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Passive acoustic monitoring of marine mammal calls is an increasingly important method for

assessing population numbers, distribution, and behavior. A common mistake in the analysis of

marine mammal acoustic data is formulating conclusions about these animals without first

understanding how environmental properties such as bathymetry, sediment properties, water

column sound speed, and ocean acoustic noise influence the detection and character of

vocalizations in the acoustic data. The approach in this paper is to use Monte Carlo simulations

with a full wave field acoustic propagation model to characterize the site specific probability of

detection of six types of humpback whale calls at three passive acoustic monitoring locations off

the California coast. Results show that the probability of detection can vary by factors greater than

ten when comparing detections across locations, or comparing detections at the same location over

time, due to environmental effects. Effects of uncertainties in the inputs to the propagation model

are also quantified, and the model accuracy is assessed by comparing calling statistics amassed

from 24 690 humpback units recorded in the month of October 2008. Under certain conditions, the

probability of detection can be estimated with uncertainties sufficiently small to allow for accurate

density estimates. VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4816581]

PACS number(s): 43.30.Sf, 43.60.Uv, 43.80.Ka, 43.60.Cg [MCH] Pages: 2556–2570

I. INTRODUCTION

A common mistake in passive acoustic monitoring of

marine mammal vocalizations and other biological sounds is

to assume many of the features in the recorded data are asso-

ciated with properties of the marine animals themselves,

without accounting for other important aspects. Once a

sound is emitted by a marine animal, its propagation through

the ocean environment can cause significant distortion and

loss in energy.1 These environmental effects can be readily

seen in the ocean-bottom-mounted acoustic data recorded in

California waters that are presented in this paper. Spatial

variability in bathymetry at shallow-to-mid-depth monitor-

ing sites can be significant over propagation distances typical

of those for low (10 to 500 Hz) and mid (500 to 20 kHz)

frequency calling animals. Bathymetric effects can break the

azimuthal symmetry so that the detection range becomes a

function of bearing from the data recording package. In addi-

tion to this spatial variability, the site-specific propagation

characteristics change over time due to changes in water

column properties, leading to changes in the sound speed

profile.1 Solar heating during summertime increases both the

sound speed and the vertical gradient in sound speed in the

shallow waters where many marine mammal species vocal-

ize. Larger near-surface gradients in sound speed refract the

sound more strongly toward the ocean bottom. In contrast,

surface ducts that often form and deepen during wintertime

can trap sound near the surface.2 Depending on the location

and depth of the receivers, these changes in sound speed pro-

files can increase or decrease the detectability of calls.

Detection is a function not only of the properties of the

received signal, but also of the noise. Differences in the

overall level of the noise (defined in this paper as all

recorded sounds excluding calls from marine mammal spe-

cies) can vary by more than 2 orders of magnitude in energy

(i.e., by more than 20 dB). In addition, the spectral character

of the noise at each site can differ. For example, the variabil-

ity as a function of frequency in the noise levels is signifi-

cantly greater at sites with nearby shipping due to the

frequency variability of radiated noise from commercial

ships.3 For a given average noise level, signal detection is

more difficult in noise with frequency-varying levels than in

noise that is flat (i.e., white noise).

All of these site-specific and time-varying environmen-

tal effects must be taken into account when evaluating the

passive acoustic monitoring capabilities of a recording sys-

tem deployed in a given location over a given period of

time. They also should be taken into account when compar-

ing the passive acoustic monitoring results collected at one

location to those from another location. Therefore, it is

important to estimate the site specific probability of detec-

tion (P is the true underlying detection, and P̂ is its estimate)

for species-specific acoustic cues within a dataset. As part of

this calculation, it is necessary to estimate the azimuth-

dependent range over which the detections can occur for

each deployed sensor. These estimates must be frequently

updated as environmental properties change. One application
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where these site-specific and time-varying environmental

effects are particularly important to take into account is in

estimating the areal density of various marine mammal

species using passive acoustic data.

Significant progress has been made recently in estimat-

ing marine mammal population densities using passive

acoustic monitoring techniques, most notably in the Density

Estimation for Cetaceans from passive Acoustic Fixed

sensors (DECAF) project.4 In addition to being of basic sci-

entific interest, information on population densities is impor-

tant in regions of human activities, or potential activities, to

properly evaluate the potential impact of these activities on

the environment. In the DECAF project and in other efforts,

a variety of methods are used to calculate P̂. It is often

derived from estimating the detection function—the proba-

bility of detecting an acoustic cue as a function of distance

from the receiving sensor.5 Using distance sampling meth-

ods, it is necessary to calculate distances to the vocalizing

marine mammal, often a time-consuming task in which

multiple sensors for localization are usually needed.

Additionally, the detection function may need to be recalcu-

lated as environmental parameters change, particularly for

low- and mid-frequency vocalizations.

When single fixed sensors are used for density estima-

tion, the probability of detection must be estimated in part

from acoustic propagation models. For marine mammals

vocalizing at high frequencies (greater than 20 kHz), simple

spherical spreading plus frequency dependent absorption mod-

els may be sufficient. K€usel et al.6 and Benda-Beckman et al.43

demonstrated the use of spherical spreading plus absorption

models in estimating the density of Blainville’s beaked whales

(Mesoplodon densirostris) from passive acoustic recordings.

For whales vocalizing at lower frequencies, full wave field

acoustic models are necessary, and the uncertainties in the

input parameters in these models can lead to large uncertain-

ties in P̂.

A growing number of single fixed acoustic sensor pack-

ages have been located in the southern California Bight since

2001. Each High-frequency Acoustic Recording Package

(HARP),7 contains a hydrophone tethered above a seafloor-

mounted instrument frame, and is deployed in water depths

ranging from 200 m up to about 1000 m. Analysts monitor

records from these packages for a variety of marine mammal

species, including humpback whales (Megaptera novaean-

gliae). Humpback songs consist of a sequence of discrete

sound elements, called units, that are separated by silence.8

Traditionally, analysts mark the presence of humpback

whales within a region by indicating each hour in which a

vocalization occurred. The recent development of a general-

ized power-law (GPL) detector for humpback vocalizations9

has provided the ability to count nearly all human-detectable

humpback units within the acoustic record. However,

comparing statistics from calling activity between HARP

sensors, between seasons, and across years is still con-

strained by the ability to estimate the spatial and temporal-

varying P for these vocalizations, and the areal coverage in

which these vocalizations are detected. Comparing activity

between geographical locations or at the same location over

time without accounting for the acoustic propagation

properties of the environment can be extremely misleading,

as the probability of detection can vary by factors of 10 or

more as shown in Sec. III C.

This paper focuses on three geographical areas off the

coast of California, each with distinct bathymetry, ocean bot-

tom sediment structure, sound speed profiles, and ocean

noise conditions. This study highlights the variability that

bathymetric and other environmental properties create when

calculating P̂ for humpback whales. Section II gives a brief

description of humpback whale activity in the north Pacific,

followed by a description of bathymetric and environmental

conditions at the three HARP locations off the California

coast. This section also highlights the data collection and

analysis effort to date for these three HARP locations.

Section III outlines the acoustic modeling used to determine

P̂ for each of the three HARP locations, with the environ-

mental and bathymetric information described in Sec. II B as

inputs to the model. Estimates of P are presented for each of

the three sites as well as uncertainties for these estimates.

Section IV explores the accuracy of the model by comparing

detection statistics of 24 690 humpback units from the data

collection effort to statistics generated from the model.

Section V discusses the importance of various input parame-

ters to the model, giving insight into ways to minimize

uncertainty in P̂. Additionally, a discussion on the potential

for accurate density estimation at the three locations is given.

Section VI summarizes the conclusions from this work.

II. PASSIVE ACOUSTIC RECORDING OF TRANSITING
HUMPBACK WHALES OFF THE CALIFORNIA COAST

A. The humpback whale population off California

Humpback whales in the north Pacific Ocean exhibit a

dynamic population distribution driven by seasonal migration

and maternally directed site fidelity.10–12 They typically feed

during spring, summer, and fall in temperate to near polar

waters along the northern rim of the Pacific, extending from

southern California in the east northward to the Gulf of

Alaska, and then westward to the Kamchatka peninsula.

During winter months, the majority of the population migrates

to warm temperate and tropical sites for mating and birthing.

Although the International Whaling Commission only

recognizes a single stock of humpback whales in the

north Pacific,13 good evidence now exists for multiple

populations.10–12,14–17 Based on both DNA analysis12 and

sightings of distinctively-marked individuals,11 four rela-

tively separate migratory populations have been identified:

(1) The eastern north Pacific stock which extends from feed-

ing grounds in coastal California, OR, and Washington to

breeding grounds along the coast of Mexico and Central

America; (2) the Mexico offshore island stock which ranges

from as yet undetermined feeding grounds to offshore

islands of Mexico; (3) the central north Pacific stock which

ranges from feeding grounds off Alaska to breeding grounds

around the Hawaiian Islands; and (4) the western north

Pacific stock which extends from probable feeding grounds

in the Aleutian Islands to breeding areas off Japan.11,17–20

Within the northeastern Pacific region, where the data

presented in this paper were collected, photo-ID data indicate
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migratory movements of humpback whales are complex;

however, a high degree of structure exists. Long-term individ-

ual site fidelity to both breeding and feeding habitats for the

two populations that migrate off the U.S. west coast [popula-

tions (1) and (2) above] has been described.11 The mark-

recapture population estimate from 2007/2008 for California

and Oregon is 2043 and with a coefficient of variation (CV)

of 0.10, this estimate has the greatest level of precision.21

Mark-recapture data also indicate a long-term increase in the

eastern north Pacific stock of 7.5% per year,21 although short-

term declines have occurred during this period, perhaps due

to changes in whale distribution relative to the areas sampled.

Intriguing variations in seasonal calling patterns between the

three data recording sites reported on in this paper have been

observed,22 suggesting that the animals’ behavior may differ

among these three habitats.

Based on the humpback song recorded at many locations

off the coast of California, six representative units were

selected as inputs to the acoustic propagation model, and are

shown in Fig. 1. These commonly recorded units of a hump-

back song represent diversity in length, frequency content,

and number of harmonics—all of which influence the proba-

bility of detecting the units. Vocalizations were selected from

a different data source than the HARP recordings so as to

capture high signal-to-noise ratio (SNR) vocalizations near to

the source, minimizing attenuation and multipath effects.23

B. HARP recording sites

Three HARP locations were selected for this study. Site

SBC (34.2754�, �120.0238�) is located in the center of the

Santa Barbara Channel, site SR (36.3127�, �122.3926�) is

on Sur Ridge, a bathymetric feature 45 km southwest of

Monterey, and site Hoke (32.1036�, �26.9082�) is located on

the Hoke seamount, 800 km west of Los Angeles. A map of

coastal California showing the HARP locations, the Santa

Barbara Channel commercial shipping lanes, and commercial

shipping traffic densities is presented in Fig. 2. Acoustic data

collected at each of these sites indicates the occurrence of a

humpback song over much of the fall, winter, and spring.

1. Bathymetry

The bathymetry for each of the three sites can be seen in

the upper row of Fig. 3. Bathymetry information for site SR

and site SBC was collected from the National Oceanographic

and Atmosphere Administration (NOAA) National

Geophysical Data Center U.S. Coastal Relief Model.24

Bathymetry information for site Hoke was collected by com-

bining data from the Monterey Bay Aquarium and Research

Institute (MBARI) Atlantis cruise ID AT15L24 with data

from the ETOPO1 1 Arc-minute Global Relief Model25 for

depths greater than 2000 m. At site SBC the bathymetry forms

a basin with the HARP located near the center of the basin at

a depth of 540 m. The walls of the basin slope up to meet the

channel islands to the south and the California coastline to the

north. The HARP at site SR is located at a depth of 833 m on

a narrow steep ridge approximately 15 km long with a width

of 3 km trending east–west. To the east the ridge slopes

upwards to the continental shelf, and to the west is downward

sloping to the deep ocean floor. Site Hoke is located near the

shallowest point of the Hoke seamount, at a depth of 770 m.

The seamount walls slope downward nearly uniformly in all

directions to a depth of 4000 m.

2. Ocean sound speed

Sound speed profiles (SSPs) were calculated from con-

ductivity, temperature, and depth (CTD) casts in the NOAA

World Ocean Database26 that was recorded in near proximity

to each of the three sites. Several hundred CTD casts were

used in the analysis, covering all seasons and for years rang-

ing from 1965–2008. When available, additional CTD casts

were taken during the same time period as the HARP

deployments.3 Figure 4 shows a representative sample of the

sound speed profiles collected near each of the three sites,

with red indicating summer profiles (Jul.–Sept.) and blue

indicating winter profiles (Jan.–Mar.). The plots illustrate the

effects of warm surface waters in the summer on the sound

speed profiles, especially at site SBC and site Hoke, with a

deeper mixed layer occurring at site Hoke. The variation

between summer and winter profiles is not as prominent at

site SR, which is exposed to cooler mixed waters during the

summer months than the other two sites.

Solar heating during summertime increases both the

sound speed and the vertical gradient in sound speed in the

shallow waters where humpbacks vocalize. Larger near-

surface gradients in sound speed refract the sound more

strongly toward the ocean bottom, influencing the surface

area over which sound propagates directly to the hydro-

phone. Additionally, surface ducts that often form and

deepen during wintertime (most clearly seen in the profiles

at site Hoke) can trap sound near the surface, influencing the

intensity and spectral characteristics of sound propagating to

the bottom-mounted hydrophone.

3. Ocean bottom properties

Ocean bottom characteristics are important input param-

eters to the acoustic propagation model. A combination of

methods was used to characterize the bottom at site SBC.
FIG. 1. Six representative humpback whale units used in the modeling.

Units labeled 1–6 from left to right.
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Bottom sound speed profile information was obtained from

an experiment conducted in the area in which geoacoustic

inversion methods were used to calculate the sound speed.27

The results of this experiment combined with relationships

from Hamilton28,29 suggest that the bottom is comprised of a

sediment layer extending beyond 100 m in thickness, con-

taining fine sand material [grain size of /¼ 2.85 on the

Krumbein phi (/) scale30,31]. A separate study was con-

ducted in which sediment core samples were taken very near

the location of the HARP. Information from the core sug-

gests a sediment layer extending at least the full length of

the 100 m core. The material contained within the core var-

ied from clayey silt to silty clay, with intermediate layers of

fine sand.32 An estimated grain size of /¼ 7.75 was used to

characterize the core. Most of the transects from the sonar

study were nearer to the coastline rather than over the center

of the basin, which may partly explain the variability in

bottom type between the two studies. It was assumed that

these two studies represent the endpoints of uncertainty of

the sediment layer in the Santa Barbara channel. Therefore,

in addition to these endpoint parameters, a best-estimate

value of /¼ 5.4 extending to 100 m depth was used for

FIG. 2. Map of coastal California showing the three HARP locations: Site SBC, site SR, and site Hoke (stars). The expanded region of the Santa Barbara

Channel shows northbound (upper) and southbound (lower) shipping lanes in relation to site SBC. Ship traffic from the Automatic Identification System is

shown for region north of 32�N and east of 125�W. The color scale indicates shipping densities, which represent the number of minutes a vessel spent in each

grid unit of 1 arc min� 1 arc min size in the month of May 2010. White perimeters represent marine sanctuaries. Shipping densities provided by Chris Miller

(Naval Postgraduate School).

FIG. 3. Bathymetry of site SBC, site SR, and site Hoke (left to right) with accompanying TL plots. The TL plots are incoherently averaged over the 150 to

1800 Hz band and plotted in dB (the color scale for these plots is given on the far right). The location of the HARP in the upper row of plots is marked with a

black asterisk.
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the modeling effort, corresponding to a silty bottom.

Below this layer was assumed to be sedimentary rock

(compressional speed¼ 2374 m/s, density¼ 1.97 g/cm3, attenu-

ation¼ 0.04 dB/m/kHz).

Submersible dives conducted by MBARI along with

sediment cores were used to characterize the bottom at site

SR. Correspondence with Gary Greene (Moss Landing

Marine Laboratories) suggests the ridge itself is thought to

be mostly deprived of sediment and composed of sedimen-

tary rock. Surrounding the ridge is sediment covered sea-

floor—the region east of the ridge contains sediments mostly

consisting of fine sand (/¼ 3). To the west, the sediment is

characterized by clayey silt (/¼ 7).33,34 Eleven sediment

cores are available in this region to a depth of only 1 m

below the ocean-sediment interface, and so the thickness of

the sediment layer is unknown. The best estimate at this site

assumes sedimentary rock (compressional speed¼ 2374 m/s,

density¼ 1.97 g/cm3, attenuation¼ 0.04 dB/m/kHz), devoid

of sediment out to a range of 4 km from the HARP’s loca-

tion. Beyond the ridge, the sedimentary rock is assumed to

have a 10-m sediment cover. Ideally, the modeling would

incorporate range and azimuth dependent sediment type—

fine sand to the east and clayey silt to the west. However, to

increase the speed of the computations, the “best” estimate

used in the model assumes the sediment layer is uniform

with an average grain size of /¼ 5. Since the exact sediment

type and layer thickness are unknown, the endpoints for the

bottom parameters allow the sediment structure to range

from the thickest and most acoustically absorptive (sediment

thickness of 50 m and clayey silt, /¼ 7), to least absorptive

(sediment thickness of 1 m consisting of fine sand, /¼ 3).

For site Hoke, sediment samples were collected from

the Alvin submarine in 2007 during the deployment of the

HARP. Correspondence with David Clague (MBARI) sug-

gests that the rock samples contain common alkalic basalt

samples with minimal vesicles. Pictures of the HARP at its

resting location on the seamount confirm that the hydro-

phone is surrounded by this type of rock. No sediments were

observed at this site, and sediment deposit is not expected on

the slopes of the seamount due to steep bathymetry and

strong ocean currents. Detailed studies on the composition

of nearby seamounts35 in combination with Hamilton’s28,29

study suggest that the density of this rock can range from

just over 2.0 to 3.0 g/cm3, with corresponding compressional

wave speeds ranging from 3.5 to 6.5 km/s. A best estimate

was chosen using a density of 2.58 g/cm3, compressional

speed of 4.5 km/s, and attenuation of 0.03 dB/m/kHz. It was

assumed that the uncertainties in the bottom properties on

the seamount could span the documented range of values for

basalts. This site is the one in which shear propagation likely

plays an important role—however, it was not included due

to limitations of the acoustic model.

4. Ocean noise levels

The ocean noise was characterized at each site using

75 s samples taken every hour of the HARP recordings over

the 2008–2009 calendar year. No data were available from

Hoke during June to August, so the noise was characterized

using the remaining nine months of data. Figure 5 shows the

noise spectrum levels at each of the three sites, with the 90th

percentile, 50th percentile, and the 10th percentile noise lev-

els illustrated. The percentile bands were determined from

the integrated spectral density levels over the 150 to 1800 Hz

band. The gray shaded area in each plot represents the 10th

and 90th percentile range from 30 min of HARP recordings

used to represent wind-driven conditions over which P̂ will

be characterized during model simulations.

Noise levels at site SBC can change drastically over

short time scales, sometimes varying between extremal val-

ues within an hour. The shallow bathymetry shields the basin

from sound carried by the deep sound channel, creating at

times an extremely low-noise-level environment. However,

the channel is also one of the busiest shipping lanes world-

wide,3 and so local shipping noise makes a significant contri-

bution at this site (see Fig. 2). The upper plot in Fig. 5

illustrates the variation in the noise spectrum level with

frequency, especially at high noise levels, indicating the

presence of a large transiting vessel. Noise at site SR is char-

acterized by wind-driven ocean surface processes, distant

shipping, and local shipping. Sur Ridge is exposed to noise

from the west traveling in the deep sound channel.

Therefore, the lowest noise level times at this site are higher

in level than the lowest-level times recorded at site SBC.

Although not as prominent as site SBC, large ships do occa-

sionally pass near to site SR, creating more variation across

frequency than site Hoke, but less variation across frequency

than site SBC. Ocean noise at site Hoke is the least variable

FIG. 4. SSPs for site SBC, site SR, and site Hoke (top to bottom), for winter

(blue) and summer (red) months. These data span the years 1965 to 2008.
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both spectrally and temporally among the three sites studied.

The seamount is exposed to noise from all directions, and

the HARP is exposed to noise traveling in the deep sound

channel. However, nearby shipping noise is rare for this area

of the ocean, and so the noise levels are much less variable

than those found at the other two sites. HARP instrument

noise can be seen in the lowest percentile curves for all three

sites, where hard drive disk read/write events create narrow-

band contamination.

C. Probability of detection with the recorded data

Acoustic data were recorded at site SBC from April

2008 to January 2010, at site SR from February 2008 to

January 2010, and at site Hoke from September 2008 to June

2009. The GPL detector was used to mark the start-time and

end-time of nearly every human identifiable unit in the

records, resulting in approximately 2 300 000 marked units.

The GPL detector is a transient signal detector based on

Nutall’s power-law processor,36 which is a near-optimal

detector for identifying signals with unknown location,

structure, extent, and arbitrary strength. The GPL detector is

built on the theory of the power-law processor with modifi-

cations necessary to account for drastically changing ocean

noise environments, including non-stationary and colored

noise generated from shipping. The GPL detector has an

average false alarm rate of approximately 5% at the detector

threshold used in this research and for the datasets at hand.

Therefore, trained human analysts eliminated the false detec-

tions manually, using a graphical user interface (GUI),

which is part of the GPL software. The GUI allows the ana-

lysts to accept or reject large batches of detections at a time,

allowing for a much quicker data analysis time when com-

pared to reviewing each detection individually. This pruning

effort required approximately 2 weeks (112 h) of trained

human analyst time for the total 54 months of recorded data.

Statistics obtained from the data analysis effort were used to

verify the accuracy of the probability of detection modeling

effort, discussed in Sec. III.

III. PROBABILITY OF DETECTION—MODELING

The accuracy of estimating P relies on characterizing

the range, azimuth, and depth dependent detection function

in accordance with the detector used. In this paper, the vari-

ation in depth of calling animals is not fully accounted for

in the modeling, so that the detection function, gðr; hÞ, is

taken as a function of range, r, and azimuth, h, only. The

detection function measures the probability of detection from

the hydrophone out to the maximum radial distance (w) in

which detection is still possible, over all azimuths. The azi-

muthal dependence is added to the standard equation to

emphasize the complexity caused by bathymetry. The proba-

bility of detection within a given area is then calculated by

P̂ ¼
ðw

0

ð2p

0

gðr; hÞqðr; hÞrdrdh; (1)

where qðr; hÞ represents the probability density function

(PDF) of whale calling locations in the horizontal plane.5

Throughout this study, a homogeneous random distribution

of animals over the whole area of detection, pw2, is assumed,

and so qðr; hÞ ¼ ð1 =pw2Þ. One way of calculating the

detection function is to use a localization method to tabulate

distances to whale vocalizations within an acoustic record.

An appropriate parametric model for gðr; hÞ is assumed, and

gðr; hÞ is estimated based on a PDF of detected distances.37

This method is often preferred because variables that influ-

ence the detection function, such as source level (SL) and

acoustic propagation properties, can remain unknown. From

the single hydrophone data used in this analysis, tabulating

distances to vocalizing animals using localization methods is

not possible. Instead, a two-dimensional (2D) acoustic prop-

agation model is used to estimate P within a geographic

area. This method requires knowledge about the acoustic

environment and the source, and in general is more

FIG. 5. (Color online) Noise spectral density levels for site SBC, site SR,

and site Hoke (top to bottom). The curves indicate the 90th percentile (upper

blue), 50th percentile (black), and 10th percentile (lower blue) of frequency-

integrated noise levels for 1 year at site SBC and site SR, 9 months at site

Hoke. The gray shaded area indicates 10th and 90th percentile levels for

wind-driven noise used for modeling.
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demanding and perhaps less accurate than methods in which

distances to animals can be estimated. However, this method

does have some advantages over distance estimation meth-

ods. Mainly, a parametric model is not assumed for gðr; hÞ,
meaning the detection function can both increase and

decrease with range. This variation in range is often over-

looked using distance methods because high localization

accuracy is necessary, and many distances need to be calcu-

lated to make these variations statistically significant.

Additionally, the use of single fixed sensors for acoustic

monitoring can reduce the complexity and cost of the moni-

toring data acquisition system when compared to localizing

systems.

Recent research results have been published on the suc-

cessful characterization of P̂ for detecting marine mammals

from single fixed omni-directional sensors, some of which

use acoustic models for calculating the detection func-

tion.6,37,38 Most of these studies have involved higher fre-

quency odontocete calls, such as those from beaked whales

(family Ziphiidae), although some studies have included

baleen whales. For higher frequency calls typical of odonto-

cetes, the high absorption of sound with range limit uncer-

tainties associated with environmental parameters, and

transmission loss (TL) is usually confined to spherical

spreading plus absorption. Therefore, the variables that influ-

ence P̂ the most tend to be associated with the source, such

as whale SL, grouping, location, depth, and orientation due

to the directionality of high frequency calls. These types of

variations often can be modeled as independent random vari-

ables with an assumed distribution, characterized by Monte

Carlo simulation. Apart from source level, these variables

play a minimal role for acoustic censusing of humpback

whales. Au et al. show that humpback whales tend to

produce omni-directional sound over a very limited range in

depth.39 However, due to the lower frequency nature of the

humpback vocalizations, variations in sound propagation

due to environmental properties become large. Uncertainties

in these variations, such as bottom type, sediment depth,

water column sound speed, and bathymetry can lead to

uncertainties in P̂ that overwhelm uncertainties attributed to

other processes. To complicate the issue, the pressure field

received at the hydrophone depends on these environmental

parameters non-linearly.

To understand the influence of individual variables on

P̂, these variables are grouped into environmental variables

and source variables, and an analysis is conducted on each

group separately. The main focus is to characterize the influ-

ence of the environment. To do so, the source variable prop-

erties remain unchanged, assuming a random homogeneous,

horizontal distribution of animals, a fixed source depth of

20 m, and a fixed omnidirectional SL of 160 dB rms re 1 lPa

@ 1 m for each humpback unit. The dependence of P̂ on

environmental variables is explored in two stages. In the first

stage, variation is limited to a single input parameter, while

holding others fixed at best-estimate values. In the second

stage, combinations of variables that lead to extremal values

of P̂ are characterized. After characterizing the influence of

environmental variables, a limited analysis of uncertainties

associated with variation originating from the source

properties is carried out by holding environmental variables

fixed at best-estimate values.

A. Approach—numerical modeling for environmental
effects

This section describes the method for estimating the

probability of detecting humpback units using a single fixed

omni-directional sensor. This method is in many ways simi-

lar to that described by K€usel et al.6 for Blainville’s beaked

whales, but with important differences needed to account for

the propagation properties of lower frequency vocalizations.

To accommodate the complex transmission of lower fre-

quency calls, a full wave field acoustic propagation model is

used. Additionally, unlike beaked whale clicks which have

distinct and mostly uniform characteristics, humpback units

cover a wide range of frequencies and time scales. As such,

the probability of detecting individual units varies signifi-

cantly—this variation comes about both from bias in the

GPL detector, as well as the frequency dependent propaga-

tion characteristics of the acoustic environment. Since one

important application of estimating P̂ is density estimation,

establishing an average vocalization rate, or cue rate is

required. Because a humpback song can be highly variable,

selecting a particular type of unit or even a subset of units

to use as acoustic cues would lead to inaccurate density

estimates as the song changes. Additionally, a classification

system would be needed to single out these units from an

acoustic record. Counting all units over a wide frequency

range overcomes some of the challenges associated with the

variation in the humpback song, but adds additional chal-

lenges to characterizing P̂ for all unit types.

The humpback units shown in Fig. 1 were used to simu-

late calls originating at various locations within a 20-km

radius centered on the hydrophone. For this purpose, the

Range-dependent Acoustic Model (RAM)40 was used to sim-

ulate the call propagation from source to receiver, in ampli-

tude and phase as a function of frequency. In previous

studies,6 the passive sonar equation41 was used to estimate

the acoustic pressure squared level at the receiver. However,

this method does not account for phase distortion of the sig-

nal, necessary for including propagation effects such as

frequency-dependent dispersion. In addition, modeling both

the acoustic field amplitude and phase as a function of fre-

quency, which then can be inverse-fast Fourier transformed

and added to a realization of noise taken from the measured

data, allows the synthesized calls to be processed in an iden-

tical way to that of the recorded data.

The RAM model is used to calculate the complex pres-

sure field at 0.2 Hz spacing from 150 to 1800 Hz. An inverse

fast Fourier transform of this complex pressure field results

in a simulated time series with duration 5 s for data sampled

at 10 kHz. This window encompasses the longest-duration

humpback unit used in this study, with multipath distortion.

The convolution of this pressure time series with the original

unit yields the simulated unit as received by the sensor. A

sample result is shown in Fig. 6. Once the waveform of a

unit transmitted from a particular point on the grid is com-

puted, a randomly-chosen HARP-specific noise sample
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(discussed in Sec. II B) is added and the resulting waveform

is passed to the GPL detector. The output of the GPL detec-

tor determines whether this unit is detected, and updates the

probability of detection for that location on the grid. Calls

are simulated over each location on the geographic grid with

20 arc sec spacing. Based on these results, the truncation dis-

tance (w) can be chosen, allowing for the calculation of P̂
for the area defined by pw2. This process is repeated with a

range of noise samples to produce a curve that links P̂ to the

monitored noise level as shown in Fig. 7, and discussed fur-

ther in Sec. III. As previously outlined, these Monte Carlo

simulations are also repeated, allowing environmental and

source inputs to vary so as to characterize uncertainty in P̂.

For purposes of cetacean density estimation, it is some-

times necessary to further restrict the process of detection

with an added received SNR constraint. The purpose of this

constraint is threefold: (a) To truncate detections to distan-

ces that result in stable determination of P̂, (b) minimize

bias in the detector for varying unit types as outlined in

Table II in Helble et al.,9 and (c) limit detections to SNRs

easily detectable by human analysts used to verify the out-

put of the detector. Additionally, comparing the estimated

SNR in both the simulations and the real datasets allows

the accuracy of the model to be assessed. The SNR is

defined as

SNR ¼ 10 log10

hp2
s i
hp2

ni
; (2)

where

hp2
s; ni �

1

T

ðT

0

p2
s; nðtÞdt;

and where p represents the recorded pressure of the time

series, bandpass filtered between 150 and 1800 Hz, and T is

the duration of the time series under consideration.

The GPL detection software automatically estimates the

SNR of each detected unit in the recorded data. With real

data, the SNR defined in Eq. (2) must be estimated because

the recorded pressure of the signal and noise can never be

separated completely. This automated estimate of SNR,

SNRest, is assisted by the GPL detector, which is designed to

identify narrowband features in the presence of broadband

noise. Individual frequencies in the spectrogram are identi-

fied that correspond to the narrowband humpback signal.

These frequency bins also contain noise, and the energy

contributed by noise is estimated, by measuring the energy

levels in the corresponding bands over a 1-s time period

before and after the occurrence of the unit, and then sub-

tracted. The resulting estimates of energy from the signal

frequencies are averaged over the duration of the detected

unit, and compared to energy in the spectrogram adjacent to

the unit within the 150 to 1800 Hz band, resulting in SNRest.

Although the exact SNR of simulated data as defined in

Eq. (2) could be calculated, SNR is estimated in the same

way for both real and simulated data, so that calculations of

P̂ from simulated data that use an SNR constraint will apply

for the analysis of real data.

Choosing an SNRest¼�1 dB cutoff helps to minimize

the bias in the detector over unit type in addition to limiting

incoming detections to levels easily verifiable by human

operators. The criteria for selecting detections corresponding

to those propagation distances that result in a stable determi-

nation of P̂ are site specific. For simplicity the same

FIG. 6. (a) Measured humpback whale source signal rescaled to a SL of

160 dB re 1 lPa @ 1 m, (b) simulated received signal from a 20 m deep

source to a 540 m deep receiver at 5 km range in the Santa Barbara Channel,

with no background noise added, (c) simulated received signal as in (b) but

with low-level background noise measured at site SBC added. The upper

row of figures are spectrograms over the 0.20 to 1.8 kHz band and with 2.4 s

duration, and the lower row are the corresponding time series over the same

time period as the spectrograms. The received signal and signal-plus-noise

time series amplitudes in the second and third columns have been multiplied

by a factor of 1000 (equal to adding 60 dB to the corresponding spectro-

grams) so that these received signals are on the same amplitude scale as the

source signal in the first column. This example results in a detection with

recorded SNRest¼ 2.54 dB.

FIG. 7. Site SBC (upper) and site SR (lower) P̂ versus noise level for the

sediment property and SSP pairing that maximizes P̂ (red), the sediment/

SSP pairing that minimizes P̂ (green), and the best-estimate environmental

parameters (blue). Vertical error bars indicate the standard deviation among

call unit types, and horizontal error bars indicate the standard deviation of

the noise measurement. The noise was estimated by integrating the spectral

density over the 150 to 1800 Hz frequency bands using 12 samples of noise

within a 75 s period.
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threshold value of �1 dB SNRest is employed throughout,

although adjusting this value based on a number of factors is

appropriate, as discussed in Sec. V.

The modeling method outlined in this section is differ-

ent than most published acoustic-based methods used to

derive P̂, in which the transmission loss, noise level, and

SNR performance of the detector are characterized sepa-

rately. Using the method proposed in this paper, these quan-

tities are interlinked owing to the site-specific environmental

characteristics. Characterizing the detection process jointly

gives a more realistic solution, at the cost of substantially

greater computational effort.

B. CRAM

The C-program version of the Range-dependent Acoustic

Model (CRAM) was developed as a general-purpose N� 2D,

full wave field acoustic propagation model. At its core are the

self-starter and range-marching algorithm of the RAM 2D

parabolic equation (PE) model, originally developed and

implemented in FORTRAN by Collins.40 The PE model is an ap-

proximate solution to the full elliptic wave equation, in which

the solution is reduced in computational complexity by

assuming the outgoing acoustic energy dominates the back-

scattered energy. In CRAM, setup of the N� 2D propagation

problem is handled automatically for desired receiver output

grids in geographic coordinates. The assumptions inherent in

the N� 2D approximation, versus full three-dimensional (3D)

propagation modeling, are that horizontal refraction and out-

of-plane bathymetric scattering can be neglected in the envi-

ronment of interest, so that adjacent radials can be computed

independently without coupling. The set of independent radi-

als, and the range-marching within each radial, are selected

such that the complex pressure for each source-receiver pair

is phase-exact in the along-range direction, and approximated

in the much less sensitive cross-range direction by a controlla-

ble amount. This preservation of spatial coherence allows for

beamforming and other post-processing operations which

require high fidelity of the complex pressure output.

The RAM Fortran code was ported to the C program-

ming language and refactored for efficiency on modern proc-

essor architectures, which have very different relative costs

of computation and memory access than older processors.

As much of the 2D PE grid setup as possible is reused over

multiple frequencies, allowing for a more rapid computation

of broadband and time-domain pressure responses. To lever-

age the multiprocessor capability of modern computers, the

program is parallelized over the N independent radials as

well as more limited parallelization over frequency and Pad�e
coefficient index, without causing changes to the output.

Environmental inputs are interpolated from a variety of

four-dimensional (3D space plus time) ocean models and

bathymetry databases as they are needed in the calculations.

The model can use standard geoacoustic profiles that are

range as well as depth dependent, but its ability to take a

scalar mean grain size (/), available from sediment cores or

even from the sediment type read off a navigation chart, and

convert this information into geoacoustic profiles using

Hamilton’s relations28,29 greatly facilitates the problem

setup. Additionally, the model can output a variety of file

formats including Keyhole Markup Language format that

can be imported directly into popular viewers.

C. Results

The resulting TL from the modeling effort as a function

of range and azimuth for each site is shown in the lower row

of plots in Fig. 3, using the best-estimate environmental

parameters as outlined in Sec. II B. These plots were created

by placing a horizontal grid of virtual humpback sources at

20-m water depth covering the area out to a 20-km radius

from the HARP. The TL is calculated as a function of fre-

quency from the sources to the receiver (HARP) at ranges

from 0 (source directly over the HARP) out to 20 km, at all

azimuths. To reduce computation time, the principle of reci-

procity is used—a single source is placed at the HARP sen-

sor position and the acoustic field is propagated out to each

of the grid points (receivers) at 20 m depth. The plotted TL

in dB is the result of incoherently averaging over frequency

from 150 to 1800 Hz, covering the humpback whale call

frequency band. The HARP latitude/longitude position is

located in the center of each plot. As these TL plots illus-

trate, the propagation characteristics at each site are strik-

ingly different. Whereas the TL is comparatively low only in

a small-radius circle about the HARP location at site Hoke

(the small red circle in the lower right-most plot in Fig. 3),

the sound field at site SBC refocuses at a greater range due

to interaction with the bathymetry (the outer yellow circular

ring surrounding the red circle in the lower left-most plot).

This yellow ring indicates that sources at this range can be

detected more easily by the HARP than sources at somewhat

shorter range. The bathymetry at each site also breaks the

azimuthal symmetry so that the detection range is a function

of bearing from the HARP package.

1. Values of P̂ in wind-driven noise

The simulated probability of detecting Units 1–6 aver-

aged over unit type and in 30 min of wind-driven noise,

randomly selected from the HARP data, for sites SBC, SR,

and Hoke are shown in Fig. 8. These results use a sound

speed profile taken in the month of October with the remain-

ing environmental variables set to best-estimate values as

described in Sec. II B. The plots in the uppermost row

show P̂ðr; hÞ, the plots in the middle row show the detection

function gðrÞ, averaged over azimuth, and the plots in the

lower row show the area-weighted PDF that results. The val-

ues of P̂ are computed directly from the plots in the upper

row; the remaining rows are provided for comparison with

other distance sampling methods. The solid lines in the plots

from the middle and lower rows indicate values obtained

using the �1 dB SNR threshold applied to the GPL output,

while the dashed lines illustrate the results in the absence of

the �1 dB SNR threshold. The dashed lines clearly show

that a substantial fraction of the low-SNR detections occur

at distances greater than 20 km for site SBC. Using the

SNR threshold, detections for all three sites are limited to

w¼ 20 km, resulting in P̂¼ 0.1080 for site SBC, P̂¼ 0.0874

for site SR, and P̂¼ 0.0551 for site Hoke. (For comparison
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purposes, w is set to the same range for all three sites, but in

practice w should be calculated as outlined in Sec. III A.)

Without the SNR constraint, the probability of detecting

humpback units at site SBC can be greater than ten times the

probability at site Hoke. The highly structured form of

P̂ðr; hÞ for both sites SBC and SR, due to the influence of

bathymetric features, indicates the necessity of a full 2D

simulation of detection. The detailed structure at site SBC

also suggests that estimation of the detection function based

on localized distances to vocalizing animals as in Marques

et al.37 would require an enormous sample size and accurate

distance determination, particularly when an SNR threshold

is not applied. Note that during a high noise period, such as

when a ship is located within the Santa Barbara channel,

detections at site SBC are confined to the inner red circular

patch (4 km radial distance from HARP). This example

emphasizes the necessity of continuous monitoring of noise

to calculate P̂ as indicated by Fig. 7 and discussed in greater

detail in this paper. Figure 9 illustrates an example of the

variability in the detection across unit type during a sample

of wind-driven noise conditions at site SBC. Units 2 and 5

from Fig. 1 are the ones most difficult to detect owing to

high frequency content and brevity, respectively. The

decrease in detection of Unit 2 is mainly a consequence of

frequency selective attenuation and propagation multipath,

and does not result from an intrinsic aspect of the GPL

detector. Since the detected sound interacts less with the

bottom and travels shorter distances for sites SR and Hoke,

the variability in detection across humpback units is less. For

site SR, Unit 1 was most detectible with a P̂¼ 0.1136, while

Unit 5 was least detectible with a P̂¼ 0.0622. The remaining

calls had nearly equal probability of detection (mean-

¼ 0.0872). Similarly for site Hoke, Unit 1 was most detecti-

ble with a P̂¼ 0.0651, while Unit 5 was least detectible with

a P̂¼ 0.0478. The remaining calls had nearly equal probabil-

ity of detection (mean¼ 0.0548).

2. Environmental input variability on P̂ in wind-driven
noise

The acoustic pressure field calculated by CRAM was

recomputed over the full range of environmental input

uncertainties at each site to characterize the influence of

bathymetry, bottom sediment structure, and SSP on esti-

mates of the probability of detection. Table I illustrates the

influence of environmental variables on P̂ for the 30-min

sample of wind-driven noise at each site. The first row for

each site gives extremal examples of the monthly variation

in SSP. That is, P̂ was recomputed using all SSPs occurring

in the month of October (Sec. II B). The values of P̂ that led

to the largest and smallest values of P̂ are shown in Table I,

along with a best-estimate value, which was chosen from a

typical SSP for the month. All other input variables were

fixed at best-estimate values. If the SSP is known within the

month of the estimate, the simulation results suggest that

changes in the SSP can vary P̂ by over 20% for site SBC,

FIG. 8. Probability of detecting a call based on the geographical position of a humpback whale in relation to the hydrophone during periods dominated by

wind-driven noise at site SBC (upper left), site SR (upper center), and site Hoke (upper right), averaged over unit type. Assuming a maximum detection dis-

tance of w¼ 20 km, average P̂¼ 0.1080 for site SBC, P̂¼ 0.0874 for site SR, and P̂¼ 0.0551 for site Hoke. The latitude and longitude axes in the uppermost

row of plots are in decimal degrees. The detection probability functions for the three sites, resulting from averaging over azimuth, are shown in the middle row

and the corresponding PDFs of the detected distances are shown in the lower row. Solid (dashed) lines indicate functions with (without) the additional �1 dB

SNRest threshold applied at the output of the GPL detector.
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and over 10% for sites SR and Hoke. The second row of

Table I shows the extremal values of P̂ if the SSP is chosen

over a full year’s worth of profiles at each site. For site Hoke

and SR, the additional uncertainty is not much larger.

However, estimates of P̂ at site SBC are more sensitive to

the SSP, and the ability to detect humpback units can change

between winter and summer by over 300%. The third row in

Table I gives extremal and best-estimate values over the full

range of uncertainty in the bottom structure (sediment type

and thickness) for each of the three sites, as outlined in Sec.

II B. Even though site SBC in some ways had the least

amount of uncertainty in bottom structure, the difference

between the two extremals in sediment type (clayey silt to

fine sand), had a large impact on P̂, resulting in variations in

P̂ greater than 300%. The reason for the variability is two-

fold, the absorption, transmission, and reflection characteris-

tics over these sediment types change significantly over

the frequency range of interest, and also because the

shallow trough-shaped basin causes the sound field to inter-

act strongly with the bottom. The variation in sediment prop-

erties over the range of possible values at site SR was by far

the largest source of uncertainty at this location, causing val-

ues of P̂ to vary by over 100%. In contrast, even though little

information was known about the igneous rock at Hoke, the

variation over a possible range of values resulted in essen-

tially no differences in estimates of the probability of detec-

tion. Owing to the large downward slope of the seamount

away from HARP location, the recorded sound interacts very

little with the bottom. Additionally, the acoustic impedance

mismatch is so high between igneous rock and the water col-

umn that the reflection characteristics are very similar over

the possible range of igneous rock properties. The last row in

Table I for each of the three sites indicates combinations of

sediment and SSPs (for the month of October) that led to

extremal values of P̂. Simulations as well as physical reason-

ing indicate that SSPs that have summer attributes (strong

downward-refracting near-surface conditions) combined

with the smallest grain sizes and thickest sediment layers

yield the smallest values of detection. Conversely, SSPs that

have winter attributes paired with the largest grain size and

thinnest sediment layer produce the maximum detection val-

ues. Variations over the bottom type at site Hoke combined

with monthly variation in SSP did not produce measurable

differences with those from holding the bottom type fixed. In

summary, the environmental variables that create the most

uncertainty in P̂ are site specific. Guided by physical intu-

ition, one can use an acoustic model with historical data as

input for a given location to identify the main sources of

uncertainty, and can quantify that uncertainty, in estimating

the probability of detection.

An extensive study was not conducted to measure the

influence of variation in source properties (i.e., source depth,

source level, deviation of horizontal source distribution

from homogeneous) on P̂. However, simulations using

1000 humpback units were conducted, allowing the SL to

vary with a Gaussian distribution (mean¼ 160 dB re 1 lPa

@ 1 m, standard deviation¼ 2 dB). This amount of variation

covers the full range of call levels reported in Au et al.,39

although the true distribution of call levels cannot be deter-

mined with the limited data available in this paper. For site

SR, allowing the SL to vary holding environmental parame-

ters fixed at best-estimate values resulted in a CV (equal to

the ratio of the standard deviation to the mean) of 25.3%

about the best-estimate mean of P̂¼ 0.0874. Similarly,

TABLE I. Best-estimate and extremal predictions for P̂ for wind-driven

noise conditions, given the uncertainty in input parameters of SSP and

sediment structure for each site, as outlined in Sec. II B. Each estimate of P
assumes the remaining variables are fixed at best-estimate values. The P̂

values assume a detection radius of w¼ 20 km from the instrument center.

Min

extremal

Best

estimate

Max

extremal

SBC Monthly variation in SSP 0.0823 0.1080 0.1150

Yearly variation in SSP 0.0823 0.1080 0.2965

Sediment variation 0.0458 0.1080 0.1887

Monthly SSP variation

þ sediment variation

0.0414 0.1080 0.1892

SR Monthly variation in SSP 0.0778 0.0874 0.0901

Yearly variation in SSP 0.0778 0.0874 0.0914

Sediment variation 0.0599 0.0874 0.1010

Monthly SSP variation

þ sediment variation

0.0520 0.0874 0.1031

Hoke Monthly variation in SSP 0.0482 0.0551 0.0565

Yearly variation in SSP 0.0460 0.0551 0.0565

Sediment variation 0.0551 0.0551 0.0551

Monthly SSP variation

þ sediment variation

0.0482 0.0551 0.0565

FIG. 9. Geographical locations of detected calls (green dots mark the source

locations where detections occur) and associated probability of detection (P̂,

listed in the upper right corner of each plot) for calls 1–6 (left to right, start-

ing at the top row) in a 20 km radial distance from the hydrophone for a sin-

gle realization of low wind-driven noise at site SBC. The latitude and

longitude scales on each of the six plots are the same as in the upper left-

hand plot of Fig. 8.
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allowing the source to vary in depth between 10 and 30 m

resulted in even less variation. Both factors, in any combina-

tion, result in significantly less variability than that due to

the uncertainty of the bottom type at site SR.

3. Influence of ocean noise on P̂

Ocean noise has a large influence on P̂. The noise in the

band of humpback vocalizations can vary appreciably in

both level and structure. Since detection is a function of both

the noise level (SNR) and the variance of the noise level, a

noise model that does not account for long-term changes in

noise level or short-term variance in noise level across time

and frequency is not sufficient for predicting the perform-

ance of the detector, and ultimately P̂. Ocean noise was col-

lected from each of the HARP datasets over a wide range of

conditions and used as input to the calculation of P̂. Figure 7

shows the relationship of P̂ versus noise level for sites SBC

and SR. The blue dots represent this relationship of P̂ versus

noise level for best-estimate environmental conditions aver-

aged over all call types, while the green and red dots repre-

sent the modeling results using extremal environmental

conditions (re Sec. II B), averaged over all call types. The

noise was estimated by integrating the spectral density over

the 150 to 1800 Hz frequency bands using 12 samples of

noise within a 75 s period. An average noise value was then

assigned to each 75 s sample of noise used during the simula-

tion. The horizontal error bars represent the standard devia-

tion of the 12 noise measurements. The vertical error bars

represent the standard deviation in the probability of detec-

tion across unit type. As the noise level decreases, the units

can be detected at a farther range, and so can incur greater

frequency-dependent attenuation and interaction with the

ocean bottom, increasing the variability in detection over

unit type. As the noise level increases, the variance of the

noise also tends to increase, so that an average of noise level

over a 75 s time period becomes less sufficient in character-

izing detection performance. A curve composed of two sepa-

rate exponentials was matched to the blue data points for site

SBC. At high noise levels (detail in Fig. 7 inset), the behav-

ior for P̂ is dominated by direct path propagation, whereas

during low noise conditions, interaction with the bottom and

the increase in the area monitored with the square of the

increase in detection range tend to dominate the shape of the

curve. For site SR, a quadratic polynomial was used to fit

the blue dots.

IV. MODEL/DATA COMPARISON

Given the non-overlapping coverage and omni-

directional nature of the HARP sensors, it was not possible

to calculate the detection function using source localization

methods. Therefore, this approach’s results cannot be com-

pared to the results in this paper. For the data processing

discussed in Sec. II C, using data recorded in the month of

October, an estimate of noise level was made in addition to

recording the SNRest of each detected humpback unit. The

shaded region in Fig. 10 shows the normalized histogram of

recorded humpback units as a function of received SNRest

over a 2 dB range of received noise levels. These simulated

results (black and green curves) used SSPs taken during the

month of October, and 100 000 simulated calls random

homogeneously distributed around the HARP. As with the

other simulations, the SL of all units was assumed to be

160 dB re 1 lPa @ 1 m, at a depth of 20 m. Site SBC’s nor-

malized histogram of the data processing results was created

using 8944 calls over a measured noise range of 78 to 80 dB

re 1 lPa, site SR’s data histogram was created using 6559

calls over a noise range of 82 to 84 dB re 1 lPa, and site

Hoke’s data histogram was created using 9187 calls over a

noise range of 82 to 84 dB re 1 lPa (all noise values inte-

grated from 150 to 1800 Hz). The simulated histograms were

generated using the same 2 dB noise ranges. The SNR and

noise levels for each detected unit were estimated using the

method described in Sec. III A. The agreement of the simu-

lated and measured histograms for sites SBC and SR suggest

that the input best-estimate model parameters and the

assumptions about the source properties are quite reasonable.

For site SBC, the 5 to 15 dB SNRest range on the horizontal

axis of the plot represents calls originating near to the

receiver, whose arrival structure is dominated by the direct

path. The agreement of the predicted values and measured

values in this range suggest that the average unit SL is very

close to 160 dB re 1 lPa @ 1 m, which verifies the mean SL

estimated by Au et al.39 If the animal locations follow a

homogeneous random distribution in this area, the results

suggest that the true environmental input parameters are

somewhere between best-estimate values and those that

maximize P̂. Because the simulations considered calls only

out to a 20 km distance, the left-hand portion of the histo-

grams do not agree at site SBC. This discrepancy verifies

that without a received SNR cutoff and/or higher detection

threshold, units are detected at distances greater than 20 km.

The shape of each of the histograms at low SNRest (left-hand

side of the plots) is shaped by the performance of the GPL

detector. The performance of the detector drops sharply as

the SNR of received calls drops below �7 dB SNR. As with

FIG. 10. (Color online) Shaded gray indicates normalized histogram of

received SNR estimates (SNRest) for humpback units at site SBC, site SR,

and site Hoke (top to bottom). Model best environmental estimates (black

line) and model upper environmental estimates (green line). The cyan line

indicates best estimate results with 4 km radial calling “exclusion zone” at

site Hoke.
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site SBC, if the calls at site SR are indeed homogeneously

distributed, the results suggest that the environmental input

parameters set between best-estimate values and those yield-

ing maximum P̂ values would best match the measured SNR

distribution. In contrast, the observed distribution of received

call SNRs at Hoke does not fall within the bounds predicted

by the model. This observed distribution can arise from one

of two situations: Either the calls are not homogeneously dis-

tributed around the HARP, or the calls are homogeneously

distributed but detections can occur at much greater distan-

ces than the model predicts. It is possible that at this site, the

acoustic energy created by shallow sources somehow cou-

ples into the deep sound channel to allow for very long range

detection by the HARP approximately at the sound channel

axis depth. If the calls are originating only within 20 km of

the HARP, they must occur at distances greater than 4 km

from the HARP. One possibility that would lead to a 4 km

“exclusion zone” is that the humpback whales are transiting

along a narrow migration corridor with a 4 km closest point

of approach. Alternatively, perhaps they are avoiding the

shallowest portion of the seamount for some reason. The

cyan curve in the lowermost plot of Fig. 10 is the result of

running the model with calls homogeneously distributed in

the area, but excluded within 4 km of the shallowest portion

of the seamount.

V. DISCUSSION

The uncertainties in P̂ from single fixed sensors due to

unknowns in environmental parameters such as sound speed

profile, bottom sediment structure, and ocean noise can be

large for animal calls at all frequencies. For the mid to low

frequencies typical of vocalizations from mysticete whales,

these uncertainties generally outweigh the uncertainties asso-

ciated with the source, such as whale calling depth and

source level. For higher frequency vocalizations typical of

odontocete whales, the uncertainties associated with envi-

ronmental parameters other than ocean noise are minimized

because the sound attenuates to undetectable levels before

considerable interaction with the bottom occurs. Variability

in ocean noise levels is still a significant issue at higher fre-

quencies, but the variance in noise levels and the decibel

range also tend to be smaller than at lower frequencies.

Under certain conditions, environmental uncertainties

using single fixed sensors may be tolerable, especially when

comparing calls at a fixed location over time. In this case,

the bias in P̂ associated with an unknown sediment structure

may be large, but since it remains constant over time, it can-

cels out. On the other hand, the variation in P̂ due to changes

in the sound speed profile at some locations can be signifi-

cant when comparing calling activity over seasons. The large

influence of SSP on P̂ was demonstrated at site SBC, where

the SSP between summer and winter creates a threefold

change in P̂.

As for comparisons of calling activity at different hydro-

phone locations, uncertainties in estimates of P using single

fixed sensors may be acceptable. For example, if the calls

are homogeneously distributed at Hoke, the maximum

uncertainty in estimates of P̂ associated with environmental

variability is around 15%. Therefore, it may be possible to

use this modeling technique to determine if there are more

vocalizations per km2 at one location compared to another,

if the normalized call counts differ by more than the uncer-

tainty in the probabilities of detection at the two sites.

The drastic variation in P̂ over both time at a given site,

and across sites, highlights the dangers of comparing intra-

site and inter-site calling activity without first accounting for

environmental effects on the probability of detection. When

an SNR constraint is not used as an additional filter on the

GPL detector output, the probability of detecting humpback

calls at site SBC can be greater than ten times the probability

of detecting calls at site Hoke. Even if two sensors are

located in regions with similar bathymetric and bottom con-

ditions, differences in noise levels between two sites (or at

the same site over time) of just a few decibels can easily

change the probability of detection by a factor of 2.

One application that involves quantifying P̂ is the esti-

mation of the areal density of marine mammals from passive

acoustic recordings of their calling activity. The animal den-

sity estimation equation based on measuring cue counts in a

given area is given as42

D̂ ¼ nuð1� ĉÞ
Kpw2P̂Tr̂

; (3)

where D̂ is the density estimate, nu is the number of detected

acoustic cues, ĉ is the number of false positive detections, K
is the number of sensors (for single omni-directional sensors

in a monitoring area, as in this paper, K ¼ 1), w is the maxi-

mum detection range beyond which one assumes no acoustic

cues are detected, P̂ is the estimated average probability of

detection covered by the area pw2, T is the time period over

which the units are tabulated, and r̂ is the estimated cue pro-

duction rate.

The detector design criteria, including the detector

threshold and additional constraints placed on the received

SNR, can influence the uncertainties in estimates of D̂. From

results presented in this paper, the uncertainty from environ-

mental parameters in P̂ roughly increases with increasing

area monitored. One possible approach for minimizing

uncertainty is to raise the received minimum SNR threshold

to values that correspond with direct path transmission from

source to receiver. However, doing so decreases the cue

counts for the time period of interest, thereby increasing

the statistical variability of the estimates. Additionally,

decreasing the monitored area could cause a violation of

the assumption that calls are homogeneously distributed in

space. Therefore, accurate density estimation involves an

optimization problem of determining how to estimate the

various quantities in the equation for animal density such the

uncertainty in D̂ is minimized.

Running a high fidelity, full wave field, ocean acoustic

model using a span of likely environmental variables from

historical data as input is an instructive and cost-efficient way

of determining the environmental variables that most influ-

ence P̂ for a particular location. Results from the model help

determine where best to allocate resources to decrease

the uncertainty in P̂. In some cases, in situ propagation
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calibration using a controlled acoustic source may be

warranted to correctly characterize the bottom properties.

Alternatively, bottom geoacoustic information can be derived

from sediment cores and published empirical relations. In

other cases, resources may be best allocated to recording

monthly changes in the SSP, perhaps even weekly during

transitional months in the fall and spring. Oceanographic

models, coupled with satellite-based measurements such as

sea surface temperature, may provide sufficient information

on the temporal variability of the water column. In general,

ancillary environmental information may be very helpful in

reducing the uncertainty in P̂ to acceptable levels.

Site selection for sensor deployment in passive acoustic

monitoring also plays a vital role in reducing uncertainties in

P̂. Results from this paper suggest that hydrophones are best

deployed in areas where the bathymetry, bottom type, and

sound speed profiles are well characterized. If this informa-

tion is not available, selecting locations that minimize sound

interaction with the bottom will help reduce uncertainties in

P̂. Shallow bowl-shaped or trough-shaped basins tend to pro-

duce the most uncertainty in P̂ since sound interacts the most

with the bottom, and temporally-varying SSPs will focus this

propagating sound in circular regions of temporally-varying

distances from the hydrophones. Since the area monitored

increases with the square of the distance from the hydro-

phone, small changes in the ranges of these acoustic conver-

gence zones can have a large effect on the amount of area

from which an acoustic signal can be detected.

Results presented from the model/data comparison sug-

gest that low and mid frequency calling whales can be used

as acoustic sources of opportunity for geoacoustic inversion

of ocean bottom properties. If the whale source level, source

depth, and source distribution, and ocean noise and SSP are

known, then statistics on the distribution of the received

SNR of calls at the receiver can be compared with acoustic

models to significantly constrain the effective properties of

the bottom. An example of the feasibility of this geoacoustic

inversion approach was demonstrated at site SR (middle plot

in Fig. 10), where a good match between the recorded data

and model suggest that the sediment thickness ranges

between 1 and 10 m before encountering sedimentary rock.

Running the model with 50 m sediment thickness gives a

very poor model/data fit. If information on the SL and distri-

bution of humpbacks in this region could be measured, then

the inversion results on sediment thickness could be pre-

sented with reasonable confidence.

The uncertainties in P̂ presented in this paper assume

complete accuracy of the CRAM model. The RAM core of

the CRAM model is based on an estimate of a solution to the

acoustic wave equation, and therefore is not exact. The

model does not incorporate the shear properties of the bot-

tom, which could influence the accuracy of the model, espe-

cially with higher density bottom types, such as at site Hoke.

The model also does account for acoustic backscatter.

VI. CONCLUSIONS

Acoustic propagation modeling is a useful tool for quan-

tifying the probability of detection and the associated

uncertainties in those measurements for single fixed sensors.

For low and mid frequency vocalizations, simple propaga-

tion models are not sufficient for estimating P̂. Rather, a

more sophisticated model that includes bathymetry, sound

speed, bottom characteristics, and site specific noise to esti-

mate the complex pressure field at the receiver is necessary.

The environmental parameters that create the most uncer-

tainty in the probability of detecting a signal are site specific;

using an acoustic model with historical environmental data

is an effective way for determining where best to allocate

resources for minimizing the uncertainties in P̂. In some

instances, the errors associated with the uncertainties in P̂
may be sufficiently small, allowing for reasonable density

estimates using single fixed sensors. Results from this study

suggest that comparing calling activity at the same sensor

over time or across sensors in different geographical loca-

tions without first accounting for P̂ is a questionable proce-

dure, as the probability of detecting calls can vary by factors

of 10 or more for low and mid frequency calling whales.

ACKNOWLEDGMENTS

The authors are extremely grateful to Glenn Ierley,

Megan McKenna, Amanda Debich, and Heidi Batchelor, all

at Scripps Institution of Oceanography, for their support

of this research. Gary Greene at Moss Landing Marine

Laboratories and David Clague and Maria Stone at MBARI

were instrumental in obtaining bathymetric and ocean

bottom information used in this study. Bathymetry data col-

lected from R/V Atlantis, cruise ID AT15L24, were provided

courtesy of Curt Collins (Naval Postgraduate School) and

processed by Jennifer Paduan (MBARI). Shipping densities

were provided by Chris Miller (Naval Postgraduate School).

Special thanks to Sean Wiggins and the entire Scripps

Whale Acoustics Laboratory for providing thousands of

hours of high quality acoustic recordings. The CRAM acous-

tic propagation code used in this research was written by

Richard Campbell and Kevin Heaney of OASIS, Inc., using

Mike Collins’ RAM program as the starting point. T.A.H.

would like to thank the Department of Defense Science,

Mathematics, and Research for Transformation Scholarship

program, the Space and Naval Warfare (SPAWAR) Systems

Command Center Pacific In-House Laboratory Independent

Research program, and Rich Arrieta from the SPAWAR

Unmanned Maritime Vehicles Lab for continued financial

and technical support. Work was also supported by the

Office of Naval Research, Code 32, the Chief of Naval

Operations N45, and the Naval Postgraduate School.

1C. Clay and H. Medwin, Acoustical Oceanography: Principles and
Applications (Wiley, New York, 1977), Vol. 4, pp. 84–89.

2P. Etter, Underwater Acoustic Modeling and Simulation (Spon Press, New

York, 2003), pp. 82–84.
3M. McKenna, D. Ross, S. Wiggins, and J. Hildebrand, “Underwater radi-

ated noise from modern commercial ships,” J. Acoust. Soc. Am. 131,

92–103 (2012).
4L. Thomas, T. Marques, D. Borchers, C. Stephenson, D. Moretti, R.

Morrissey, N. DiMarzio, J. Ward, D. Mellinger, S. Martin, and P. Tyack,

“Density estimation for cetaceans from passive acoustic fixed sensors:

Final programmatic report,” Technical Report, Center for research into

ecological and environmental modeling, University of St. Andrews,

J. Acoust. Soc. Am., Vol. 134, No. 3, Pt. 2, September 2013 Helble et al.: Site specific probability of detection 2569



Scotland, UK (2011), http://www.creem.st-and.ac.uk/decaf/outputs/2007-

0145-00220Final20Report.pdf/view (Last viewed March 2, 2013).
5S. Buckland, D. Anderson, K. Burnham, J. Laake, and L. Thomas,

Introduction to Distance Sampling: Estimating Abundance of Biological
Populations (Oxford University Press, New York, 2001), pp. 1–448.

6E. K€usel, D. Mellinger, L. Thomas, T. Marques, D. Moretti, and J. Ward,

“Cetacean population density estimation from single fixed sensors using

passive acoustics,” J. Acoust. Soc. Am. 129, 3610–3622 (2011).
7S. Wiggins, “Autonomous Acoustic Recording Packages (ARPs) for

long-term monitoring of whale sounds,” Marine Technol. Soc. J. 37,

13–22 (2003).
8R. Payne and S. McVay, “Songs of humpback whales,” Science 173,

585–597 (1971).
9T. Helble, G. Ierley, G. D’Spain, M. Roch, and J. Hildebrand, “A general-

ized power-law detection algorithm for humpback whale vocalizations,”

J. Acoust. Soc. Am. 131, 2682–2699 (2012).
10C. Baker, L. Medrano-Gonzalez, J. Calambokidis, A. Perry, F. Pichler, H.

Rosenbaum, J. Straley, J. Urban-Ramirez, M. Yamaguchi, and O. von

Ziegesar, “Population structure of nuclear and mitochondrial DNA varia-

tion among humpback whales in the North Pacific,” Mol. Ecol. 7,

695–707 (1998).
11J. Calambokidis, E. Falcone, T. Quinn, A. Burdin, P. Clapham, J. Ford, C.

Gabriele, R. LeDuc, D. Mattila, L. Rojas-Bracho, J. Straley, B. Taylor, J.

Urban, D. Weller, B. Witteveen, M. Yamaguchi, A. Bendlin, D. Camacho,

K. Flynn, A. Havron, J. Huggins, and N. Maloney, “SPLASH: Structure of

populations, levels of abundance and status of humpback whales in the

North Pacific,” Technical Report, Cascadia Research Collective, Olympia,

WA (2008), http://www.cascadiaresearch.org/SPLASH/SPLASH-contract-

Report-May08.pdf (Last viewed March 2, 2013).
12C. Baker, D. Steel, J. Calambokidis, J. Barlow, A. Burdin, P. Clapham, E.

Falcone, J. Ford, C. Gabriele, U. Goz�alez-Peral, R. LeDuc, D. Mattila, T.

Quinn, L. Rojas-Bracho, J. Straley, B. Taylor, R. Urban, M. Vant, P. Wade,

D. Weller, B. Witteveen, K. Wynne, and M. Yamaguchi, “geneSPLASH:

An initial, ocean-wide survey of mitochondrial (mt) DNA diversity and pop-

ulation structure among humpback whales in the North Pacific: Final report

for contract 2006-0093-008 Principal Investigator: C. Scott Baker,”

Technical Report, Cascadia Research Collective, Olympia, WA (2008),

http://www.cascadiaresearch.org/SPLASH/

NFWF08eneSPLASHinal9Sep08.pdf (Last viewed March 2, 2013).
13G. Donovan, “A review of IWC stock boundaries,” Reports of the

International Whaling Commission (special issue) (1991), pp. 39–68.
14J. Johnson and A. Wolman, “The humpback whale, Megaptera

novaeangliae,” Mar. Fish. Rev. 46, 30–37 (1984).
15J. Barlow, “The abundance of cetaceans in California waters. Part I: Ship

surveys in summer and fall of 1991,” Fish. Bull. 93, 1–14 (1995).
16J. Calambokidis, G. Steiger, K. Rasmussen, J. Urban, K. Balcomb, P. de

Guevara, M. Salinas, J. Jacobsen, C. Baker, L. Herman, S. Cerchio, and J.

Darling, “Migratory destinations of humpback whales that feed off California,

Oregon and Washington,” Mar. Ecol.: Prog. Ser. 192, 295–304 (2000).
17J. Calambokidis, G. Steiger, J. Straley, L. Herman, S. Cerchio, D. Salden,

U. Jorge, J. Jacobsen, O. von Ziegesar, K. Balcomb, C. Gabriele, M.

Dahlheim, S. Uchida, G. Ellis, Y. Miyamura, P. de Guevara, M.

Yamaguchi, F. Sato, S. Mizroch, L. Schlender, K. Rasmussen, J. Barlow,

and T. Quinn, “Movements and population structure of humpback whales

in the North Pacific,” Marine Mammal Sci. 17, 769–794 (2001).
18J. Calambokidis, G. Steiger, J. Evenson, K. Flynn, K. Balcomb, D.

Claridge, P. Bloedel, J. Straley, C. Baker, O. von Ziegesar, M. Dahlheim,

J. Waite, J. Darling, G. Elllis, and G. Green, “Interchange and isolation of

humpback whales off California and other North Pacific feeding grounds,”

Marine Mammal Sci. 12, 215–226 (1996).
19J. Calambokidis, G. Steiger, D. Ellifrit, B. Troutman, and C. Bowlby,

“Distribution and abundance of humpback whales (Megaptera novaean-
gliae) and other marine mammals off the northern Washington coast,”

Fish. Bull. 102, 563–580 (2004).
20R. Urban, C. Alvarez, M. Salinas, J. Jacobsen, K. Balcomb, A. Jaramillo,

P. de Guevara, and A. Aguayo, “Population size of humpback whale,

Megaptera novaeangliae, in waters off the Pacific coast of Mexico,” Fish.

Bull. 97, 1017–1024 (1999).
21J. Calambokidis, E. Falcone, A. Douglas, L. Schlender, and J. Huggins,

“Photographic identification of humpback and blue whales off the US west

coast: Results and updated abundance estimates from 2008 field season,”

Technical Report, Cascadia Research Collective, Olympia, WA (2009),

http://www.cascadiaresearch.org/reports/Rep-BmMn-2008-SWFSC-Rev.pdf

(Last viewed March 2, 2013).

22G. Campbell, T. Helble, S. Wiggins, and J. Hildebrand, “Humpback whale

seasonal and spatial calling patterns in the temperate northeastern Pacific

Ocean: 2008-2010,” in Proceedings of the 19th Biennial Conference on
the Biology of Marine Mammals (Tampa, FL, 2011), p. 53.

23P. J. Perkins, “Cornell laboratory of ornithology macaulay library:

Humpback whale, Megaptera novaeangliae” (1973), http://macaulayli-

brary.org/audio/110847 (Last viewed December 14, 2011).
24NOAA National Geophysical Data Center, “U.S. coastal relief model,

Vol. 6,” (2011), http://www.ngdc.noaa.gov/mgg/coastal/crm.html (Last

viewed December 16, 2011).
25C. Amante and B. W. Eakins, “ETOPO1 1 Arc-Minute Global Relief

Model: Procedures, Data Sources and Analysis,” Technical Report,

NOAA National Geophysical Data Center, Boulder, CO (2009), http://

www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf (Last

viewed March 2, 2013).
26T. Boyer, J. Antonov, O. Baranova, H. Garcia, D. Johnson, R. Locarnini,

A. Mishonov, T. O’Brien, D. Seidov, I. Smolyar, M. Zweng, and S.

Levitus, “World ocean database 2009,” NOAA Atlas NESDIS 66, pp.

1–116 (2009), ftp://ftp.nodc.noaa.gov/pub/WOD/DOC/wod09ntro.pdf

(Last viewed March 2, 2013).
27Ocean Acoustics Group, Massachusetts Institute of Technology, “The

Santa Barbara Channel Experiment” (1999), http://acoustics.mit.edu/sbcx

(Last viewed May 12, 2012).
28E. Hamilton, “Sound velocity–density relations in sea-floor sediments and

rocks,” J. Acoust. Soc. Am. 63, 366–377 (1978).
29E. Hamilton, “Sound velocity gradients in marine sediments,” J. Acoust.

Soc. Am. 65, 909–922 (1979).
30C. Wentworth, “A scale of grade and class terms for clastic sediments,”

J. Geol. 30, 377–392 (1922).
31W. Krumbein and L. Sloss, Stratigraphy and Sedimentation (W. H.

Freeman and Co., New York, 1951), pp. 1–497.
32K. Marsaglia, K. Rimkus, and R. Behl, “Provenance of sand deposited in

the Santa Barbara Basin at Site 893 during the last 155,000 years,” in

Proceedings-Ocean Drilling Program Scientific Results (National Science

Foundation, Washington, DC, 1992), pp. 61–76.
33J. de Mesquita Onofre, “Analysis and modeling of the acoustic tomography

signal transmission from Davidson Seamount to Sur Ridge: The

forward problem,” Master’s thesis, Naval Postgraduate School (1999),

http://www.nps.edu/Academics/GSEAS/oal/publications/jaonofre.pdf (Last

viewed March 2, 2013).
34C. Gabriel, “The physical characteristics of bottom sediment near Sur

Ridge, California,” Master’s thesis, Naval Postgraduate School (2001),

http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf

&AD=ADA391676 (Last viewed March 2, 2013).
35J. Konter, H. Staudigel, J. Blichert-Toft, B. Hanan, M. Polv�e, G. Davies,

N. Shimizu, and P. Schiffman, “Geochemical stages at Jasper Seamount

and the origin of intraplate volcanoes,” Geochem., Geophys., Geosyst. 10,

Q02001 (2009).
36A. Nuttall, “Detection performance of power-law processors for random sig-

nals of unknown location, structure, extent, and strength,” Technical Report,

NUWC-NPT, Newport, RI (1994), http://www.dtic.mil/dtic/tr/fulltext/

u2/a285868.pdf (Last viewed March 2, 2013).
37T. Marques, L. Munger, L. Thomas, S. Wiggins, and J. Hildebrand,

“Estimating North Pacific right whale Eubalaena japonica density using

passive acoustic cue counting,” Endangered Species Res. 13, 163–172

(2011).
38M. McDonald and C. Fox, “Passive acoustic methods applied to fin whale

population density estimation,” J. Acoust. Soc. Am. 105, 2643–2651

(1999).
39W. Au, A. Pack, M. Lammers, L. Herman, M. Deakos, and K. Andrews,

“Acoustic properties of humpback whale songs,” J. Acoust. Soc. Am. 120,

1103–1110 (2006).
40M. Collins, User’s Guide for RAM Versions 1.0 and 1.0p, Naval Research

Laboratory, Washington, DC (2002), http://www.siplab.fct.ualg.pt/models/

ram/manual.pdf (Last viewed March 2, 2013).
41R. Urick, Principles of Underwater Sound (McGraw-Hill, New York,

1983), Vol. 3, pp. 19–22.
42T. Marques, L. Thomas, J. Ward, N. DiMarzio, and P. Tyack, “Estimating

cetacean population density using fixed passive acoustic sensors: An

example with Blainville’s beaked whales,” J. Acoust. Soc. Am. 125,

1982–1994 (2009).
43A. Benda-Beckmann, F. Lam, D. Moretti, K. Fulkerson, M. Ainslie, S.

van IJsselmuide, J. Theriault, and S. Beerens, “Detection of Blainville’s

beaked whales with towed arrays,” Appl. Acoust. 71, 1027–1035 (2010).

2570 J. Acoust. Soc. Am., Vol. 134, No. 3, Pt. 2, September 2013 Helble et al.: Site specific probability of detection

http://www.creem.st-and.ac.uk/decaf/outputs/2007-0145-00220Final20Report.pdf/view
http://www.creem.st-and.ac.uk/decaf/outputs/2007-0145-00220Final20Report.pdf/view
http://www.cascadiaresearch.org/SPLASH/SPLASH-contract-Report-May08.pdf
http://www.cascadiaresearch.org/SPLASH/SPLASH-contract-Report-May08.pdf
http://www.cascadiaresearch.org/SPLASH/NFWF08eneSPLASHinal9Sep08.pdf
http://www.cascadiaresearch.org/SPLASH/NFWF08eneSPLASHinal9Sep08.pdf
http://www.cascadiaresearch.org/reports/Rep-BmMn-2008-SWFSC-Rev.pdf
http://macaulaylibrary.org/audio/110847
http://macaulaylibrary.org/audio/110847
http://www.ngdc.noaa.gov/mgg/coastal/crm.html
http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf
http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf
http://acoustics.mit.edu/sbcx
http://www.nps.edu/Academics/GSEAS/oal/publications/jaonofre.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA391676
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA391676
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA391676
http://www.dtic.mil/dtic/tr/fulltext/u2/a285868.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a285868.pdf
http://www.siplab.fct.ualg.pt/models/ram/manual.pdf
http://www.siplab.fct.ualg.pt/models/ram/manual.pdf

	s1
	n1
	s2
	s2A
	s2B
	s2B1
	s2B2
	s2B3
	f1
	f2
	f3
	s2B4
	f4
	s2C
	s3
	d1
	f5
	s3A
	d2
	s3A
	f6
	f7
	s3B
	s3C
	s3C1
	s3C2
	f8
	t1
	f9
	s3C3
	s4
	f10
	s5
	d3
	s6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43

