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Conventional detection of humpback vocalizations is often based on frequency summation of band-

limited spectrograms under the assumption that energy (square of the Fourier amplitude) is the appropri-

ate metric. Power-law detectors allow for a higher power of the Fourier amplitude, appropriate when

the signal occupies a limited but unknown subset of these frequencies. Shipping noise is non-stationary

and colored and problematic for many marine mammal detection algorithms. Modifications to the

standard power-law form are introduced to minimize the effects of this noise. These same modifications

also allow for a fixed detection threshold, applicable to broadly varying ocean acoustic environments.

The detection algorithm is general enough to detect all types of humpback vocalizations. Tests pre-

sented in this paper show this algorithm matches human detection performance with an acceptably

small probability of false alarms (PFA< 6%) for even the noisiest environments. The detector outper-

forms energy detection techniques, providing a probability of detection PD¼ 95% for PFA< 5% for

three acoustic deployments, compared to PFA> 40% for two energy-based techniques. The generalized

power-law detector also can be used for basic parameter estimation and can be adapted for other types

of transient sounds. VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3685790]

PACS number(s): 43.30.Sf, 43.60.Cg, 43.80.Ka [WWA] Pages: 2682–2699

I. INTRODUCTION

Detecting humpback whale (Megaptera novaeangliae)

vocalizations from acoustic records has proven to be difficult

for automated detection algorithms. Humpback songs consist

of a sequence of discrete sound elements, called units, that are

separated by silence.1 Both the units and their sequence

evolve over time and cover a wide range of frequencies and

durations.1,2 In addition, individual units may not repeat in a

predictable manner, especially during non-song or broken

song vocalizations, or in the presence of multiple singers with

overlapping songs.1,2 Many types of marine mammal detec-

tion and classification techniques have been developed, using

methods of spectrogram correlation,3 neural networks,4 hid-

den Markov models,5,6 and frequency contour tracking,7

among others. Depending on the species of marine mammal,

noise condition, and type of vocalization, many of these meth-

ods have been shown to be effective in producing high proba-

bilities of detection (PD) with low probabilities of false alarm

(PFA). However, for humpback vocalizations, these techniques

often provide low PD if the PFA is to remain adequately low.

Abbot et al.8 used a kernel-based spectrogram correlation to

identify the presence of humpback whales with extremely low

PFA. However, their approach requires 15 kernel matches

within a 3 min window to trigger a detection. Therefore the

goal is not to detect every humpback unit but rather to predict

the presence of song when enough predefined kernels are

matched. Energy detection algorithms, readily available in

acoustic analysis software such as ISHMAEL,9 XBAT,10 and PAM-

GUARD
11 have proven effective for detecting all types of hump-

back call units. However, to avoid an exorbitant number of

false detections, these methods generally require high signal-

to-noise ratio (SNR): The hydrophones are in close proximity

to the whales, and/or the shipping noise is low. Erbe and

King12 recently developed an entropy detector that can out-

perform energy detection methods for a variety of marine

mammal vocalizations. However, this method is inadequate

for detecting humpback vocalizations for data sets that contain

considerable shipping noise. Therefore a need still exists for

an automated detection capability in low SNR scenarios that

is able to achieve low probability of false alarms, yet is gen-

eral enough to achieve high probability of detection for all

humpback units, including those with poorly defined spectral

characteristics.

Nuttall introduced a general class of power-law detectors

for a white noise environment.13,14 The energy method—

based on the square of the Fourier amplitude—is a particular

case, optimum when the signal occupies all the frequency

bands over which energy summation occurs. However, in the

case of narrowband transient signals that fall within a wide

range of monitored frequencies (characteristic of humpback

vocalizations), the optimal detector from Nuttall’s work has a

markedly higher power than the square. This paper builds on
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this insight but with suitable adaptation for the highly colored

and variable noise environment characteristic of the Southern

California Bight, notably containing interfering sounds from

large transiting vessels. Unlike most commonly used detec-

tors, the generalized power-law (GPL) detector introduced

here uses detection threshold parameters that are robust

enough not to require operator adjustments while reviewing

deployments spanning months to years, with highly varying

ocean noise conditions. Such a technique has the potential to

significantly reduce operator analysis time for determining

humpback presence/absence information as well as the

capacity to determine basic call unit parameters, such as unit

duration, that are normally time-prohibitive to obtain using

manual techniques. The goal for this detector is to detect

nearly all humanly audible humpback call units, allowing for

occasional false detections in periods of heavy shipping. This

detector is not designed to discriminate between transient bio-

logical signals that occur in overlapping spectral bands and of

similar duration. However, the method has a limited capacity

for classification; namely the ability to separate shipping noise

from narrowband, transient signals. Therefore additional clas-

sification may be necessary if other acoustic sources meet the

GPL detection criteria. Conversely, the GPL detector has pro-

ven to perform well for detecting other biological signals. In

unpublished experiments, suitable selection of spectral analy-

sis parameters has provided good results for detecting blue

whale (Balaenoptera musculus) “D” calls, minke (Balaenop-
tera acutorostrata) “boings,” and killer whale (Orcinus orca)

vocalizations in the Southern California Bight (blue and

minke whales) and in the coastal waters of Washington State

(killer whales).

This paper is divided into six parts: Sec. II describes

commonly employed manual detection techniques, which

guide the design constraints for an acceptable automated de-

tector. Section III presents theoretical analysis for the GPL

algorithm, highlighting the departures from the Nuttall form,

which are motivated by these design constraints. Readers pri-

marily interested in the application of the detector can move

directly to Sec. IV, which discusses the particular application

of the GPL algorithm to observational data, including the pa-

rameters chosen to best suit these data sets. Section V dis-

cusses the results of Monte Carlo simulations conducted to

characterize the performance of the detector in comparison

to: Nuttall’s original power-law processor, the Erbe and

King entropy method, and two energy-based detection algo-

rithms. These simulations provide detection error trade-off24

(DET) curves for various humpback units, SNR, and noise

conditions. In addition, results are given from simulations

conducted to measure the performance of these algorithms

against trained human analysts. Section VI quantifies the

ability of the GPL algorithm to measure call duration param-

eters. Finally, Sec. VII presents the results from applying the

GPL algorithm to 20 h of recordings from three different

deployments where humpback units were previously marked

by trained human analysts. These 60 h of acoustic data con-

tain 21 037 individual humpback units occurring over a vari-

ety of ocean conditions and SNR. Although they perform

poorly, the two energy detection algorithms are also included

in this analysis because they are commonly used.

II. DETECTOR DESIGN CONSIDERATIONS

Detector design considerations were developed based

on data sets collected by the Scripps Whale Acoustics Lab.

However, similar detection requirements are representative of

the needs of the marine mammal acoustics community in gen-

eral. The data sets for detecting humpback vocalizations were

recorded by high-frequency acoustic recording packages

(HARP).15 These packages contain a hydrophone tethered

above a seafloor-mounted instrument frame deployed in depths

ranging from 200 to 1500 m, covering a wide geographic area

in the southern California Bight, and record more or less con-

tinuously over all seasons. HARP data are used to study the

range and distribution of a wide variety of vocalizing marine

mammals. The first step is to identify marine mammal vocal-

izations in the data. Depending on the type of marine mammal,

this process can be labor intensive. Humpback recordings are

particularly difficult. Humpback units can be described as tran-

sient signals, the structure, strength, frequency, duration, and

arrival time of which are unknown. Additionally, these vocal-

izations often occur in the same frequency bands that contain

colored noise with additional contamination created by large

transiting vessels. Depending on the distance of the passing

ship, ship sounds can appear non-stationary over the same time

scales as humpback units. The structure of the shipping noise is

unknown but is often broadband. In practice, this complicated

signal and noise environment often leads analysts to abandon

automated detection entirely, relying on manual techniques for

identifying vocalizations.

Various methodologies are used by the Whale Acoustics

Lab to ensure consistent manual detection of marine mammal

vocalizations. The TRITON software package16 was developed

by the lab, providing the analyst with the ability to look at the

time series and resulting spectrogram, with adjustable dynamic

range, window lengths, filters, de-noising features, and audio

playback. These manual detection techniques often find hump-

back units that are otherwise missed by standard automated

detectors. While the ability to correctly mark the beginning and

end time of each humpback unit is desirable, this step is time-

prohibitive for longer data sets, and often only binary hump-

back presence/absence information is logged.

An acceptable automated humpback whale detector

must be able to keep the probability of missed detections

(PMD) at or below the level of trained human analysts with a

PFA less than 6% in the noisiest environments. The amount

of analyst review time required to separate humpback units

from false detections depends upon both PFA and the level of

humpback vocalization activity. In practice, the 6% limit on

PFA necessitated 16 h of review for a 365 day continuously

recorded deployment in the southern California Bight, con-

taining greater than one million humpback units. A reliable

fixed detection threshold which fits within these constraints

is desired for the entire deployment. Additionally, the algo-

rithm must run significantly faster than real-time and provide

accurate humpback unit start times and end times.

III. THEORY

One approach for detecting signals with unknown loca-

tion, structure, extent, and arbitrary strength is the power-law
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processor. Using the likelihood ratio test, Nuttall derives the

conditions for near-optimal performance of this processor in

the presence of white noise, based on appropriate approxima-

tions.14 Nuttall’s signal absent hypothesis (H0) is equivalent

to assuming that the short time Fourier transform (STFT) of

the time series yields independent, identically distributed (iid)

exponential random variables of unit norm. The signal present

hypothesis (H1) is that the STFT consists of two exponential

populations. Wang and Willet17 represent these exponential

populations as

H0 : f ðXÞ ¼
YK
k¼1

1

k0

e�jXk j2=k0 ;

H1 : f ðXÞ ¼
Y

k¼62S

1

k0

e�jXk j2=k0 �
Y

k¼2S

1

k1

e�jXk j2=k1 (1)

where k is the mean square amplitude, K is the total number

of frequency bins, X is the Fourier vector with components

Xk, and S is the subset of size M, the number of frequency

bins occupied by signal.

[Notation here and in succeeding sections is standard for

probability theory:18 F is used to denote the cumulative dis-

tribution function (cdf) and f denotes the probability density

function (pdf). In addition the upper case letters Y, Z denote

general random variables and the lower case letters y, z are

specific realizations of them. Owing to the particular needs

of this paper, X is reserved for Fourier components. The

upper case E indicates the expectation operator.] Application

of the likelihood ratio test requires summing over all combi-

natorial possibilities in H1. For even moderate M, this step

becomes infeasible. Hence, Nuttall develops various approx-

imations to estimate a threshold for a power-law detection

statistic of the form

TðXÞ ¼
XK

k¼1

jXkj2�: (2)

The variable � is an adjustable exponent that can be opti-

mized for a particular M. For the idealized case of white

noise, Nuttall’s work indicates a general purpose value of

�¼ 2.5 when M is completely unknown. For a single snap-

shot in time, one can assume that for a humpback unit the

number of signal bins M is much less than the total number

of bins K, which favors � > 2.5. A summation of energy over

all STFT bins is equivalent to �¼ 1, which is only optimal

for M¼K, and hence inappropriate here. Nonetheless, it is

used extensively in readily available marine mammal detec-

tion software, and so its performance is noted throughout

this paper.

A complication in the determination of an optimal � is

that most data sets contain shipping sounds in addition to the

colored noise typical of the marine environment. A trade-off

is created between values of � that favor humpback vocaliza-

tions and larger values that better discriminate against broad-

band shipping sounds. No single choice of � can be ideal

for both purposes; however, a GPL detector can achieve a

suitable compromise between these alternatives as well as a

fixed threshold in all noise environments. The definition of

this detection problem is as follows:

H0 :
nðtÞ or

nðtÞ þ s1ðtÞ;

(

H1 :
nðtÞ þ s2ðtÞ or

nðtÞ þ s1ðtÞ þ s2ðtÞ

(
(3)

where n(t) is a time series generated from distant shipping

and wind, which can be modeled as a Gaussian distributed

stochastic process. Local shipping sounds created by a single

nearby ship are represented by s1(t), which can be both

non-stationary and contain intermittent coherent broadband

structure in frequency. The quantity s2(t) is the humpback

vocalization signal. Although not a contributing factor in the

frequency bands of the data sets used in this work, any addi-

tional acoustic sources determined not to be humpback

whales are also considered noise, and categorized as H0.

Associated with these hypotheses is a formal optimization

problem subject to nonlinear inequality constraints:

min
H

PFAðTgðX; HÞÞ (4)

subject to

PðTgðX; HÞ < gthreshjH1Þ ¼ PMD � PH
MD;

PðTgðX; HÞ > gthreshjH0Þ ¼ PFA � Pmax
FA (5)

where TgðX; HÞ is the generalized power-law detection sta-

tistic, gthresh is the detector threshold value, PFA is detector

probability of false alarms, Pmax
FA is the upper bound on false

alarms (6%), PMD is the detector probability of missed detec-

tion, PH
MD is the human probability of missed detection, and

H is model parameters.

Hereafter, the argument H will be dropped, its depend-

ence implicit. Note that the superscript g distinguishes the

GPL power-law detector from the Nuttall form.

To be considered an acceptable solution, a constant set

of values for H, including gthresh, is necessary. As in many

other constrained optimization problems, the optimal solu-

tion is likely to be attained by an end-point minimum. A

more traditional approach would be to permit detection on

both s1(t) and s2(t), deferring discrimination to subsequent

classification. While further classification is always possible,

it turns out that this discrimination can be done largely at the

detection stage if the power-law processor is suitably

adapted. This goal is in the spirit of Wang and Willet,17 who

developed a plug-in transient detector suitably adapted for a

colored noise environment.

The characteristics described for s1(t) require examina-

tion of whitening, normalization, and broadband noise sup-

pression. The non-stationary nature of s1(t) and the time

clustered nature of s2(t) together motivate the choice of a

conditional whitener insensitive to outliers. Similarly, while

stationary noise motivates a simple estimator to produce the

desired unit mean noise level, this normalization is less
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appropriate for the varying noise environments of H0, where

it is more important to bound the largest values generated by

the test statistic. Last, broadband suppression requires unit

normalization across frequency in addition to normalization

within frequency.

Another consideration is discrimination based on tempo-

ral persistence of the test statistic. Provided � is appropri-

ately chosen, local shipping characteristically generates

highly intermittent values of the test statistic while hump-

back vocalizations exhibit continuity in the test statistic over

the typically longer duration of the call unit. An event is

defined as a continuous sequence of test statistic values at

least one of which exceeds a prescribed value gthresh and

which is delimited on each side by the first point for which

the test statistic is at or below gnoise, a noise baseline. The

expectation with this definition is that an event corresponds

to a humpback call unit, and as such a minimum unit dura-

tion, sc, is a reasonable additional model parameter to incor-

porate into the detector (discussed in Sec. IV). Because the

statistical distributions H0,1 cannot be solved for analytically,

gthresh and gnoise are determined empirically with guidance

from theory.

The proposed modification of the power-law statistic

that incorporates these adaptations and also reflects the time

dependence, j, can be written in its most general form as

TgðXÞj ¼
XK

k¼1

a2�1

k;j b2�2

k;j �
XK

k¼1

nk;j; (6)

ak;j ¼
jjXk;jjc � lkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

n¼1

ðjXn;jjc � lnÞ2
s ; (7)

bk;j ¼
jjXk;jjc � lkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ

m¼1

ðjXk;mjc � lkÞ2
s (8)

where X now represents a Fourier matrix with J STFTs, j is

the snapshot index ranging from 1 to J; k is the frequency

index ranging from 1 to K, {a, b, n}k,j are elements in the

matrices A, B, and N, respectively, �1, �2, c are adjustable

exponents, lk is the conditional whitener, defined in the

following text.

It is helpful to note that A is a matrix the columns of

which are of unit length. The normalization across frequency

[Eq. (7)] enforces the desired broadband suppression. B is a

matrix the rows of which are of unit length, resulting from a

normalization across time [Eq. (8)]. The average lk is

defined by

lk ¼
ð1

0

zfkðzÞdz: (9)

For the purpose of whitening, this is approximated by

lk �
ðF�1

k ðycþ1=2Þ

F�1
k
ðycÞ

zfkðzÞdz; (10)

yc ¼ min
y2½0;1=2�

�
F�1

k ðyþ 1=2Þ � F�1
k ðyÞ�: (11)

Equation (10) includes 50% of the distribution centered about

the steepest part of the cdf, corresponding to the peak of the

pdf. This form is termed “conditional” to reflect that the limits

of integration are dynamically determined from the data rather

than fixed as in Eq. (9). This formula is one of several possible

implementations of a whitener the goal of which is to suppress

one or more strong signals, such as the order-truncate aver-

age.19 Equation (10) is unbiased for fk, a symmetric pdf, but is

biased to the low side for the skewed distributions of interest

here. The bias is not large however hence a more elaborate

estimator of lk has not been explored. The integrals are cast

in discrete form as follows. Let sj denote the sorted values

(from small to large) of jXk;jj over j¼ 1,…,J for a fixed k.
Next find j� ¼ minjðsjþJ=2�1 � sjÞ. And finally

lk ¼
2

J

Xj�þJ=2�1

j¼j�
sj:

The conditional restriction of the average to those points

deemed in the noise level means that the numerators in

Eqs. (7) and (8) using the lk in the preceding text are not

exactly zero mean, although small.

Obtaining analytical expressions in the analysis of

Eqs. (6) to (11) for H0,1 is a difficult task. However, the case

of white noise permits reasonable progress in characterizing

the normalization and the whitener, which are explored in

the following subsections. For white noise, only the sum

�1þ �2 matters and hence can be replaced by a single expo-

nent �. For conditions other than white noise, the choices of

c, �1, and �2 must be set individually, deviating from Nut-

tall’s one parameter form. For the optimization problem

stated in Eqs. (4) and (5), values of c¼ 1, �1¼ 1, and �2¼ 2

yielded about the minimal PFA. These values were obtained

with the guidance of theory presented in the following sub-

sections and verified with Monte Carlo simulations and

observational results. In the remainder of the paper, these are

the values employed.

A. Statistics of unit normalization for white noise

To understand the importance of the normalized varia-

bles that enter into Eq. (6), consider the case of white noise.

In this section, the focus is on normalization and hence lk is

set to zero in Eq. (6). To represent the associated Fourier

coefficients Xk let

Xk ¼
1ffiffiffi
2
p ð<ðXkÞ þ i=ðXkÞÞ (12)

where real and imaginary parts are each independent and

identically distributed normal random variables of zero

mean and unit variance. With this normalization, jXkj has a

Rayleigh distribution, EðjXkjÞ ¼
ffiffiffi
p
p

=2, and EðjXkj2Þ ¼ 1,

independent of frequency.

First consider the statistics of a2
k;j alone, hence define the

random variable Y by
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Y ¼ jXkj2XK

n¼1

jXnj2
; (13)

where K is the number of Fourier frequency bins in the retained

band. The matrix column index is omitted for the moment. The

pdf for Y, fY(y), is now sought. Because the sum in the denomi-

nator includes the index k, it is not independent of the numera-

tor. Accordingly it is useful to look instead at the reciprocal,

which is denoted as 1þ Z where Z is then given by

Z ¼

XK0
n¼1

jXnj2

jXkj2
: (14)

and the prime on the sum denotes the restriction n 6¼ k. From

this starting point, standard statistical arguments lead to the

conclusion that Y has the exact pdf

fYðyÞ ¼ ðK � 1Þð1� yÞK�2: (15)

(See the appendix for details. In practice a Hamming win-

dow is used with the STFT and so this result does not strictly

apply. The practical differences in the distributions obtained

with a window compared to those in the preceding text are

slight however.) From Eq. (15), it follows that E(y)¼ 1/K.
Note that, also as expected from the normalized form, y is

necessarily limited in range to [0,1]. This reflects the stated

preference of bounding the test statistic in lieu of enforcing a

unit norm of the noise as found in most implementations of

the power-law processor. In the present case of white noise,

the distinction is trivial, but such a bound remains in force

even for the complex environments of H0,1.

Equation (15) is well approximated by the exponential

form (K � 1) exp(�(K � 2)y) provided log(1 � y) � �y.
The result is not, however, exactly normalized. To form a

suitable pdf, it is appropriate to modify this expression to

fYðyÞ 	 ðK � 2Þe�ðK�2Þy; (16)

which has the proper unit area. A measure of the approxima-

tion error is seen in the modified mean, E(y)¼ 1/(K � 2),

which agrees with the exact result to only leading order in K.
While Eq. (15) correctly incorporates the fact that y can

never exceed unity, a consequence of the expansion is that

Eq. (16) has an exponentially small tail extending to infinity.

As shown in the Appendix, for even the simplest product

of A and B, the statistics cannot be found in closed form. How-

ever, observe that if the denominator in Eq. (13) is replaced by

its mean value of K, then the pdf for Y becomes simply a

rescaled version of the numerator, namely K exp(�Ky). This

last result, while not formally asymptotic to Eq. (16), is none-

theless a useful approximation for large K, and hence in subse-

quent sections when values are referred back to Eqs. (6) to (8),

all normalizations are replaced by their mean values.

B. Unnormalized statistics for white noise only with
mean removal

It is important to characterize the role of nonzero lk.

The particular frequency is irrelevant hence the subscript k is

dropped in this subsection and subsection C. For this pur-

pose, it is simplest to consider the unnormalized sum

Y ¼
XN

n¼1

jXnj � lj jp (17)

where, with reference to Eq. (6), p¼ 2�1þ 2�2, leaving the

summation index N general. In later plots, p ¼ ½2; 6;1� are

considered. The first of these, p¼ 2, addresses statistics of

the denominators in Eqs. (7) and (8), the last two cover the

numerators of interest. The value of p can be regarded in vis-

ual terms as a contrast setting; small p corresponds to low

contrast, large p corresponds to high contrast, where �1 con-

trols vertical contrast and �2 controls horizontal contrast

through the relative weighting of the normalization (denomi-

nator) terms in Eqs. (7) and (8).

At certain points in this and the succeeding subsection,

it is useful to form the related quantity

XN

n¼1

jXnj � lj jp
 !1=p

; (18)

the classical Lp norm in RN to facilitate comparison of dif-

fering values of p. The limit of large p in this latter form

yields the minimax, or infinity, norm, which singles out the

largest single entry in the kth column. Using a measure with

all its support concentrated at one point is probably not a

good idea because humpback units commonly include very

sharp upsweeps and downsweeps as well as units with a

number of harmonics of similar amplitudes. Additionally, if

p is too large, temporal persistence of the test statistic is lost

and discrimination between shipping and transients such as

humpback units is compromised. As previously indicated,

the optimal constrained solution of Eqs. (4) and (5) is

achieved in the neighborhood of (�1¼ 1, �2¼ 2) or equiva-

lently p¼ 6.

Now jXnj is Rayleigh distributed with, as noted before, a

mean of
ffiffiffi
p
p

=2. Defining the random variable

Z ¼ jjXnj � ljp; (19)

the associated pdf follows by a change of independent vari-

able (see Appendix). The mean, lðpÞZ , and standard deviation,

rðpÞZ , of Z can be calculated but the expressions become

unwieldy so the exact result is given only for p¼ 2 in

Table I. The superscript (p) denotes the dependence on the

exponent in Eq. (17). The salient features are: the value of

moments grows exponentially with p and rate of exponential

growth itself increases rapidly with the order of the moment.

Hence the numerator and denominator in Eq. (6) do not

approach the prediction of the central limit theorem at the

same rate.

Evaluation of the N-fold convolution integral that repre-

sents the pdf for the sums in numerator and denominator

leads to approximation in terms of the moment expansion of

the characteristic function, of which the leading contribution

is given exactly by the central limit theorem. On this basis it

is expected that Eq. (17) is well approximated as
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Y � lðpÞZ N þ rðpÞZ N1=2zd (20)

for sufficiently large N, where zd is a normally distributed

random variable of zero mean and unit variance. However, it

remains to be shown whether or not the asymptotic normal

form is in fact an accurate approximation of the actual distri-

bution for parameter values that are typical in application.

The first correction to the Gaussian pdf is the skewness,

given by

c3 ¼
ð1
�1

Z3
dfZd

dZd ¼
qðpÞZ

6
ffiffiffiffiffiffiffiffiffi
2Np
p

ðrðpÞZ Þ
3
;

and qðpÞZ ¼ EðjZj3Þ. Scaling the random variable by
ffiffiffiffiffiffi
2N
p

rðpÞZ

to express it in terms of zd, the corrected pdf assumes the

form

fY 	 e�z2
d=2 1þ c3zdðz2

d � 3Þ
� �

:

This is a good approximation provided

jzdj 

ffiffiffiffiffiffiffiffiffiffiffiffi
6=qðpÞZ

3

q
N1=6rðpÞZ :

For p¼ 2, i.e., the denominator in Eq. (6), this results in

c3¼ 0.0150 valid for jzdj 
 3 while for the numerator with

p¼ 6, the skewness is nearly twenty times larger at

c3¼ 0.2644 and consequently the expansion holds for

jzdj 
 1, i.e., only the immediate vicinity of the peak of the

pdf. Characterization of the tail of the distribution is given in

the following text.

Figure 1 shows computed pdfs for the LP norm in

Eq. (18) for p ¼ 2; 6;1 along with the Gaussian pdf for com-

parison. It is seen that p¼ 2 lies close to the normal distribution

while p¼ 6 is reasonably close to the infinity norm pdf. This

bears directly on the analysis in the final theory subsection.

Turning briefly to the tails of these distributions, see

Fig. 2 where log(1 � FY) is plotted. The parabolic curves in

each panel reflect the quadratic controlling factor in the

asymptotic expansion of the error function. This factor devi-

ates significantly from the curve for p¼ 6; the controlling

factor in the correct cdf is weaker than linear. How much

weaker is made clear by switching from a global representa-

tion to a local approximation, namely

logð1� FYÞ 	 �
ffiffiffiffi
N3
p ffiffiffi

p
p

=2þ y1=6
� �2

þOðlog yÞ: (21)

Coefficients of the log and higher order corrections would

derive from asymptotic matching. In lieu of that, here only

the first term is used along with a numerically determined

constant offset.

The results in the preceding text individually character-

ize the numerator and denominator of Eq. (6). Because the

TABLE I. Distribution of moments for Eq. (17).

P lðpÞZ ðrðpÞZ Þ
2 qðpÞZ

2 1 � p/4 1þp/2 � p2/4 2þ 15p/8 � p3/4

4 0.1494 0.4842 0.6481� 101

5 0.1663 0.1613� 101 0.7703� 102

6 0.2154 0.6654� 101 0.1257� 104

22 0.7885� 105 0.1922� 1018 0.2279� 1033

FIG. 1. (Color online) Computed pdfs for the LP norm in Eq. (18) for p¼ 2,

6,1 along with a Gaussian.

FIG. 2. (Color online) A comparison of numerical and analytic forms for

the cdf of Eq. (17) for a) p¼ 2 and b) p¼ 6, emphasizing the tail of the

distribution.
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terms in the denominator have large mean with small rela-

tive variance, as previously noted in Sec. III A, little error is

incurred by replacing them with their mean value. It is really

the numerator alone that controls the distribution of Tg(X).

For a normalized detector based strictly on energy (p¼ 2),

no such partition is possible; the numerator and denominator

scale comparably. This similarity of scaling is the basic

cause of poor discrimination between shipping and hump-

back vocalizations for energy detectors.

The zeroth moment of the distribution is accurately esti-

mated from the entries in Table I even though there is a long

tail to the right, hence the average test statistic for H0 is

T
gðXÞ � lðpÞZ

Jp=2�1ðlð2ÞZ Þ
p=2
; (22)

independent of K. For J¼ 1460, and p¼ 6, this works out to

a prediction of T
gðXÞ ¼ 1:0223� 10�5. Simulations using

Eq. (6) and the conditional whitener given in Eqs. (10) and

(11) gives an average of 1.29� 10�5. In spite of real data

leading to additional complications such as (1) overlap of

successive spectra, (2) dependence of the lk on frequency,

(3) nonstationarity of shipping noise, and (4) sensor self-

noise (discussed in Sec. IV), it is notable that the operational

noise threshold for use with HARP data is set at

gnoise¼ 2.07� 10�5, just a factor of two larger than the value

from Eq. (22). Recall the purpose of gnoise is to delimit the

beginning time and end time of a particular humpback unit.

Therefore the final value was chosen to optimize the accu-

racy of this process, as described further in Sec. VI.

In lieu of a more elaborate model to incorporate the fre-

quency dependence of lk, representative distributions are

shown of Tg(X) from recorded wind-driven noise, distant

shipping, and local shipping data (discussed at greater length

as cases 1,2,3 respectively in Sec. V) in comparison with the

white noise result. In Fig. 3, a slightly different format for the

tail of the distribution is used to bypass issues relating to a

varying mean, lk, so the abscissa is now log(Tg(X)). Note

how the tail of the wind-driven noise environment matches

the ideal white noise result up to within a translation of about

0.5, which corresponds to a simple multiplicative rescaling of

Tg(X). The distributions of distant and local shipping, by con-

trast, decay more slowly although even for the latter on aver-

age a fraction of only about exp(�5) sample points per 75 s

interval will exceed the indicated threshold. Whether these

sample points produce an event detection is subject to the

event duration requirement. Such persistent events come

about not by a chance confluence of independent random

spikes, which is quite rare, but from a spectral feature that

does not fall to gnoise quickly enough to either side of the

peak. How often that happens requires a more detailed model

of shipping noise than is suitable to pursue here. A principal

cause for excessively slow decay of the tail in Fig. 3 is failure

of the whitener. During intervals of high level shipping, a

prominent modulation of the spectrogram from ship propeller

noise of a 10- to 20-s period typically occurs. In this case, the

use of a constant lk at each frequency over a time window of

75 s leaves a significant residual sinusoidal modulation.

C. Signal plus noise

To understand the response of GPL in the simplest set-

ting, the normalization can be omitted. Recall that its purpose

is to allow fixed values for gnoise and gthresh in H0,1. With

white noise of fixed variance, this normalization is unneces-

sary. It is helpful here also to use the standard Lp form

eTgðXÞðpÞj ¼
XK

k¼1

Xk;j

�� ��� l
�� ��p" #1=p

: (23)

The tilde denotes the absence of normalization in the

remainder of this subsection. The main issue is the statistics

of an isolated snapshot. The correlation of eTgðXÞðpÞj with ad-

jacent values eTgðXÞðpÞj61 arising from overlap of successive

STFT windows is hence neglected here. While characteriz-

ing the pdf for eTgðXÞðpÞ in analytic form is not easy for inter-

mediate p, the limiting case of the infinity norm is relatively

accessible. Moreover in Fig. 1, which shows the noise pdf

for Eq. (23), the earlier noted similarity of results for p ¼ 1
and p¼ 6 suggests that qualitative aspects of the analysis in

the following text can be also expected to apply to the latter

value of p.
For p!1, Eq. (23) simplifies to

eTgðXÞð1Þj ¼ max
k

Xk;j

�� ��� l
�� ��; (24)

that is, the value assigned to eT for time interval j is the single

largest value in the kth column of the whitened amplitude

matrix. As an idealized model of this process, the signal is

assumed to be a sine wave of amplitude s that lasts exactly

one snapshot, superimposed on white noise. Denote the

index of its frequency as k0. (The actual value is irrelevant in

what follows.) What matters is that the maximum in Eq. (24)

is taken over K values in the frequency domain. One of these

values contains the signal plus noise; the remaining K � 1

FIG. 3. (Color online) Comparison of the tails of the cdfs for local shipping

(asterisk), distant shipping (open square), and wind-driven (open circle)

noise conditions versus ideal white noise (dashed).
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contain only noise. For this detection scheme to be reliable,

the signal must be large enough that the corresponding value

of Xk0;j

�� ��� l
�� �� exceeds the likely extremal value over the

remaining K � 1 realizations of pure noise.

The cdf for the case of pure noise is given by

eFnðz; K � 1Þ ¼ 1� expð�ðzþ lÞ2Þ
� �K�1

z > l: (25)

For large K, the contribution in the range z< l is exponen-

tially small and may be neglected. The pdf for Xk0;j

�� ��� l
�� �� is

~fsðzÞ ¼ 2ðzþ lÞ expð�s2 � ðzþ lÞ2Þ
� I 0ð2sðzþ lÞÞ; z > l; (26)

where I 0 is the modified Bessel function of zeroth order.

[For 0� z�l, the pdf is ~fsðzÞ þ ~fsð�zÞ.] The accompanying

cdf, eFsðzÞ, cannot be expressed in terms of known functions,

however, its asymptotic and series expansions for large and

small s, respectively, can both be found.

In terms of these quantities, the pdf for the random vari-

able z ¼ eTgðXÞ summed over all frequencies including k0 is

given by

~f
ð1Þ
GPL ðzÞ 	 ~fsðzÞeFnðz; K � 1Þ þ ~fnðz; K � 1ÞeFsðzÞ; (27)

with K� 1 equal to the total number of frequencies not counting

that of the signal. From this construction, it follows automatically

that
Ð1

0
~f
ð1Þ
GPL dz ¼ 1. For large s and K, Eq. (27) has the simple

leading order asymptotic expansion

~f
ð1Þ
GPL ðzÞ 	

ffiffiffiffiffiffiffiffiffiffiffi
zþ l
ps

r
e�ðzþl�sÞ2 ; (28)

which is an excellent approximation for s� 4.

From the derivative of Eq. (25), the pdf of noise for ~f
ð1Þ
GPL

reaches a maximum at z 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðK � 1Þ

p
� l. The predicted

separation of the peaks of signal plus noise and noise only

pdfs is thus s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðK � 1Þ

p
. Pressing Eq. (28) somewhat

beyond its formal range of applicability in this last result

suggests for K¼ 339 that s> 2.4 is required for a signal to

begin to emerge from the background. This predicted separa-

tion is qualitatively corroborated in Fig. 4(a).

The case for the energy sum is given by Eq. (2) with

�¼ 1. The sum of K noise terms has a cdf of CðK; zÞ. The

pdf is well approximated by a normal distribution for the val-

ues of K considered here. The pdf for the signal follows

from substituting l¼ 0 in Eq. (26) in the preceding text and

then making a variable change to reflect the choice of energy

rather than amplitude as the independent variable. Hence

fsðzÞ ¼ expð�s2 � zÞI 0ð2s
ffiffi
z
p
Þ: (29)

The equivalent of Eq. (27) is then given by the convolution

fEðzÞ ¼
1

CðKÞ

ðz

0

ðz� xÞK�1
ex�zfsðxÞdx: (30)

This integral also cannot be found in closed form, but only

approximated in various limits.

The displacement of the peak of fE relative to the peak of

the noise pdf at K is found to satisfy the approximate relation

4s4 þ ðK � 1Þðs2 þ zÞ ¼ 2s2 ð2s2 þ K � 1Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 1þ 2z
p ; (31)

which is equivalent to a cubic polynomial and has a K-inde-

pendent exact root of z¼ s2, as can be seen by inspection.

The plots in Fig. 4 show ~f
ð1Þ
GPL and fE for signal ampli-

tudes of s¼ [0,2,3,4,5] (for, again, an rms noise amplitude of

l ¼
ffiffiffi
p
p

=2 per frequency and K¼ 339). Figure 4 suggests

that it takes about a 5 dB dynamic range for GPL to go from

essentially no detection to nearly perfect detection. Taking

s¼ 4 to define a suitable threshold for detection, it is useful

for orientation to convert this choice of s into an associated

(normalized) value of gthresh for p¼ 6. The denominator of

Tg(X) is estimated as previously in Eq. (22). For the numera-

tor, it suffices to compute
Ð1

0
z6 ~fsðzÞ dz with ~fs as given in

Eq. (26). The result is gthresh¼ 2.66� 10�4, virtually the

exact value used in practice.

No algorithm based on �¼ 1 can compete with this per-

formance; the linear separation of signal and noise with GPL

FIG. 4. (Color online) Pdfs for (a) ~f
ð1Þ
GPL , (b) fE for signal amplitudes of 0

(dashed) and 2, 3, 4, 5 (solid) from left to right in each plot.
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is complete before the quadratic separation of the energy

method begins to be effective. A formal measure of SNR

statistics is the deflection ratio, defined as

d ¼ jlsþn � lnjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

sþn þ r2
n

p : (32)

Asymptotic expansions for the means are tedious, but for

large K, the distinction between the mean values and the

peaks of the corresponding pdfs is slight. Accordingly the

latter are used instead, yielding

dGPL �
ffiffiffi
2
p
ðs�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðK� 1Þ

p
Þ

1þ 1=ð2 logðK� 1ÞÞ and dE �
s2ffiffiffi
2
p

K
: (33)

The first of these reaches unit deflection ratio at s¼ 3.2, the

second not until s¼ 21.9. Computed values of deflection

ratio as defined in Eq. (32) based on statistics from simula-

tions were compared against the analytical simplification for

dGPL in Eq. (33). Close agreement was found for s> 4, con-

sistent with the approximation in Eq. (28) used to obtain

dGPL above. The computed values from simulation also cor-

roborated a precise evaluation of Eq. (32) based on Gaussian

quadrature with the exact pdf given in Eq. (27). Last, simula-

tion confirms that dGPL (s) for p¼ 6 differs minimally from

that for p ¼ 1 with an asymptotic slope reduced by only

about 8%, thus discrimination for the ideal signal considered

here is only slightly degraded by fixing p¼ 6 in place of the

infinity norm, as anticipated.

Needless to say, real signals are not confined to a single

frequency and the noise is neither white nor stationary. For

these reasons, a more robust detector is required but one that

nonetheless approximates this sifting property of the L1 norm.

The choice of p¼ 6 (�1¼ 1, �2¼ 2) is a good compromise.

D. Summary

It is not hard to see why GPL (or any other optimized

power-law processor) is good at practical noise rejection: An

overwhelming fraction of the final sample points {Tg(X)} is

tightly clustered near T
gðXÞ. These points, which lie below

gnoise, automatically define the snapshots at which events

begin and end. Their ubiquity ensures that although common

noise sources (and ships particularly) do generate occasional

spikes above threshold, the majority of the latter are subse-

quently discarded because their duration is nearly always less

than the minimum unit duration subsequently imposed. More

broadly, defining event duration is problematic for energy

detection schemes both because no clean separation of signal

and noise exists (equivalently the pdfs have excessive over-

lap) and because of the need to define an empirical adaptive
threshold in contrast with the fixed value used in GPL.

What has been shown in the preceding subsections is that

the modifications of normalization and whitening achieve

white noise results comparable to those of Eq. (2). Analytical

evaluation of these modifications in application to H0,1 is not

feasible. Rather, the evaluation is carried out in succeeding

sections by means of both simulation and application to real

data sets. It is shown that these modifications are necessary

for an acceptable solution to the constrained optimization

problem in Eqs. (4) and (5) using real ocean acoustic data and

cannot be achieved with the power-law processor in Eq. (2).

IV. SPECIFIC CONSIDERATIONS FOR GPL
ALGORITHM USED ON HARP DATA FOR HUMPBACK
DETECTION

HARP data are recorded in either continuous or duty

cycled format with a sampling frequency of 200 kHz. For

the results presented in this paper, data were processed in 75

s blocks, a time segment that was convenient for the duty

cycle used in the HARP deployments. The time series is

then low-pass filtered and decimated to a 10 kHz sampling

rate. An STFT of length 2048 points is used with a 75%

overlap and a Hamming window function, which corre-

sponds to 4.9 Hz per frequency bin, 0.05 s per snapshot, and

a total number of snapshots, J, equal to 1460. These parame-

ters were found most effective for the majority of humpback

vocalizations. The shortest call units could benefit from a

shorter STFT length at the expense of a decrease in spectral

resolution. No improvements in detection are realized for

overlaps greater than 75%, therefore the overlap is fixed at

75% to avoid additional processing time. The output from

the STFT is band-limited to a frequency range of 150–1800

Hz, and the number of frequency bins, K, is then 339. While

humpback vocalizations can be recorded well above 1800

Hz and slightly below 150 Hz, sufficient energy for such

units exists between these frequencies for good humpback

detection performance.

The HARP data contain self-noise from the disk record-

ing process. Therefore, a pattern matching algorithm based on

singular value decomposition is used to remove short dura-

tion, broadband spectral features that coincide with the begin-

ning and end of write-to-disk events. Additionally, the disk-

write process produces narrowband, long duration (on the

order of 10 s) noise contamination. While this narrowband

noise is not problematic for higher order power-law process-

ors, it does pose a problem for the energy-based detection

methods (discussed in the following sections). Therefore for

energy detection only, a second algorithm is deployed that

searches for the five strongest frequencies containing these

narrowband features and removes these bands in the spectro-

gram. For both the energy methods and GPL, jXj as defined

in Eqs. (7) and (8) is whitened following the discretized ver-

sion of Eqs. (10) and (11), defining jbXj ¼ jjXkj � lkj:
Threshold values were guided by both the theoretical

calculations and the nonlinear inequality constraints dis-

cussed in Sec. III. Initially gthresh was adjusted to match the

performance of a trained human analyst. The theory in Sec.

III provides an ex post facto analytical basis for this as a for-

mal problem in separation of signal and noise. The simple

choice of s¼ 4 gives a predicted gthresh that lies fortuitously

close to the chosen value.

It was found that values of gnoise¼ 2.07� 10-5 and

gthresh¼ 2.62� 10�4 satisfied these constraints while keep-

ing PFA < Pmax
FA in the heaviest shipping environments. The

detection test statistics for each time step j are evaluated

according to Eqs. (6) to (8) as earlier noted using c¼ 1,
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�1¼ 1, and �2¼ 2. Other values of c, �1, and �2 may be

appropriate for other marine mammal vocalizations and/or

noise conditions.

Using a normalized detection approach allows the user

to set a fixed detection threshold, gthresh, that works well

over varying ocean conditions. However, during periods

when the intercall interval between humpback units is short,

the normalization approach reduces values of Tg(X) for

repeated units with shallow spectral slope, at times to values

below gthresh. Therefore an iterative method is used in an

attempt to adjust jbXj so that Tg(X) gives similar values for a

particular call unit, regardless of call activity. First a prepro-

cessing step is done: Tg is computed from j bXj. A submatrix

jbXjs is formed containing all columns of jbXj for which the

corresponding Tg< gnoise. Next Tg is recomputed from jbXjs
with J adjusted to the size of the submatrix. All columns of

jbXjs for which Tg> gthresh are removed. Iteration then pro-

ceeds as follows:

Tg is computed from jbXj. The detection with the highest

value of Tg that exceeds threshold is recorded, its duration n
fixed by the nearest neighbor to either side for which

Tg< gnoise. Next the n columns in jbXj corresponding to this

event are replaced by n columns of jbXjs chosen at random.

The process is repeated until no values of Tg exceed gthresh.

In rare cases where the unit is repeated heavily, the nor-

malization that reduces shipping noise also reduces the con-

tribution of the calls to the test statistic. In such cases, the

statistic may be below the detection threshold. Alternative

techniques for normalization have shown promise.

It is possible to further reduce the effects of shipping

noise in the data using a minimum unit duration requirement

as described in the following. After all events in the 75 s sec-

tion of data have been determined, those events with a com-

mon terminus are merged into a single event. After

qualifying events are merged, each event must exceed the

minimum call duration requirement, sc, of 0.35 s. The modi-

fied detector output Tg*(X) contains the values of Tg(X) with

detector values replaced by zero for events that do not meet

these duration requirements. The formal optimization prob-

lems in Eqs. (4) and (5) should thus be changed so that

Tg(X) is replaced with Tg*(X), and the model parameters

contained in H are augmented to include [gthresh, gnoise, sc].

For an overlap of 75%, a minimum call unit duration of 0.35

s corresponds to seven snapshots. The event duration, s, is

recorded for each detection. Shipping noise can sometimes

produce high values of Tg(X) albeit short in duration. Most

of these events are shorter than sc. Using energy techniques,

detections from shipping events and humpback units occur

on similar time scales, and so this method of discrimination

cannot be utilized. For comparison purposes, the perform-

ance of Tg(X) and Tg*(X) are discussed in the following

sections.

Because the event duration is computed from Fourier

components rather than the original time series, STFT length

and window overlap define the terminal points of the

event.20,21 For example, due to the 75% overlap, energy

occurring entirely within the snapshot j can influence the test

statistic from Xk,j-3 to Xk,jþ 3. This overlap can hence permit

detection of events slightly shorter than sc; this is useful in

the case of detecting shorter humpback units but can also

increase false detection from shipping noise.

An example of the GPL process can be seen in Fig. 5,

the corresponding time series of which was created by add-

ing a HARP recording containing strong shipping noise to a

filtered HARP recording of humpback units (details dis-

cussed in Sec. V and shown in Fig. 6). Visual representations

of X, jbXj, and N for 30 s of data are shown in Figs. 5(a),

5(c), and 5(e). The incoherent sum over frequency for these

matrices as a function of time are shown in Figs. 5(b), 5(d),

and 5(f), where Fig. 5(b) represents the energy sum, Fig.

5(d) represents the whitened energy sum, and Fig. 5(f) shows

the values of Tg(X). In Fig. 5(f), the detection threshold

gthresh is represented by a black horizontal line, while Tg(X)

values below the noise level gnoise are illustrated with black

dots. Events where Tg(X)> gthresh are highlighted in red,

while green represents events that fail to meet the event du-

ration requirement in Tg*(X). The evolution from Figs. 5(b)

to 5(f) shows significant improvement in humpback unit

detectability: Choosing a threshold value that would include

all six humpback units in Fig. 5(b) would include a signifi-

cant amount of shipping noise, while a threshold in Fig. 5(f)

can be chosen to include all six humpback units with no

inclusion of shipping noise.

The start time, end time, and duration for all events that

meet detection requirements are recorded in a log file. A

human analyst then prunes false detections from the log file.

To aid operator review of the detections in a efficient manner,

a graphical user interface (GUI) was designed. The GUI pro-

vides a tool for the operator to review time-condensed spec-

trograms containing the detections, to listen to the detections

with adjustable band-passed audio, and to accept or reject

each detection. The resulting subset of operator-selected

detections can later be used for additional classification.

V. MONTE CARLO SIMULATIONS

To quantify the performance of GPL with known signals

over a range of SNR, Monte Carlo simulations were con-

ducted, and the GPL algorithm performance was compared

with Nuttall’s original power-law processor, two types of

energy detection methods, Erbe and King’s entropy method,

and trained human analysts.

Simulations were considered for three types of noise

environments: wind dominated (case 1), distant shipping

(case 2), and local shipping (case 3). Case 1 approximates the

circumstance of H0¼ n(t), while cases 2 and 3 reflect

H0¼ n(t)þ s1(t) with variation in relative contribution of sin-

gle ship noise, s1(t), to the total noise field. It is worth noting

that case 3 is composed of shipping events recorded in

the Santa Barbara channel when one or more large freight ves-

sels were within 5 km of the HARP recording package

(depth¼ 580 m). Six humpback units were selected that

spanned varying frequency and temporal ranges in an attempt

to characterize detector performance for the wide variety of

humpback call units typically seen in acoustic recordings.

Ninety-minute segments for each type of noise environment

were selected from HARP data free of detectable humpback

vocalizations and HARP self-noise. The six characteristic call
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units (shown in Fig. 6) were selected from a different HARP

data set that contained humpback vocalizations with high

SNR. Noise in these recordings was further reduced using a

masking filter in the Fourier domain and then converted back

to the time domain to ensure that broadband background noise

was not included in the signals of interest. Scalloping (spectral

modulation) was avoided by using windows with 93.75%

overlap, dividing out the window amplitude in each filtered

STFT segment and overlapping successive central segments

by 50%.22 Call units were added in the time domain to a

random section of noise for each noise condition. Detection

results were recorded for each detection method as

described in Kay,23 using the binary hypothesis test in Eq. (3).

Following Kay’s example, the observation interval is defined

as the duration of the humpback unit of interest. When appro-

priate, DET curves were created to compare the perform-

ance of each detector with varying SNR, where SNR is

defined as

FIG. 5. Visual comparison of energy and GPL for six humpback call units in the presence of local shipping noise starting with (a) conventional spectrogram

Xj jð Þ and (b) resulting energy sum, (c) energy with whitener X̂
�� ��� �

, (d) resulting sum, and finally (e) N as defined in Sec. III and (f) GPL detector output

Tg(X). Units are highlighted in (e) with white boxes. GPL detector output in (f) shows eight groupings of detector statistic values above threshold (horizontal

line). The six whale call units (red) meet the minimum time requirements, but the four detections (green) resulting from shipping noise do not, and so are not

considered detections. All grams in units of normalized magnitude (dB).
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SNR ¼ 10 log10

hp2
s i
hp2

ni

where

hp2
s i �

1

T

ðT

0

p2
s ðtÞdt

and where p represents the recorded pressure of the time

series, band-pass filtered between 150 and 1800 Hz, and T is

the duration of the signal. Note that negative SNR in the

time domain does not imply negative SNR for individual

frequencies following a transformation into the Fourier

domain. Detection error tradeoff curves are plots of the two

error types from the binary hypothesis test: missed detec-

tions (PMD) versus false alarms (PFA). These error types are

plotted as a function of detection threshold. DET curves are

preferred over traditional receiver operator characteristic

(ROC) curves23 because the missed detection and false alarm

axes are scaled to normal distribution fits of the scores of

segments with and without signal. DET curves make use of

the entire plotting space and are more capable of showing

detail when comparing well-performing systems. Best detec-

tor performance in the DET space is represented by the point

in the lower left corner of DET plots, where the PMD is

0.05% and the PFA is also 0.05%. The point in upper right

corner of the plot represents no skill in the detector.

A. Simulations comparing detector performance

In addition to the entropy method described by Erbe and

King, two types of energy detectors were included in the

analysis. Detector E(1) is defined as a simple energy sum

over the frequency range of 150–1800 Hz, which is the

equivalent to Nuttall’s power-law processor described in

Eq. (2) with �¼ 1. Assuming an approximate duration of the

signal is known, E(1) can be enhanced by using a split

window approach.25 Detector E(2) represents this modified

approach, as indicated in Eq. (34). For most units, E(2)

performs optimally when the number of signal snapshots m0

corresponds to one-third the signal duration and the number

of background snapshots M spans 20 s.

E
ð2Þ
j ¼

Xm0

m¼�m0

E
ð1Þ
jþm

XM

m¼�M

E
ð1Þ
jþm �

Xm0

m¼�m0

E
ð1Þ
jþm

: (34)

The value of m0 was adjusted for each unit type during the

Monte Carlo simulations, but in practice a single m0 value

would likely be chosen. Additionally, closely spaced call

units were not in the simulations, allowing E(2) to perform at

its best. Nuttall’s power-law processor T(X) was included in

the analysis with an exponent �¼ 3, which was found to be

the optimal exponent for the simulations. Simulations for

GPL were conducted with and without the parameter metric

enhancements Tg*(X).

To minimize the influence of the whitener, both energy

methods and the entropy method used the conditional whit-

ener prescribed in Eqs. (10) and (11), as it increased per-

formance for all three methods. The conditional whitener

was not used with Nuttall’s original power-law processor as

it decreased performance.

For each of the detectors, Monte Carlo simulations were

conducted for all six unit types in Fig. 6, with SNR ranging

from �10 to 10 dB, and noise cases 1-3. Based on examina-

tion of trained human analysts’ picks, a SNR of �3 dB cor-

responds to a human PMD of approximately 15% in case 1,

18% in case 2, and over 20% for case 3. The detector DET

statistics for units 1–6 were combined and are shown for

each detector in Fig. 7 with 10,000 trials for each unit, noise

condition and SNR. The GPL test statistic Tg(X) is shown in

preference to Tg*(X) to put all the detection algorithms on

an equal footing. In noise case 1, all detection methods meet

the inequality constraints in Eq. (5). In noise case 2, both

T(X) and Tg(X) meet the constraints. In noise case 3, only

Tg(X) satisfies the constraints. The DET statistics do not

address the stability of gthresh among noise conditions, which

is discussed further in succeeding sections. It is worth noting

that the performance of E(2) is susceptible to considerable

performance degradation when the short-term averaging du-

ration is not selected carefully. In wind-driven noise condi-

tions, it is found that a simple energy sum often has better

detector performance than E(2). However, in the presence of

shipping noise, detection method E(2) consistently outper-

formed E(1).

Table II summarizes the GPL threshold DET statistics

using the parameter enhancement Tg*(X) for all call units

and noise conditions over a range of SNR using the defined

value for gthresh. Threshold DET statistics are not provided

for the other detection techniques because they do not satisfy

the inequality constraints, and also establishing appropriate

threshold values is somewhat arbitrary. GPL had nearly per-

fect detection scores for all six unit types in all three noise

cases for SNR of 0 dB and higher. For SNR -2 dB, GPL had

PMD below 2% for all unit types and noise cases except unit

4. The majority of energy in unit 4 is contained within a very

FIG. 6. (Color online) Six humpback units used in Monte Carlo

simulations.
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narrow time interval of 0.3 s. Therefore unit 4 required

slightly higher SNR than the rest of the unit types to consis-

tently meet the minimum event duration requirement. It is

also worth noting that the DET statistics are better in cases 2

and 3 than case 1 in very low SNR conditions. Because SNR

is defined as the ratio of time-integrated squared pressure

band-limited between 150 and 1800 Hz, the low frequency

distribution of noise in cases 2 and 3 can allow for locally

higher SNR in the frequency bands in which the unit occurs

and results in an increase in detectability for very low SNR

units. In general, units with the shortest durations, lowest fre-

quencies, and units lacking frequency sweeps prove hardest

to detect using the GPL algorithm. This result is expected

because units at low SNR with very short duration may be

rejected for failing to meet sc. Low frequency units tend to

be more susceptible to masking by shipping, and monotone

units are more liable to be suppressed during normalization.

The first two weaknesses in detection are also shared by

human analysts, the third applies to GPL alone.

Humpback call analysts would like the ability to catego-

rize humpback song into types of units. To this end, Table II

will help provide guidelines for minimum SNR conditions

that should be met before the detector can reliably

detect all humpback units. The augmented model parameters

½H; gthresh; gnoise; sc� were found to be robust for 2 yr of data

analyzed at multiple locations throughout the southern Cali-

fornia Bight, the coast of Washington state, and Hawaii.

However, these values may need to be adjusted slightly if

ocean noise conditions change appreciably from the noise

recorded at these locations. Hydrophones located at shal-

lower depths, sea ice noise, and the presence of noise gener-

ated from oil exploration are some circumstances that may

warrant adjustments.

B. Simulations comparing power-law detectors to
trained human analysts

A second set of simulations was conducted to compare

the performance of Tg*(X) and Nuttall’s test statistic T(X)

with trained human analysts. Here, five additional humpback

units were included with the original six units shown in

Fig. 6 to prevent the operators from recognizing repeated

units. These 11 units were inserted into the 90-min record-

ings of cases 1–3 with varying SNR, totaling 220 units for

each of the three noise conditions. Each human analyst was

asked to identify all humpback units and was not told the

number, locations, or SNR of the signals present. The GPL

PMD values were calculated using the standard value of

gthresh, which was chosen so that PFA < Pmax
FA for the strong-

est shipping conditions. The results using this threshold,

shown in Table III, illustrate that the GPL algorithm was

FIG. 7. (Color online) DET results for units 1–6 with SNR �3 dB in noise

dominated by (a) wind-driven noise, (b) distant shipping, and (c) local ship-

ping, for GPL (closed circle), Nuttall (open triangle), entropy (asterisk), E(1)

(open circle), and E(2) (open square).

TABLE II. Probability of missed detection and probability of false alarm

(PMD/PFA, given as percentage) using gthresh for units 1–6, varying SNR and

noise cases, 10,000 trials per statistic.

SNR Noise Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

�6 dB Case 1 98.5/1.0 87.2/0.0 98.2/0.0 100/0.0 98.9/0.0 95.4/0.0

Case 2 87.9/4.8 77.7/4.7 84.0/4.9 94.7/4.5 78.8/4.1 89.6/4.5

Case 3 78.5/6.0 81.6/5.7 73.1/6.5 92.1/5.7 31.6/5.0 83.2/4.7

�4 dB Case 1 18.7/0.0 14.8/0.0 8.0/0.0 98.8/0.0 10.2/0.0 0.7/0.0

Case 2 21.5/5.2 10.6/4.5 1.9/4.7 92.7/3.8 0.4/4.2 16.7/4.6

Case 3 32.3/6.3 26.2/5.7 4.0/6.1 89.3/5.3 0.0/4.8 39.3/6.8

�2 dB Case 1 0.0/0.0 0.0/0.0 0.0/0.0 23.8/0.0 0.0/0.0 0.0/0.0

Case 2 0.1/5.0 0.1/4.3 0.0/4.9 47.0/4.1 0.0/4.2 0.2/4.8

Case 3 0.0/6.9 0.6/5.6 0.0/6.6 62.2/5.3 0.0/5.2 1.6/6.5

0 dB Case 1 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

Case 2 0.0/5.1 0.0/4.4 0.0/4.8 3.4/4.4 0.0/4.5 0.0/5.1

Case 3 0.0/6.3 0.0/5.3 0.0/6.7 0.0/5.5 0.0/5.0 0.0/6.4
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able to detect lower SNR signals slightly better than the

human analysts and performed roughly on a par with the

human analysts for higher SNR. Each operator was able to

improve their performance by reviewing the output of the

GPL detector.

For comparison purposes, Eq. (2) with �¼ 3 was

included in Table III to show the performance of a constant

threshold using Nuttall’s original power-law processor. A

threshold was chosen using the same construction as for

GPL, shown in Fig. 3, limiting the relative proportion of

false detections in case 3 to the same level. In doing so, the

PMD for cases 1 and 2 violate the constraints stated in Eqs.

(4) and (5) as humans were able to identify a significantly

higher number of units at low SNR. For this reason, Eq. (2)

is not further considered.

VI. PARAMETER ESTIMATION

In addition to detecting the presence or absence of a

humpback unit, it is often desired to mark the beginning and

end times of the humpback unit in the time series. If this can

be done automatically and accurately, then that unit can be

selected from the time series and passed to a classification

scheme that can measure additional metrics about the unit.

Even without further classification, unit timing parameters

are provided by GPL itself, providing useful statistics on call

rate, repetition, and both short-term and long-term calling

trends. Parameter estimation algorithms and human analysts

may provide different start and end time estimates for the

same call unit depending on the noise condition and SNR.

As SNR decreases, the edges of the unit may often be indis-

tinguishable from the noise, and so a human analyst or auto-

mated algorithm tends to mark a shorter unit duration at

lower SNR, even when the vocalizing source is producing a

unit with the same duration in both cases. Additionally, all

three detectors and human analysts are subject to the limita-

tions imposed by the STFT length and window overlap as

previously discussed. The bias and standard deviation in esti-

mating unit duration are documented in this section for the

GPL algorithm over a range of SNR, noise conditions, and

unit types. Using the same six unit types from the Monte

Carlo simulations, the units were inserted into the three noise

conditions with SNR varying from �4 to 10 dB, with 500 tri-

als per condition. For comparison, the two energy detectors

were also included in this analysis, where the unit duration

was marked by the time that passed in which the energy of

the unit was above threshold. This method is similar to that

used in ISHMAEL,9 in which the user is able to extract time

series segments for calls that pass the user-defined threshold.

For consistency in comparison with GPL, a threshold value

for the energy techniques was chosen in which on average

the PMD was 10% for call units 1–6 for noise case 1, with

SNR of �2 dB. For noise case 1, an SNR of �2 dB was suf-

ficiently high for a human to consistently and accurately

detect nearly all call units in the record. The threshold and

baseline values for marking call units with the GPL algo-

rithm remained consistent with those described in Sec. IV.

Table IV shows call duration parameters for units 1 and 3

with unit 1 representing the most error in parameter estima-

tion for GPL, while unit 3 represents typical performance.

The quantity Dts represents the bias of the estimated unit start

time in seconds from the true unit start time ðt̂s � ttrue
s Þ, rs rep-

resents the standard deviation of t̂s. Likewise, the quantity Dte
represents the bias in seconds of the unit end time estimate

(t̂e � ttrue
e ), and re represents the standard deviation for t̂e.

For units greater than 2 dB SNR in noise cases 1 and 2,

GPL is able to accurately measure start and end times, with

Dts and Dte at 0.09 s or smaller and both rs and re at 0.10 s

or smaller. The two energy methods are also fairly effective

at measuring these parameters at 2 dB or higher in noise

case 1. E(1) is not useful in either noise case 2 or 3 because

the threshold chosen for E(1) to work well in noise case 1 cre-

ates large overestimates when ship noise is present. While at

first glance E(2) appears to also work well in noise cases 2

and 3, using the threshold optimized for noise case 1 results

in many false alarms. Raising the threshold reduces PFA, but

unit durations are then drastically underestimated and the

standard deviation is large.

VII. OBSERVATIONAL RESULTS

The performance of GPL using Tg*(X) was established

for three HARP deployments with varying humpback unit

structure, SNR, depth, and noise conditions. Although the

entropy detector, Nuttall’s original power-law processor, and

the energy methods violate the constraints in Eq. (5), E(1)

and E(2) were included in the observational results because

of their prevalence in marine mammal detection software.

Twenty hours of acoustic recordings were first examined by

trained human analysts, and humpback call units were identi-

fied for each of three locations off the California coast. Addi-

tionally, operators reviewed the detections produced by GPL

and energy-based methods to include any units first missed

by the operators but captured by the detectors. Unlike the

Monte Carlo simulations where the humpback unit locations

are known regardless of signal strength, in the observational

data, the locations of humpback units are only known within

the detection ability of a trained operator. This operator-

derived information was used as ground truth. As in the

Monte Carlo simulations, binary hypothesis test metrics are

TABLE III. Probability of missed detection (PMD, given as a percentage)

for GPL versus baseline power-law detector (Nuttall) and human analysts

for varying SNR. Detector threshold values were established such that Case

3 PFA< 6% and applied to cases 1 and 2.

SNR �6 dB �4 dB �2 dB 0 dB

Case 1 GPL 74.6 10.9 10.9 0.0

Nuttall 94.6 32.7 10.9 0.0

Analyst 1 74.6 21.8 12.7 3.6

Analyst 2 76.4 18.2 9.1 5.4

Case 2 GPL 60.0 14.6 12.7 7.3

Nuttall 81.8 41.8 14.6 7.3

Analyst 1 78.0 24.0 12.0 6.0

Analyst 2 81.9 27.3 10.9 7.3

Case 3 GPL 61.8 27.3 9.1 5.5

Nuttall 61.8 29.1 7.3 3.6

Analyst 1 84.0 48.0 14.0 14.0

Analyst 2 56.4 23.7 7.3 3.7
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used to evaluate the detector performances. An observation

interval of 3 s is used for determining the detector output.

Specifically, the maximum value of each detector output is

recorded in a 3 s window surrounding each known hump-

back unit. The portions of the acoustic record that contained

only noise are also broken into 3 s observation windows.

The maximum detector output is recorded for each noise ob-

servation window using the same method as the signal-

present windows. DET curves were produced for each of the

three HARP deployments for GPL, E(1), and E(2).

Site SurRidge is 50 km southwest of Monterey, and the

recording package is at a depth of 1386 m. Site B, located

inside the Santa Barbara shipping channel, is 25 km north of

Santa Rosa Island and the recording package is at a depth of

580 m. Site N is located 50 km southwest of San Clemente

Island and contains a recording package at a depth of 750 m.

Figure 8(a) shows the DET curves for 20 h of duty

cycled acoustic recordings at site SurRidge spanning January

26–28, 2008. The analysis period contains 1041 humpback

call units with most units categorized as low SNR with few

identifiable harmonics. Local shipping noise is dominant

during 14% of the record, distant shipping is dominant dur-

ing 62% of the record, and wind-driven noise is dominant

during 24% of the record. Both E(1) and E(2) perform poorly

during this period, with E(1) performing worse than E(2). The

GPL algorithm performs reasonably well and is able to

detect all the units marked by the operator with a 4% PFA.

Figure 8(b) shows the DET curves for 20 h of duty

cycled recordings at site B spanning April 16–18, 2008. The

analysis period contains 4546 humpback call units with most

units categorized as moderate SNR with occasional calling

bouts with high SNR. Local shipping noise is dominant

during 36% of the record, distant shipping is dominant

during 59% of the record, and wind-driven noise is dominant

during 5% of the record. Both E(1) and E(2) perform poorly

during this period with E(1) performing worse than E(2). The

GPL algorithm performs well and is able to detect all the

units marked by the operator with just over 2% PFA.

Figure 8(c) shows the DET curves for 20 h of continu-

ous recordings at site N spanning December 6–7, 2009. The

analysis period contains 15 450 humpback call units with

most units categorized as high SNR containing many har-

monics with occasional calling at low SNR. Local shipping

noise is dominant during 15% of the record, distant shipping

is dominant during 23% of the record, and wind-driven noise

is dominant during 62% of the record. The detector E(1) per-

forms better than E(2) in this scenario, which can be attrib-

uted to the extremely high call rate for this recording.

Because E(2) uses a short-term average compared with a

long-term average, units in close proximity often decrease

the detector output. Because the GPL algorithm uses an iter-

ative strategy in determining units, it is less affected by high

calling rates. Therefore the GPL algorithm outperforms E(1)

and E(2) by a wide margin in this environment, detecting

every unit marked by the operator with just over 0.5% PFA.

Each deployment contains a handful of questionable

humpback signals. When the questionable signals are included

as units, the PMD becomes nonzero but remains 2% or less for

each deployment.

At first glance, the steep vertical slope of the DET curve

for GPL performance in Fig. 8 can lead to the conclusion of an

unstable detection threshold because a seemingly small change

in PFA appears to have a large effect on PMD. The reason for

this steep slope is twofold: Using the statistic Tg*(X) instead of

Tg(X) enhances the non-Gaussian distribution of the test statis-

tic, as shown in the histogram in Fig. 9. Here one can see that a

TABLE IV. Start-time bias Dts, end time bias Dte, start time standard deviation rs, and end time stand deviation re in seconds for unit 1 (duration; 3.34 s) and

unit 3 (duration; 1.3 s).

Noise case 1 Noise case 2 Noise case 3

Unit 1 Type Dts rs Dte re Dts rs Dte re Dts rs Dte re

�2 dB E1 �1.38 0.63 �0.62 0.50 �0.78 2.27 �0.66 3.65 22.22 21.41 23.83 22.33

E2 �1.00 0.41 �0.71 0.27 �0.96 0.55 �0.84 0.54 �1.00 0.71 �0.85 0.69

GPL �0.34 0.08 �0.02 0.06 �0.35 0.17 �0.16 0.33 �0.34 0.20 �0.19 0.28

0 dB E1 �0.49 0.21 �0.23 0.10 �0.48 3.48 0.14 3.29 22.71 21.92 23.43 22.26

E2 �0.43 0.06 �0.39 0.06 �0.46 0.22 �0.43 0.23 �0.50 0.35 �0.44 0.32

GPL �0.21 0.10 0.01 0.03 �0.21 0.14 �0.02 0.11 �0.22 0.14 �0.02 0.11

2 dB E1 �0.31 0.10 �0.15 0.03 0.29 3.54 0.63 3.84 20.63 20.64 25.36 23.06

E2 �0.28 0.04 �0.23 0.04 �0.29 0.10 �0.25 0.09 �0.29 0.15 �0.25 0.15

GPL �0.09 0.05 0.03 0.03 �0.09 0.10 0.02 0.08 �0.09 0.09 0.03 0.10

Unit 3 Type Dts rs Dte re Dts rs Dte re Dts rs Dte re

�2 dB E1 �0.46 0.21 �0.36 0.16 0.26 3.63 0.34 4.28 23.04 22.36 23.95 23.18

E2 �0.39 0.15 �0.47 0.19 �0.36 0.22 �0.41 0.18 �0.33 0.32 �0.36 0.33

GPL �0.01 0.05 0.01 0.04 0.02 0.16 0.04 0.15 0.00 0.12 0.05 0.13

0 dB E1 �0.20 0.09 �0.20 0.04 0.43 4.31 0.59 4.49 22.46 22.62 22.58 22.58

E2 �0.22 0.09 �0.29 0.06 �0.21 0.19 �0.29 0.14 �0.21 0.24 �0.29 0.23

GPL 0.03 0.04 0.05 0.04 0.06 0.31 0.09 0.41 0.06 0.11 0.07 0.12

2 dB E1 �0.11 0.03 �0.15 0.03 0.52 3.64 0.28 2.51 24.15 22.25 23.70 22.14

E2 �0.07 0.05 �0.21 0.03 �0.08 0.10 �0.21 0.06 �0.09 0.18 �0.20 0.18

GPL 0.06 0.04 0.07 0.03 0.07 0.08 0.08 0.06 0.08 0.11 0.10 0.12
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vast majority of events have detector output values of zero

because detections that do not meet the sc duration requirement

are forced to zero. This binary decision within the GPL logic

creates a sharp but stable elbow in the DET curve. Addition-

ally, low SNR units that would have received low values of

Tg*(X) were not identified by human analysts, which also alters

the shape of the DET curves as compared to Fig. 7.

To evaluate the stability in the GPL threshold value

among the three HARP deployments, the PFA and PMD are

calculated using the standard threshold of gthresh¼ 2.62� 10�4.

Site SurRidge had PFA¼ 3.7% and PMD¼ 0%, site N had

PFA¼ 1.1% and PMD¼ 0%, and site B had PFA¼ 3.2% and

PMD¼ 0%. These results suggest that the chosen value of

gthresh is both a stable and a sensible choice for all three

HARP deployments despite varying signal and noise condi-

tions. Undoubtedly, the GPL algorithm misses some hump-

back units that occurred in these records. However, because

human analysts are used to establish a ground truth of hump-

back unit occurrences, the low PMD values verify that the

GPL algorithm is able to find nearly all units that could be

verified by human analysts.

VIII. CONCLUSIONS

The generalized power-law processor outperforms

energy detection techniques for finding humpback vocaliza-

tions in the presence of shipping noise and wind-generated

noise in the southern California Bight. The normalization

over both frequency and time permits fixed thresholds that

can be used throughout long deployments having varying

ocean noise conditions. The algorithm capitalizes on basic

parameters of the signal and noise environments yet remains

general enough to capture all types of humpback units with-

out the need for predefined templates. The detector is

designed to capture all humpback units that are detectable by

trained human analysts, while maintaining a low probability

of false alarms. The detector performance was verified by

inserting humpback units with varying SNR into three noise

conditions and comparing the detector output to that of two

trained operators. Additionally, the GPL algorithm is able to

detect nearly all humpback units previously identified by

human analysts in three different deployments off the coast

of California with a result of PFA¼ 3.7% or better. This per-

formance allows a human analyst to review a much smaller

subset of data when looking for humpback units.

Once the periods of data containing humpback units have

been identified, basic call parameters such as unit duration,

center frequency, number of units, and inter-call interval can

be automatically tabulated. The GPL process provides consid-

erably more detail than basic presence/absence metrics to

FIG. 8. (Color online) DET results for HARP deployments at (a) Site Sur-

Ridge, (b) Site B, and (c) Site N for GPL (closed circle), energy sums E(1)

(open circle), and E(2) (open square).

FIG. 9. (Color online) Normalized histogram of detector outputs for signal

and signalþ noise for Site N deployment.
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which human analysis is typically restricted, owing to the

labor intensive nature of manually selecting individual units.

Parameter estimation performance obtained from simulations

show that GPL commonly yields precision of 0.1 s or less for

estimating the beginning and end of a unit for reasonable

SNR under all but heavy shipping noise. By contrast, meas-

uring unit duration parameters using energy detection techni-

ques proved unfeasible except in high SNR situations.

Although the analysis here has focused on algorithm settings

tuned to the specific characteristics of humpback vocaliza-

tions, the GPL algorithm has in fact the potential to be

modified for many types of marine mammal vocalizations and

is likely to prove useful as a precursor to classification

techniques.
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APPENDIX: MATHEMATICAL DETAILS

The numerator in Eq. (14) has a pdf of v2
K�1ðzÞ and the

denominator v2
2ðzÞ so the quantity X/(K�1) is thus an F-dis-

tribution of the form

fXðxÞ ¼
ðK � 1Þx

1þ ðK � 1Þx

	 
K�2 K � 1

1þ ðK � 1Þx

	 
2

: (A1)

Observe that

PðY < yÞ ¼PðX > ðK � 1Þ�1ð1=y� 1ÞÞ
¼1� FXððK � 1Þ�1ð1=y� 1ÞÞ;

accordingly

fYðyÞ ¼
1

y2
fXððK � 1Þ�1ð1=y� 1ÞÞ

¼ ðK � 1Þð1� yÞK�2
(A2)

and therefore

FYðyÞ ¼ 1� ð1� yÞK�1:

With the statistics of entries in A thus characterized, it is log-

ical to try to extend this line of reasoning to the product form

of Eq. (6) by attempting first to reproduce the equivalent of

Eq. (15). For simplicity, consider J¼K and c¼ 1. Then the

reciprocal leads to a homogeneous form 1þZ1þ Z2 where

Z1 ¼

XK0
n¼1

jXn;jj2 þ
XK0
m¼1

jXk;mj2

jXk;jj2
;

Z2 ¼

XK0
n¼1

jXn;jj2
XK0
m¼1

jXk;mj2

jXk;jj4
: (A3)

The first term in Eq. (A4) is another F-distribution as in

Eq. (A1) but with K replaced by 2K. The difficulty comes

from the second term. For the second term, the pdfs for its

numerator and denominator are

ð2K � 3ÞzK�2

CðK � 1=2Þ2
K1ð2

ffiffi
z
p
Þ and

1

2
z�1=2e�z1=2

;

respectively, where K is the modified Bessel function of the

second kind. This ratio is not an F-distribution and appears

not to be characterized. Thus even for this first extension of

normalization beyond Eq. (13), immediate recourse to

asymptotic approximation is necessary.

Last, for the pdf governing Eq. (19), it is immediate on a

change of variable that

f
ðpÞ
Z ðzÞ ¼

2

pzðp�1Þ=p

ffiffiffi
p
p

=2þ
ffiffi
zp
p� �

e�
ffiffi
p
p

=2þ
ffiffi
zp
p

ð Þ2 ;

z > pp=2=2p; (A4)

and the symmetric combination f
ðpÞ
Z ðzÞ þ f

ðpÞ
Z ð�zÞ applies for

0� z�pp/2/2p to account for both roots in that interval.
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