research into the hands of trained acoustic analysts, packaged with 
graphical user interfaces (Figueroa and Robbins, 2007; Gillespie et al., 2008; Mellinger, 2001; 
Wiggins et al., 2007).  Yet there remain many unanswered questions and the error of many state 
of the art algorithms still leaves much to be desired.  The next ten years are likely to bring 
continued improvements to these algorithms, common use of passive acoustic monitoring in 
density estimation, and the study of calls in context as our ability to observe detailed movements 
continues to improve. 
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