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Abstract-The sea is home to a myriad of marine animal species, many of which use sound as a primary means of communication,
navigation and foraging. Of particular interest are the Blue whales (Balaenoptera musculus) of the cetacean family. Massive commercial
whaling prior to 1960 brought the species close to extinction and its population still remains very low. Passive acoustic monitoring of
baleen whales has recently been used to provide long-term information about their presence and behavior, and provides an attractive
complement to traditional visual based monitoring. In this work we present a frequency domain based algorithm developed for
extracting the frequency contours of the dominant harmonic in tonal calls of blue whales (B and D calls). The algorithm uses a two pass
approach to contour extraction. In the first pass, partial candidate contours are formed, followed by a second pass which uses the
partial information to construct complete contours. When evaluated on a one hour labeled recording, the algorithm had 90% recall and
76% precision.

I. INTRODUCTION

Baleen whales are thought to use vocalizations for various purposes - to establish territories, locate conspecifics and to attract
mates [1]. Blue whales in the eastern north Pacific are known to produce at least three types of tonal calls and one pulsed call [1].
Of particular interest to us are two classes of tonal calls, namely B and D calls. Adaptation of existing detection algorithms is
complicated by the high variability of several call parameters including duration, frequency content, and sweep rate. The blue
whale D call contour sweeps steeply downwards within an approximate frequency range of 30 to 95 Hz and lasts 1-4 s [2] (Fig.
la). D calls are primarily associated with feeding and are produced by both sexes [1]. B calls are quite long ( 20 s) with their
third harmonic being the most prominent, sweeping downwards within a relatively smaller frequency range of approximately 40
to 55 Hz [3] (Fig. lb). Although their exact purpose is unknown, they are mostly associated with migration and are known to be
produced only by males [1].

Acoustic based methods of monitoring marine mammals are complementary to visual methods and have been used for the
purpose of studying behavioral patterns such as migration [3]. However, several factors make it difficult to detect these call types
1 automatically using conventional acoustic approaches. The presence of temporal characteristics and irregularities in these call
types are some of the primary factors [2]. Spectrogram correlation [4] has been shown to be effective for tonal B calls, but
frequency modulated D calls exhibit high variability in sweep range and slope, making it difficult to generate a suitable kernel for
recognition by spectrogram correlation. Some calls have observed dropouts (see for example Fig. lb between 12 and 17 s). These
dropouts were examined in [5] where calls were analyzed to determine if any portion of the call could not be attributed to
interference effects resulting from Lloyd's mirror. While interference effects did play a role, in some cases it was likely that
variations in the call amplitude were due to variations in the production by the whale. Regardless of the cause, for the purposes of
call counting these should be counted as a single call and our strategy is to bridge the contour.

Other noise sources also contribute to the difficulty of call detection and contour extraction. The low frequency components
(those below 100 Hz) in the sound of passing ships and the line-induced buzz/hum (50-60 Hz) add to the problems making
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Fig 1. Spectrograms showing call contours. Spectrograms produced using 256 ms Hanning window and 1024 point FFT with an overlap of 50%.

Throughout this literature, we will use the term "call" to refer to the vocalizations of interest to this study- namely the blue whale B and D calls.
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contour extraction more difficult. Also, fin whale (Balaenoptera physalus) calls that are downswept and are in the range of 15-50
Hz [2] fall in close frequency ranges of blue whale D calls.

II. BACKGROUND

An effective and widely used technique for many mysticete calls is spectrogram correlation [4, 6]. The spectrogram of a
prototype call is used to form a kernel which is correlated with an audio stream. When the correlation exceeds a user-defined
threshold, a call is said to be detected. The technique has been successfully used on B calls (see [3] as an example), but is not
capable of recognizing calls that vary significantly from the prototype in duration, shape, or frequency range. An alternative has
been proposed for odontocete whistles which are also tonal in nature, but tend to be more complex and overlap due to large
groupings of animals. A very brief description of an unpublished semiautomatic algorithm developed by Lammers for odontocete
whistles appears in [7]. Given a pair of endpoints, spectral frames are analyzed for non-overlapping contours with evidence of
harmonic structure. In [8], a two stage method is proposed where the first stage extracts a variable number ofpeaks based upon an
analysis of spectral variance and forms segments from the connected peaks based on a local search of peak neighborhoods. The
second stage assembles contours based upon the fit of contour statistics whose distributions are estimated from a set of training
contours.

The spectrogram correlation method has been used effectively for B calls, but variations in the D calls prevent the construction
of an effective D call kernel. Lammers' algorithm was tried, but could not really extract these low frequency calls. With non-
trivial modifications to heuristics and constraints, the algorithm of [8] could be extended to function with mysticete calls.
However, the simpler structure of mysticete calls and sparsity of call overlap make the proposed algorithm a viable alternative
which can execute an order of magnitude faster than real time on modest general purpose hardware. The proposed algorithm is
based upon ideas used to extract fundamental frequency contours in human speech (e.g. [9]) which rely on dynamic
programming.

III. DATA COLLECTION

Acoustic recording packages (ARP) [10] werethe._
primary instruments used for autonomous undersea S intirbta
audio data collection. An ARP consists of a self-
contained sealed recording package attached to a
frame with a tethered hydrophone. The ARP has __... A E t~~~~~~~~~oSAn.geles
sufficient storage and battery power to record for N
over a year and was configured to record audio at a
sampling frequency of 1 kHz with 16 bits per
sample. This configuration allowed complete
sampling of the known blue whale calling repertoire.
The Cortez and Tanner Banks in the Southern
California Bight, about 180 km west of San Diego, 33 N
were the primary sites chosen for data collection. sant
They are known feeding grounds for several
cetacean species, including blue whales. Acoustic
data were recorded at several places around the.......
Cortez and Tanner Banks from August 20, 2000 to CortezandTannerBahks
February 20, 2004. However, data only from the two 32NN
sites shown in Fig. 2 were used for analysis as they _ [t lv

1621.W :120OW l. 191W IIKW I. L 7"W
provided complete seasonal coverage for each year.
Furthier dopetailseon othe moethosguedfordahyata Fig. 2: Southern California Bight bathymetry (in m) showing Cortez and Tanner Banks study

site. Site I (location: 32'41.3gN, 11901.9'W; depth: 305 m). Site 2 (location: 32035.8N,
collection may be found in [3]. 119°08.8'W; depth: 215 m). [1]

IV. THE ALGORITHM

The primary goal in the development ofthe algorithm is to obtain maximum possible robustness and accuracy. The algorithm is
inspired by a widely used pitch tracking algorithm, the robust pitch tracking algorithm (RAPT) [9], which extracts pitch contours
from voiced human speech. RAPT uses normalized cross-correlation function (NCCF), a variant of the auto-correlation function
(ACF), for obtaining candidate estimates of the true pitch period. The NCCF of the signal is computed and local maxima in the
obtained values are identified. In order to speed up computation, RAPT first performs these steps at a significantly reduced
sampling rate for all lags, and then again at the original sampling rate for lags in the vicinity of the peaks identified in the first
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step, thereby producing refined peak location and amplitude estimates. Our algorithm operates in the spectral domain instead, and
obtains the estimates of energy and location of peak frequencies using the discrete Fourier transform of the signal. In RAPT,
selection among candidate contours is based on a cost function which penalizes candidates with low energy and those that change
rapidly. In our algorithm, a two pass dynamic programming approach is employed for selecting the best contour among the
candidates.

A. Algorithm Uutline
In a first pass, the frequency content of each frame is analyzed for spectral peaks after normalization by spectral means

subtraction. As the peaks within the bandwidth ofB and D calls are identified, a data structure is created that notes nearby peaks
in the previous frame. A second pass builds potential contours from chains of peaks that can be inferred from the peaks and peak
predecessors noted in the first pass. Domain specific heuristics are used to accept or reject candidate peaks for inclusion in
contours and to accept or reject the contour. Generated contours are smoothed with a moving average process. An optional post
processing step permits the bridging of successive contours that meet criteria which would suggest dropout. Fig. 3 provides a
high level summary of the algorithm.

For convenience, important constants and variables are summarized in Tables I and II, respectively. Constants were obtained
by extensive tuning while testing numerous segments of recordings including a variety of conditions (noise, multiple calls, etc.)
which were disjoint from the evaluation data.
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Fig 3. Overview ofthe proposed algorithm.
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TABLE I
CONSTANTS USED IN THE ALGORITHM

Meaning
Eliminate peaks whose energy falls beneath CAND_TR%o ofthe strongest peak
Max number ofpeaks to retain at each frame
Limit search for adjacent peaks in previous frame to FREQ_WIN Hz from current peak
Peak Reject Ratio. Peaks smaller than PRR%o ofMaxPeaksMean are rejected.
Peak Reject Ratio stage 2, allows more lenience for accepting slightly more weaker peaks
Upper limit on separation between consecutive contours (s), used in post-processing

Symbol
(PiP,k

PeakIdxsi,k
Peaksi,k

MaxPeaksMean

TABLE II

SYMBOLS USED IN THE ALGORITHM

Meaning
Energy for frame i at frequency bin k, after normalization
Location of the kth peak in the ith frame, in the normalized power spectrum (Hz)
Energy at the kth peak in the ith frame, in the normalized power spectrum

Index to the peak in PeakIdxs(, l) that is closest to PeakIdxsi,k
Mean of the highest peaks from every frame

B. Data Preparation Input Transformation
Audio data is processed in 60 s segments which are long enough to completely contain the longest call type (B call, -20 s).

Consecutive segments are considered with a 500O overlap, in order to avoid losing portions of calls that lie along the boundaries
of segments. The segment length is chosen so that the overlapping region is long enough to completely contain at least one B call
( 20 s). Another reason for considering such long segments is for suppressing an undesirable effect of normalization, which will
be discussed later. For each segment, the power spectrum is computed from the discrete Fourier transform of the signal taken in
frames of 256 ms zero-padded to 1024 samples. A frame length of 256 ms has been chosen in order to have better frequency
resolution. All operations are limited to a frequency bandwidth of 30 tot 00 Hz that completely covers all variations of B and D
calls. The prominence of line-induced noise and of the sound of passing ships, in the spectrum is reduced through the use of
spectral means subtraction using mean estimates from short (3 s) initial and trailing sections of the segment. The drawback to this
approach is that when these sections contain parts of actual calls, they may reduce the prominence of other calls in the segment
thereby affecting accuracy. However, since the calls have a frequency sweep, there is negligible effect on any single frequency
bin. In addition, this drawback can be further suppressed by choosing longer segments ( 60 s).

C. Dynamic Programming
Contour tracking is performed over two forward passes across frames of the normalized power spectra. In the first pass, the

data required for backtracking is prepared. For each spectral frame Oi, local maxima are identified as candidates for inclusion in a

contour. The peak locations are refined by parabolic interpolation on the three samples of Oi defining every local maximum.
Peaks whose energy exceeds a certain percentage (CAND TR) of the highest peak for the frame are noted. If a large number of
such peaks are obtained, the list is pruned such that only the highest N CANDS peaks remain. The peak locations (in Hz) for the
ith frame are stored in PeakIdxsi and the corresponding energy values are stored in Peaksi.
Once all frames have been processed, MaxPeaksMean, the mean of the highest peaks from all the frames, is computed as

E max(Peaksi)
MaxPeaksMean= i= all frames (1)

Number of frames

Fig. 4 shows information from a representative first pass on a synthetic data set. Each peak is denoted with an asterisk. If any
peak in the (i-l )th frame lies within a frequency distance ofFREQ_WIN Hz from the kth peak in the ith frame, its index in Peaks(il)
is stored in /ik (see Fig. 4b) which can be thought of as representing a possible contour path from frame i back to frame (i-1). In
case of multiple previous peaks lying in the range, the highest peak is chosen. When no previous peaks lie in the range, /ik iS set
to null, indicating that any possible contour passing through frame i frequency k would terminate at this point. The values of pink
for i = 1 are all set to null. The first pass terminates with ,B containing backward chains of potential contours. With PeakIdccs
showing the frequency and, the connections between peaks, we can observe a form of connectivity across peaks from
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consecutive frames. These connected sets of peaks
shown in Fig. 4a comprise the set of candidate
contours that will be examined in the next pass.

The second pass identifies the best contour within
a segment through the application of rules and
heuristics. The algorithm progresses in the direction
of increasing time, incrementally following the best
contour, among the candidates available at each
frame, as described in the next section. When
conditions are met for adding a peak to the best
contour, we let its index within the list of peaks for
that frame (PeakIdxsi) be denoted as LastBest, which
is used to track the location of the best contour2 in
the current frame. LastBest is initialized to null.
Whenever we start to follow a new contour
(including the first time), LastBest will be set to the
strongest peak in the frame under the assumption that
the peak of highest energy is most likely to be part of
the next contour. This assumption may lead to a false
start, which is addressed later in this section. In
addition, when a new contour is started, a flag called
NewStart is also set, which is used to note that the
next output should be marked as the first frame of a
new contour.
As each frame is examined, potential contours are

incrementally generated. These contour elements
(partial results) are stored as they are generated in an
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Fig 4. Snapshot of a first pass on synthetic data. a) Plot showing the location of peaks in
each frame. The backward arrows from each peak point to the closest best from the
previous frame. Zoomed regions demonstrate the use of FREQ_WIN for establishing
connectedness. b) The corresponding ,B structure populated as described. The kth peak in
the ith frame is identified with a (k) inside the corresponding block. The backward arrows
indicate the index stored in each /i, k.

array of 3-tuples which we denote asfx. Each tuple contains (i, peak location, start flag) where:
* i indicates the contour passes through the ith frame
* peak location is the contour's frequency in frame i,
* startJlag is an indicator function which is set when the entry denotes the start of a new contour.

For notational convenience,fx, will denote the tth tuple, andfrt,m the mth item of tuplefx,. endIdx refers to the index ofthe last tuple
offx with endIdx of 0 denoting the emptyfx. The operation of adding a tuple tofx will be described as extending the contour by (i,
peak location, startflag).
D. Heart ofthe SecondPass

Each frame is considered in the context of either extending an existing contour or possibly creating a new one. We begin by
examining the extension of contour. To extend the contour into the ith frame, there must exist a candidate peak of sufficient energy
with a back pointer which points to a peak at frame i-I which lies on the current contour. More formally, this occurs when the
following conditions are met:

i) LastBest # null indicates if a contour is being followed at all
ii) 3 k such that 1Ai,k =Peaks(i-]),LastBest k E {indices to all stored peaks in the ith frame}
iii) Peaksi,k>> MaxPeaksMean x PRR for k identified in previous condition

If multiple peaks meet the criteria, we select the peak which is closest in frequency to the previous frame's best candidate peak
(Peaks(i ]),LastBest). This decision is made to favor smoothness in the contour. We denote the index to such a peak in Peaksi by p.

If contour continuity cannot be established, the strongest peak in the current frame is considered to be a candidate for a new
contour. In this case, LastBest is set to the strongest peak and NewStart is set to true, as described earlier, in preparation for
examining the next frame, and the algorithm continues with the next frame. When contour continuity can be established, LastBest
is set equal to p and the algorithm proceeds with determining if the current frame extends a contour or if there is a possibility for
the start of a new contour at the current frame, as described below.
A new contour may have started when no contour is currently being followed as indicated by the NewStart flag and the

previous contour (if any) ended two or more frames ago. This occurs when both conditions below are met:
i) NewStart is set
ii) endIdx = 0 (no previous contour) orfXendldx,I <i1

2 Henceforth we use just the term contour to refer to the (best) contour being followed. Wherever ambiguities arise, they will be resolved explicitly.
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If the above conditions are not satisfied, the algorithm skips to examining conditions at the next frame after extending the current
contour by (i, PeakIdxsi,p, 0) as the peak at Peaksi,p satisfies continuity of an existing contour. Otherwise, it attempts to confirm
the possibility a new start. IffXend1dx,2 and PeakIdxsi,p are within FREQ_WIN Hz range of each other and they are both separated
by only one or two frames, then it may not be a true new start but one longer contour with small segmentation which can be
realized by joining the two ends. In such a case, we will not treat this as a new start. These segmentation gaps may have been
caused by an absence of peaks at those locations in the intermediate frames, due to the presence of too many higher peaks at other
locations or due to the strategy of selecting closer peaks over stronger ones employed at an earlier frame. Joining the two ends
involves extending the contour by (i- I, intermediate-peak-location, 0) followed by
(i, PeakIdxsi,p, 0). The intermediate peak location is obtained utilizing the back pointers stored in ,B and PeakIdxs. In case of a two
frame gap, a pair of intermediate peaks (one from each frame) which exhibit minimum average distortion in their locations are
picked. Then the contour is extended by (i-2, intermediate-peak-1, 0), (i-1, intermediate-peak-2, 0) followed by (i, PeakIdxsi,p, 0)
and the algorithm continues with examining conditions at the next frame after resetting NewStart.

If the conditions for a possible new start were met, the algorithm checks if the last recorded contour was a false start or if a
wrong branch was followed at an earlier choice point (if any) in the contour. Determining and rectifying these two types of errors
are described below. If any of the checks return true, appropriate steps are taken to rectify the corresponding error, and then the
contour is extended by (i, PeakIdxsip, 0). Otherwise, the contour is extended by (i, PeakIdxsip, 1) and NewStart is reset. This
marks the end of examining conditions at a single frame in the second pass. Repeating the above process for each frame
completes the second pass with raw estimates of the contours present in the audio segment.
A false start at an earlier point can be determined as follows. If the last recorded contour ended at (i_ I )th frame, at this point it is

certain that the end of that contour is not within FREQ WIN distance of PeakIdxsi,p since we have already checked for this
condition. The error can be rectified by looking backwards one previous frame at a time replacing the second element of the
(endIdx-n)th tuple infx with the location of that peak in the (i-n)th frame which lies in the backward extension of the new contour;
for n = 1, 2, 3,... up to the end of the backward extension. A backward extension is the portion of the candidate contour before the
ith frame that can be traced with the help of,. See Fig. 5a for an example. The replacement of the values at the nth backward frame
is made only when the value at the corresponding peak in the backward extension is greater than that at fX(endldx n),] and also
greater than PRR%o of MaxPeaksMean. The peak values are obtained from Peaksi,k. Whenever the condition fails, the backward
loop is broken and the third element of the tuple infx, corresponding to the last replaced peak is set to 1 to indicate the start of the
new contour there. This way we get rid of the falsely recognized contours caused by the presence of transient noise around the
actual starts of true contours.
An incorrect branch taken at an earlier fork can be rectified as follows. If the new contour has a backward extension, it is traced

backwards one frame at a time while replacing the second element of the (endIdx-n)th tuple in fx, as described before, until the
fork is reached which can be realized when the point at the (endIdx-n)th tuple infx equals that peak in the (i-n)th frame which lies
in the contour's backward extension. See Fig. 5b for an example. The strategy employed here is that the longer candidate contour
wins. Hence, the decision on replacement is not based on comparison of the heights of the peaks in consideration. A replacement
is made when the value at the corresponding peak in the backward extension is greater than PRR S2% of MaxPeaksMean.
PRR S2 is chosen here in order to allow slightly
smaller peaks also to play a role by aiding in the
tracing of a longer contour. Again, whenever the
condition fails, the backward loop is broken but this
time without setting the flag in the last element of
the corresponding tuple infx since we do not have a
new start here.

E. Contour Smoothing
After the end of the two pass dynamic

programming section, we obtain a set of raw
disjoint contours whose coordinates are available in
the first two elements of the tuples in fx. The
quadratic interpolation used in refining the locations
of peaks provides estimates of the actual peak
locations. The locations of peaks obtained this way
may be slightly off from their true locations. Hence,
the obtained peaks in consecutive frames which are
considered to form the identified contour may be
scattered around their corresponding true locations
which would have otherwise defined the true
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Fig 5. a) Example of a false start: A, and Bs are initially selected as they are the strongest
peaks in the two frames. At frame 3, Cr is selected as it is within FREQ_WIN Hz of Bl.
However backpointers from frame C, indicate that Bs and A, would produce the better
estimate of the contour. b) Example of an incorrect branch at frame 2: At fork Al, B2 is
selected as it is stronger and closer. However at frame 5 when the original path ends, D, is
examined and we realize that a branch from Al to Bs would produce a longer contour.
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contour. As a result of this scattering, the identified contour is prone to jitter. Smoothing of this contour reduces jitter and helps us
realize a much closer estimate ofthe true contour in the call. Every identified contour's ordinate sequence (available in the second
element of the tuples infx) is passed through a 3-point moving average filter to obtain jitter-free equivalents.

F Post Processing
This is an optional step. If a pair of consecutive contours have a time separation less than PP GAP (i.e., the end of the first

contour and the start of the next contour are less than PP GAP apart) and the corresponding interior ends are within FREQ_WIN
distance of each other, then they may be joined together by linear interpolation of the points in the gap in order to realize, as a
single long contour, the complete call with broken sub-contours. This is particularly helpful with the rather long B calls. Typically
the contours of these calls appear to be segmented for several reasons, as described earlier. The technique, however, has
drawbacks where it may end up joining together the contours of two different calls. In any case, this step involves the expansion
offx from the middle in order to accommodate the new points. Once the additional peaks are accommodated, the value in the
third element of the tuple in x, corresponding to the start of the second contour considered is set to zero to indicate that it is now
not the start of a contour.

V. RESULTS AND PERFORMANCE

When evaluated on a randomly chosen segment of the recordings, the algorithm has a recall of 90°O, detecting the contours of
56 calls out of the 62 known calls in a 60 minute sample. The precision was 76%, with 18 false positives in sections of data with
fairly strong channel noise. The algorithm was also observed identifying contours of other tonal call types, including calls from
other species. Some of the false positives were caused in part by the presence of fin whale calls. Since the algorithm is optimized
to function in the [30Hz, 100Hz] bandwidth, the downswept fin whale calls that are produced in the lower boundary of this
bandwidth affect the performance to some extent. The task of rejecting such detections is considered that of a classifier, which is
beyond the scope of this work.

Fig. 6 shows the extracted contours for the D and B calls shown in Fig. 1. The dots in the contours indicate the frequencies at
the corresponding frames that form the contour. Consecutive dots are joined by straight lines. Post-processing was turned on
while extracting these contours. However, since the two segments in Fig. 6b are too far apart, we can see that they have not been
joined by linear interpolation.

The algorithm is implemented in Matlab and runs at a real-time factor of over 40x on an AMD Athlon 1.19GHz machine,
making it suitable for use as a component in an on-site acoustic monitoring program. Future work will focus on the development
of a classifier.
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Fig 6. Call contours extracted using the proposed algorithm, for the audio used in producing the spectrograms shown in Fig. 1.
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