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Abstract

Tonal vocalizations or whistles produced by many species of delphinids range
from simple tones to complex frequency contours. Whistle structure varies in
duration, frequency, and composition between delphinid species, as well as
between populations and individuals. Categorization of whistles may be
improved by decomposition of complex calls into simpler subunits, much like
the use of phonemes in classification of human speech. We identify a potential
whistle decomposition scheme and normalization process to facilitate comparison
of whistle subunits derived from tonal vocalizations of bottlenose dolphins (Tur-
siops truncatus), spinner dolphins (Stenella longirostris), and short-beaked common
dolphins (Delphinus delphis). Network analysis is then used to compare subunits
within the vocal corpus of each species. By processing whistles through a series
of steps including segmentation, normalization, and dynamic time warping, we
are able to automatically cluster selected subunits by shape, regardless of differ-
ences in absolute frequency or moderate differences in duration. Using the clus-
tered subunits, we demonstrate a preliminary species classification scheme based
on rates of subunit occurrence in vocal repertoires. This provides a potential
mechanism for comparing the structure of complex vocalizations within and
between species.

Key words: acoustic, classification, communication, delphinid, dynamic time
warping, network analysis, unsupervised learning, vocalization.

Many delphinid species produce complex, variable tonal calls or whistles, thought
to have a social function (Janik 2009). Whistles can consist of numerous rises and
falls with varying rates of change, inflection points, and even nonlinearities, e.g., Janik
et al. (1994), Azzolin et al. (2014) (Fig. 1). Whistle comparison and classification
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efforts are often hampered by this complexity. For instance, a pair of tonals may have
similar inflection points or structure, while other aspects including frequency or dura-
tion may differ. There is a need in odontocete vocalization research for a tonal descrip-
tion framework capable of summarizing whistle variability in a way that facilitates
shape and structural comparison for use in applications including inference of species
or individual identity, or animal behavior.
Traditional analyses of delphinid whistles summarize each call by reducing it to a

series of measured parameters. The earliest forms of this approach used maximum
and minimum frequency, duration, and start and end frequency to characterize del-
phinid vocal repertoires (Steiner 1981). This method does not capture information
regarding whistle frequency modulation or shape, despite the fact than human ana-
lysts (e.g., Simonis et al. 2012) often consider these to be important features. Tech-
niques subsequent to Steiner attempt to take whistle shape into account, such as
Buck and Tyack’s (1993) use of dynamic time warping (DTW, Rabiner and Juang
1993), a nonlinear technique to time-align similar vocalizations. McCowan (1995)
also captured shape changes over time, by computing correlation coefficients along
whistle frequency contours. These techniques improve the ability to compare tonals
on the basis of shape, but do not improve the classification of more complex whistles.
Recently, techniques have been developed to simplify whistles further while pre-

serving shape information using space transformations, such as rescaling, normaliza-
tion, and other linear transformations (e.g., Kershenbaum et al. 2013). Deecke and
Janik (2006) transformed whistles into log space, because the ability of delphinids to
discriminate between frequencies has been shown to decrease with rising pitch
(Thompson and Herman 1975, Supin and Popov 2000). Deecke and Janik (2006)
also showed that unsupervised learning methods could be used to group similarly
shaped whistles within a relatively small data set (n = 104). However, when applied
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Figure 1. Spectrogram representation of whistles (dark, sweeping lines), echolocation clicks
(vertical lines), and burst pulses (rapid echolocation clicks that produce spectral banding) pro-
duced by a pod of short-beaked common dolphins.
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to larger whistle sets, the number of categories identified was too great for effective
clustering.2

An alternative to analyzing entire whistles is to split these complex signals into a
series of simpler subunits. A rough analogy from the field of human speech classifica-
tion is the practice of breaking words into a series of phonemes to facilitate recogni-
tion (Watrous and Shastri 1987). Like phonemes, whistle subunits are simple and
more easily characterized than entire whistles, and a relatively small number of sub-
units can be combined in different sequences to create a wide variety of signals.
Recent work on killer whale vocalizations identified common subunits across whis-
tle-like calls and sought to characterize each call as a series of these subunits (Shapiro
et al. 2011). There is a growing body of evidence that numerous species compose
complex acoustic sequences from simpler subunits (see Kershenbaum et al. 2014 for
a review).
The representation of whistles as series of subunits presents the possibility of

applying methods used in human speech recognition to acoustic marine mammal
classification. Examples of how sequences of speech subunits have been used for iden-
tifying characteristics related to humans includes language identification based on
similarity to language-specific phoneme models (e.g., Lamel and Gauvain 1994) and
the identification of individuals based on prosodic features such as how often people
use specific phrases (Doddington 2001). Similarly, a basic form of a subunit-based
whistle classifier might try to distinguish species based on the relative occurrence of
certain types of subunits in a vocal repertoire. A more complex classifier might build
on this strategy by incorporating information about the order in which subunits
occur, and other additional features of the subunits.
The goals of this work are (1) to identify a set of convenient and easily identifiable

subunits within recorded delphinid whistles, (2) to develop an approach for cluster-
ing these subunits according to type, and (3) to demonstrate the potential of subunits
as a starting point for whistle-based acoustic classification of delphinids. This work
makes use of an annotated corpus of whistles developed for whistle detection algo-
rithms. The whistles from three delphinid species are examined: Short-beaked com-
mon dolphin (Delphinus delphis), spinner dolphin (Stenella longirostris), and bottlenose
dolphin (Tursiops truncatus). Having identified whistle subunits within the corpus, we
ask whether the automated clustering method produces reliable results by comparing
the output to randomized clusters of species-specific subunits. To illustrate the poten-
tial of subunit-based analyses, we report preliminary species classification results
based solely on the relative occurrence of subunit types. Our analyses suggest that this
approach can be used to characterize and compare whistles automatically across large
data sets on the basis of shape.

Methods

Data Collection and Whistle Extraction

Tonal contours were extracted from acoustic recordings compiled as part of the
conference data set associated with the 5th International Workshop on Detection,
Classification, Localization, and Density Estimation of Marine Mammals Using

2Personal communication from Vincent M. Janik, Scottish Oceans Institute, East Sands, University of
St. Andrews, St. Andrews, Fife KY16 8LB, U.K., 13 June 2013.
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Passive Acoustic Monitoring (Roch et al. 2011), available on MobySound (Mellinger
and Clark 2006). Contours from short-beaked common dolphin, spinner dolphin and
bottlenose dolphin were included in this work because of the availability and quality
of labeled recordings for these species. Signals were detected automatically using the
contour detector Silbido (Roch et al. 2011). An analyst manually corrected false detec-
tions (e.g., echo sounder pings), incorrectly linked contours, and artificial tonal seg-
mentation. This process generated a corpus (vocal data set) for each species consisting
of paired time and frequency vectors describing the detected tonals. Signals with a
maximum frequency above 30 kHz or a minimum frequency above 20 kHz were
excluded from the corpus, to limit the inclusion of harmonics. Minimum signal dura-
tion required for consideration was 40 ms, below which signals lacked useful infor-
mation (see Subunit Identification and Normalization below). All analyses were
conducted using the Matlab programming environment (MATLAB version
8.0.0.783 2012, The Mathworks, Inc., Natick, MA).

Subunit Identification and Normalization

Each extracted tonal was smoothed with a Hermite cubic interpolating spline eval-
uated at 2 ms intervals (Matlab pchip, Fritsch and Carlson 1980), equivalent to a
whistle contour sampling rate of 500 Hz. This removed any gaps associated with the
detection process and smoothed small variations out of the contour, leaving a general-
ized shape.
Segmentation of the tonals into subunits requires the choice of a logical delimiter;

in this case frequency maxima and minima (extrema) were selected (Fig. 2.; see
Fig. S1, S2 for plots of subunits per whistle for each species). This choice is supported
by experimental evidence that bottlenose dolphins have been shown to strongly dis-
criminate between ascending and descending frequency contours (Ralston and Her-
man 1995). Inflection points along the contours were also considered as possible
segment delimiters, but the ability to identify the exact location of inflection points
was less robust.
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Figure 2. Example of a common dolphin whistle (black line), interpolated and resampled at
500 Hz, with subunit boundaries indicated by empty circles. Subunit boundaries were located
at frequency extrema, and at whistle start and end points.
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The set of extrema positions E~ of the interpolated tonal were identified by locating
the zeros of the first derivative of the interpolated tonal with respect to time (t).

E~ ¼ t :
dTI

dt
¼ 0

� �
ð1Þ

A vector of boundaries B~ between subunits S was generated by adding whistle start
and end points to the set of extrema:

B~¼ ½1; E~; lengthðTIÞ� ð2Þ
Subunit S~n within tonal T was defined as the whistle frequency contour between

time indices B(n) and B(n + 1). For simplicity, we will frequently omit the subscript
n and will write S~with the implication that it refers to a specific subunit.
After segmentation, subunits shorter than 20 ms were excluded from further analy-

ses, because they contained too few data points (<10) to be informative. The first
derivative of each remaining subunit S was computed, and a feature vector F~S for each
subunit consisting of frequency and first derivative was stored for further analysis.

F~S ¼ ðS~; dS~Þ ð3Þ
The sampling rate was constant for all tonals after interpolation, therefore temporal

information was not retained.
Frequency transformations were applied to subunits to improve shape-based com-

parability by normalizing bandwidth. Each subunit frequency vector was natural log-
transformed, and then normalized using a z-score transformation Z~fS (Kreyszig
1979):

f~S ¼ lnðF~SÞ ð4Þ

Z~fS ¼
f~S � lfS

rfS
ð5Þ

The terms lfS and rfS represent the mean and standard deviation of f~S, respec-
tively.
First derivatives of the subunit frequency vectors were also normalized using a

modified z-score transformation (Z~dS )

Z~dS ¼
dS
rS

ð6Þ

where dS is the first derivative of fS, and is the standard deviation of dS. The mean sub-
traction was omitted from Equation 6 to preserve the sign of the derivative.

Warping and Distance Calculation

Pairs of subunits, Si and Sj, were compared using a DTW algorithm (Myers et al.
1980), where i and j = 1,. . .,n, and n is the number of subunits in the corpus. DTW
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is based on the idea that two subunits may have similar shapes, but different dura-
tions. The DTW algorithm attempts to nonlinearly align pairs of feature vectors i
and j such that the distortion between them is minimized. Constraints on this DTW
algorithm ensure that the two sets of feature vectors are not time-reversed or
expanded/compressed in unreasonable ways. A mathematical treatment of this algo-
rithm can be found in Rabiner and Juang (1993, pp. 200–226).
An example alignment is shown in Fig. 3. The lower panel shows a heat map with

the cumulative cost of associating any two feature vectors in subunits S1 and S2. Areas
that are overly expanded or compressed have infinite warp distance costs and can be
seen as the area outside the parallelogram. The DTW algorithm efficiently computes
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Figure 3. Dynamic time warping of a pair of whistle subunits, Si and Sj. Top: original (left)
and warped (right) z-score of frequency contours. Center: original (left) and warped (right) z-
score of first derivatives of frequency. Bottom: cumulative feature vector distortion (grayscale)
along the best warp path (white line) between the two components.
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this map by examining pairs of feature vectors s1 and s2 and then searching for previ-
ously computed partial alignments that could lead to the current pair. The search
uses local constraints (Type V, Rabiner and Juang 1993, p. 223) to limit the possible
candidates such that unreasonable matches are not proposed. The Euclidean distance
at the current point is added to the cumulative distance of the best preceding candi-
date. When the program terminates, there is a cumulative measure of how much the
two subunits differed along the best path (white path in lower panel of Fig. 3). This
process was repeated for each pair of subunits.
The feature vectors consist of the normalized frequencies and time derivatives

(Z~fS ;Z~dS ). The use of both frequency and first derivative in the warping scheme
required that the warp algorithm optimize the alignment between subunits both in
terms of magnitude and slope. While the slope information can be inferred from the
frequencies, the DTW algorithm compares sampled points of the frequency contour;
without explicit information, the algorithm could not tell the difference between two
close points that have the same or opposite trends. The upper panels of Figure 3 show
the normalized frequency and frequency derivative for a sample pair of subunits. The
left panels show the signals prior to warping, while the right panels show the align-
ment of the signals according to the optimal warp path.
Warp costs were normalized by warped path length to remove the inherent penalty

on long subunits. Subunit pairs in which one member was greater than three times
longer than the other were not warped, and were instead assigned an infinite warp
cost. The output of the distance calculation process for each species consisted of a set
of length-normalized warp distances DSiSj between subunit pairs.

Clustering

The clustering process expresses the relationships between subunits as a network in
which each node represents a subunit, and weighted edges (linkages) indicate the
similarity between subunits. Networks can be constructed for individual species or
populations to examine subunit characteristics of the species or group. Alternatively,
networks can be constructed from data pooled across multiple species, to examine
general trends. In this section, preliminary experiments looked at species-specific sub-
units, therefore networks were constructed on a per species basis. Later, in a classifica-
tion experiment (see Classification below), we will construct a network using data
from multiple species.
Within a network, a high linkage weight indicates strong similarity between a pair

of subunits. Since the warp distortion computed via DTW is a measure of dissimilar-
ity, we used a sigmoid function to map the distortion to a unitless linkage weight
over the interval [0, 1] indicating a poor to perfect correspondence after warping:

WSiSj ¼ expð�DSiSjÞ ð7Þ

Linkage pruning threshold (p) choices from 0.1 to 0.9 were tested, such that link-
ages with weights less than p were removed from the network, in order to examine
the effect of network pruning (Zhou et al. 2012) on clustering results.
A modularity-based network analysis algorithm (Blondel et al. 2008) implemented

in the network visualization package Gephi Toolkit (Bastian et al. 2009), was used to
partition the network into clusters of closely related nodes. The modularity calcula-
tion is based on the idea that a good partitioning of a network is one in which edges
linking nodes within the same cluster are strong, while edges linking outward to
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nodes in other clusters are weak (Newman 2006). Accordingly, the modularity Q of a
network partition is a value between –1 and 1 that represents the strength or weights
of the edges within clusters compared to the weights of the edges between clusters.
Mathematically, modularity (Newman 2004) is defined for a network of n nodes as

Q ¼ 1

u

Xn
i;j

Wij � 1

m

kikj
u

� �
dðci; cjÞ ð8Þ

where ki = ∑jWij is the sum of the weights of the edges from all nodes j attached to
node i, kj = ∑iWij is the sum of the weights of the edges from all nodes i attached to
node j, and u = ∑ijWij is the sum of all edge weights in the network. In the delta
function d(ci,cj), ci and cj represent the cluster to which nodes i and j have been
assigned. If ci and cj are equal, then d(ci,cj) = 1, otherwise it is zero. A resolution coeffi-
cient m, added in later formulations (Lambiotte et al. 2008, Mucha et al. 2010),
defaults to unity but can be adjusted as discussed below.
The best partition of a network is taken to be one that maximizes Q. In the imple-

mentation used here (Louvain method, Blondel et al. 2008), each node (i.e., each sub-
unit) is initially assigned to its own cluster. Clusters are iteratively merged if doing
so increases Q. Iterations cease when no further merges can increase Q. The resolution
coefficient m can be used to adjust clustering resolution and influence the number of
modules identified (Lambiotte et al. 2008, Mucha et al. 2010). A value of m greater
than one increases the positive effect of merging clusters on Q, thus favoring the iden-
tification of fewer, larger clusters. A value of m less than one decreases the positive
effect of cluster merging on Q, thereby favoring the formation of more numerous,
smaller clusters. Network partitions were generated using a range of resolution coeffi-
cients between 0.25 and 2 to illustrate the effects of this parameter choice. Clusters
containing fewer than ten nodes were ignored.

Cluster Consistency

Clustering algorithms that provide radically different clusters for very similar data
are not particularly useful. Consequently, we examine methods that subsample the
subunits repeatedly, cluster them and examine how often specific pairs of subunits
appearing in two subsamples are clustered together or appear in different clusters.
When subunits tend to be kept in the same or different clusters across many different
trials, the clustering is said to be consistent (Strehl and Ghosh 2003). High consis-
tency indicates that the clusters retain similar structure across random samples
despite variation in the subunits that were clustered. A detailed explanation of this
process is given below.
Assume that two random subsamples of subunits, Sa and Sb, have been partitioned

into sets of clusters, Pa and Pb, respectively (Fig. 4). Partition Pa consists of a set of ka
clusters, where nai denotes the number of subunits in cluster i for i = 1,. . .,ka. Simi-
larly, Pb consists of a set of kb clusters, where n

b
j denotes the number of subunits in

cluster j for 1,. . .,kb. The number of subunits common to cluster i in Pa and j in Pb is
denoted as nabij .
Cluster consistency was quantified using normalized mutual information (NMI,

Strehl and Ghosh 2003), an information theory metric that is indicative of clustering
sensitivity to changes in the data set. Given partitions Pa and Pb, the NMI was com-
puted as
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NMIðPa; PbÞ ¼
�2

Pka
i¼1

Pkb
j¼1 n

ab
ij log

nabij �n
nai �nbj

� �

Pka
i¼1 log

nai
n

� �
þPkb

j¼1 log
nbj
n

� � ð9Þ

where the numerator measures the number of clusters with similar composition
between the two partitions, normalized by the total number of subunits in the respec-
tive clusters. The denominator represents the entropy of each partitioning (see Strehl
and Ghosh 2003 for a full derivation of Eq. 9). NMI has a maximal value of one
when for each cluster of subunits in Pa, there is a cluster containing the identical set
of subunits in Pb (Fig. 4). NMI has a minimal value of zero when there is no cluster
consistency between the partitions. The treatment of n, the number of nodes in a par-
tition, is explained below.
In our implementation, Pa and Pb were constructed for species x by selecting and

clustering 100 different bootstrap samples (randomized with replacement) of 70% of
the subunits in species x’s corpus. We then computed the mean and standard devia-
tion of NMI between pairs of these bootstrapped partitions.
While a high NMI indicates that partitions are consistent, it does not guarantee

that meaningful structure has been captured. A common method to demonstrate that
some type of structure has been learned is to compare the mean NMI to that of
partitions that were constructed by random assignment of items to clusters (Fred and

P1

P4P3

P2

n 1  1  = 10 = 101 n 1  1  = 7 = 72

n 1  1  = 8 = 84n 1  1  = 9 = 93

n 2  2  = 10 = 103 n 2  2  = 9 = 94

n 2  2  = 9 = 91 n 2  2  = 9 = 92

Figure 4. Four possible partitions (P1–4) of randomly selected whistle subunits. In each
partition there are blue and green clusters of subunits along with a set of components that were
not clustered (black). Counts in the form are given for blue and green clusters. Two specific
subunits (denoted with a star and triangle) appear in each set of randomly selected data. The
fact that these two subunits are clustered together in both partitions 1 and 2 would contribute
positively to the normalized mutual information (NMI) of the two partitions. These same sub-
units would contribute to lowering the NMI when comparing P1 to P3 or P1 to P4, as the star
and triangle are either in different clusters (P3) or at least one subunit was unclustered (trian-
gle in P4), rather than together. Partitions are synthetic for illustrative purposes.
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Jain 2005). For comparison with the clustering results, each bootstrap sample was
repartitioned such that the number of clusters and their sizes remained the same but
subunits were randomly assigned to clusters. The mean NMI of the cluster-based
partitions was compared to the mean NMI of the randomized partitions (NMIR). If
the clustering algorithm is consistently learning the structure of the subunits, one
would expect the NMI to be higher than that associated with randomly assigned
clusters.
Not all whistle subunits are clustered, and thus our partition sets are likely to be a

subset of the random sample. This leads to multiple possible interpretations for n.
One interpretation for n is the number of whistle subunits that were selected in both
partitions and clustered:

j \ [aePaa;[bePbbð Þj ð10Þ
where [aePa denotes the set of all subunits in subset a that were included in a cluster
of Pa, and |–| indicates that we are looking for the number of common subunits found
in both partitions of the subunits: Pa and Pb.
Alternatively, n could represent the number of whistle subunits that appear in both

subsets, Sa and Sb, regardless of whether or not they were assigned to clusters:

j \ ða : a 2 SaÞ; ðb : b 2 ScÞ½ �j ð11Þ
We compute NMI for both interpretations, with the former, NMIP, providing

information about the consistency of nodes within the cluster partition, and the latter,
NMIS, providing an overall measure of consistency of the random subset. It is expected
that NMIP ≥NMIS as the n used for NMIS penalizes the NMI for unclustered whistle
subunits.
With this methodology in place, multiple trials were run while varying the prun-

ing (p) and resolution (m) clustering parameters. Parameter choices were varied inde-
pendently across trials. Each trial consisted of 100 random subsets of whistle
subunits, with 100 partitions generated. The NMI statistics were calculated from the
100
2

� �
= 4,950 possible pairwise combinations of these 100 subsets.

Classification

Clusters can have many applications for classification, most of which are beyond
the scope of this paper. To demonstrate that the clusters do contain information that
is relevant to classification, a trivial classifier was implemented to demonstrate the
use of component type in species classification applications. Rather than clustering
subunits from single species, all cross-species subunits are pooled and clustered. A
cluster C can be defined as a set of subunits Sik

C ¼ ðSik; i ¼ 1; . . .; nk; k ¼ 1; . . .;xÞ ð12Þ
where nk is the number of subunits in C associated with species k and x is the num-
ber of species in the corpus.
For each cluster, a prior probability distribution P that a given subunit is gener-

ated by species x is estimated by:
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PðkjCÞ ¼ nk
nC

ð13Þ
where nC is the total number of subunits in cluster C.
Classification decisions are made on groups of subunits with the assumption that

all subunits within the group are generated by a single species. Each subunit is
associated with a cluster via a nearest neighbor learning rule (Hastie et al. 2009, pp.
463–468). Assignment of a group of subunits to species is based on the joint proba-
bility of the cluster-specific prior distributions. Details on the methods follow below.
Training—To determine sensitivity of the classification results to training data, a

modified bootstrap procedure evaluated 50 executions of a randomized three-fold
cross validation experiment (Roch et al. 2015). To ensure independence of training
and test data, folds were constructed such that all subunits form a single acoustic
encounter with a group of animals were placed in a single fold. For each bootstrap
experiment, encounters were randomly assigned to each of the three folds in a bal-
anced manner. Three sets of models were created, holding back one fold for testing
each time. Within the training folds, a bootstrap sample (randomized with replace-
ment) of 75% of the subunits for each species were selected. The selected training
subunits for all species were combined into one set, which was clustered using the
previously described algorithm. Resulting clusters could contain subunits from mul-
tiple species (Fig. 5). Subunit probabilities were computed for each species according
to Equation 13.
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Figure 5. Example training set in which subunits from all training species are clustered as one
set. In the square panels, normalized subunits (curved lines) associated with each training cluster
are color-coded according to species. Blue: bottlenose dolphin, red: short-beaked common dol-
phin, green: spinner dolphin. A pie chart below each panel indicates the percentage of subunits
in the training cluster associated with each species. These ratios are used to estimate the probabil-
ity that a test subunit resembling a particular cluster is associated with each training species.
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Testing—Classification of a set of subunits consisted of finding the cluster associ-
ated with each subunit by nearest neighbor search and then considering the probabil-
ity that the cluster was produced by a specific species. The joint probabilities of the
entire set belonging to a specific species were evaluated and the species hypothesis
producing the highest joint probability was selected.
The nearest neighbor search assigned cluster labels to test subunits by selecting the

cluster with a minimum mean similarity lC measure between a test subunit Si, and
the subunits Sj(j = 1,. . .,nC) in training cluster C:

lC ¼ 1

nC

X
Sj2C

DTWðSi; SjÞ ð14Þ

where DTW denotes the dynamic time warping distance. Subunit pairs with an infi-
nite warp distance were assigned a similarity of zero. Subunit Si was assigned to the
cluster for which lC was highest, and was assigned a probability of belonging to each
of the training species based on the probabilities associated with that cluster. Classifi-
cation decisions were made on groups of 100 sequential subunits. A simplifying
assumption was made to treat the subunits as if they were independent, permitting
easy computation of the joint probability that the group was produced by species x:

log PðxjSÞ ¼
X100
i¼1

logfP½xjNNðSiÞ�g ð15Þ

where NN(Si) denotes the cluster associated with subunit Si by nearest neighbor
search. Species assignment for the group of subunits was based on the maximum joint
probability of Equation 15:

argmax
ðx 2 speciesÞ log pðxjSÞ

Results

Corpus size varied between species according to the amount of recorded data con-
taining detectable vocalizations, with spinner dolphin data having the smallest sam-
ple size (Table 1). In all cases, the mean number of components per whistle was
biased toward a single component. The number of subunits per encounter varied from
123 to 2,055.

Clustering

Clustering results varied between trials in response to the combined effects of the
clustering parameters m and p (Table 2, Fig. 6). Higher pruning values of p were gen-
erally correlated with increased NMI for both clustered and randomized partitions.
Increased p also decreased the percentage of nodes retained in clusters, which accounts
for the moderate effect of pruning threshold on the NMI metric that ignores unclus-
tered subunits (NMIS) compared to the stronger effect seen on the NMI metric that
penalizes unclustered subunits (NMIP). The effect of counting nonclustered nodes
against cluster consistency scores was to reduce NMIS relative to NMIP. Both resolu-
tion m and pruning p affected the number of clusters per partition; as expected, lower
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values of m favored the formation of more clusters, as did higher values of p. In
general, NMI was maximized at high p and low m. In all cases, clustered partition
NMI scores were over an order of magnitude higher than those for randomly gener-
ated partitions (NMIR), indicating that clusters were not random. As expected,
the contrasting NMI metrics from randomized clusters (NMIRS , NMIRP ) have values
near zero indicating that there is very little consistency between the clusterings
(Table 2).

Species Classification

Correct species classification rates varied as a function of the network pruning
parameter p. Low values of p increased correct classification rates (Fig. 7). Classifica-
tions were not significantly affected by the choice of resolution coefficient m. Within
the range of parameters tested, the mean correct classification rate was maximized
using p = 0.3 and m = 0.5. Using these parameters, the average error rate was 27%
(SD = 17%) across 50 runs of three experimental folds. For comparison, classification

Table 1. Corpus details and component breakdown by species.

Species
Number of
encounters

Number of
whistles
detected

Number of
subunits identified

Number of subunits
per whistle mean (SD)

Short-beaked
common
dolphin

4 1,959 3,573 1.82 (1.08)

Spinner dolphin 4 1,608 2,610 1.62 (0.99)
Bottlenose dolphin 4 2,280 4,090 1.79 (1.08)

Table 2. Comparison of mean � standard deviation of NMI and cluster summary statistics
by species. Two sets of parameter pairs (high m and low p, vs. low m and high p) are shown, to
illustrate the influence of parameter choice on clustering results.

Short-beaked
common dolphin Spinner dolphin Bottlenose dolphin

High
m = 1.5
Low

p = 0.3

Low
m = 0.5
High
p = 0.8

High
m = 1.5
Low

p = 0.3

Low
m = 0.5
High
p = 0.8

High
m = 1.5
Low

p = 0.3

Low
m = 0.5
High
p = 0.8

NMIP 0.833
� 0.070

0.876
� 0.024

0.835
� 0.056

0.865
� 0.027

0.785
� 0.061

0.906
� 0.029

NMIS 0.471
� 0.038

0.527
� 0.019

0.482
� 0.034

0.523
� 0.026

0.452
� 0.036

0.537
� 0.039

NMIRP 0.004
� 0.002

0.040
� 0.006

0.008
� 0.003

0.072
� 0.010

0.014
� 0.006

0.118
� 0.024

NMIRS 0.004
� 0.002

0.037
� 0.005

0.008
� 0.003

0.063
� 0.009

0.014
� 0.006

0.094
� 0.020

% of nodes
clustered

96.61
� 0.32

76.83
� 0.79

94.42
� 0.45

67.73
� 1.11

90.74
� 1.14

57.06
� 2.10

Number of
clusters

5.35
� 0.58

15.08
� 1.52

5.77
� 0.65

14.07
� 1.28

5.23
� 0.80

9.71
� 1.26
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by random assignment is expected to have an average error rate of 66%. Confusion
was highest between common and spinner dolphin subunits (Table 3).

Discussion

Identifying and categorizing whistle subunits provides a framework for summariz-
ing complex tonal calls as a series of elements that can be automatically recognized
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Figure 6. Clustering results for spinner dolphin corpus as a function of pruning threshold
(p) and resolution coefficient (m) variation. Each point represents the mean of 100 partitions.
Left column: for a constant value of m (see legend), the effects of changes in p on NMI and clus-
tering results are shown. Right column: for a constant value of p, the effects of changes in m on
NMI and clustering results are shown.
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and categorized by type. Although entire tonals can be compared to one another on
the basis of shape (Deecke and Janik 2006), the wide variability of whistle shapes
quickly leads to a very large number of clusters as corpus size increases. As a result,
clusters are no longer meaningful for categorization. A useful whistle categorization
system needs enough categories to fully describe whistle shape variability but few
enough categories that each type is seen repeatedly, across different encounters. By
decomposing whistles into subunits, we can reduce the number of shape categories
while retaining descriptive power, thereby facilitating shape-based comparisons
within a large data set.
In this work, similarly shaped whistle subunits were grouped automatically using

a network-based clustering approach. Normalization using a z-score transformation
allowed subunits to be compared on the basis of shape, regardless of frequency con-
tent. The effects of z-score normalization can be seen in cluster 2 of network B
(Fig. 8). This cluster includes subunits of very different bandwidths (some are nearly
flat) because they have similar shapes postnormlization. The use of DTW allowed
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Figure 7. Mean species classification error rates using a simple, subunit shape-based classi-
fier. Mean error rates are computed across 50 randomized trials, each consisting of three experi-
mental folds. Error bars indicate one standard deviation from the mean. The horizontal line
indicates the error rate expected by random assignment (66%). Within the range of parameters
tested, error rates decrease with lower pruning thresholds (p) but did not vary significantly as a
function of resolution coefficient (m).

Table 3. Confusion matrix showing correct species classifications as a percentage of total
subunit sets classified, across 50 runs of three randomized folds using clustering parameters m
= 0.5 and p = 0.3. Whistle subunits were classified in sequential sets of 100. Percentages are
rounded to the nearest integer. Bold font indicates correct classifications.

Produced by

Bottlenose dolphin Common dolphin Spinner dolphin

Classified as Bottlenose dolphin 80% 21% 18%
Common dolphin 14% 65% 27%
Spinner dolphin 6% 14% 55%
Column total 100% 100% 100%
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Figure 8. Visualization of node clusters from the short-beaked common dolphin corpus
obtained using two different clustering parameter pairs. A: p = 0.3, m = 1.5; B: p = 0.8, m =
0.5. Network: colors indicate identified clusters. Each sphere represents a whistle component
in the corpus. Gray lines between nodes represent linkages, with longer lines indicating less
similarity. Black nodes are not assigned to a cluster. Network images generated using a force-
directed layout routine Force Atlas 2 (Jacomy et al. 2014) of the graph visualization tool Gephi
(Bastian et al. 2009). Grid: each pane displays the original subunits contained in each cluster.
Colored numbers identify the cluster associated with each pane.
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comparison of subunit shapes despite differences in duration. Similarly shaped con-
tours could be clustered together despite fairly large differences in duration, as in
cluster 4 of network B (Fig. 8).
The desired level of cluster purity, i.e., the similarity among subunits within a

cluster, likely depends on the application of the user. If the goal is to describe whis-
tle complexity as a function of behavior, for example, a few generalized categories
might suffice, while efforts to understand signature whistle variability might
require a larger number of detailed types. The algorithm outlined here can be opti-
mized for either case (Fig. 8, short-beaked common dolphin whistle subunits; see
Fig. S1, S2 for other species that are similar in nature) by adjusting the clustering
parameters m and p.
Pruning weak connections between nodes by raising the pruning threshold p

reduces computation time and improves visualization readability, while retaining
important information about the network structure. Prior to pruning, every node in
the network is linked to every other node, resulting in linkages for an node network.
In large networks, a high percentage of the weakest linkages may be pruned. How-
ever, as p is increased, more nodes will become completely isolated from the network.
These nodes often represent more complex or unique subunits, which will then be
excluded from further analysis. High pruning thresholds werefound to negatively
affect correct classification rates, presumably because informative nodes were removed
from the training sets, thus indicating that complex or unique subunits contain use-
ful information.
The choice of resolution coefficient m primarily affects number of clusters and indi-

vidual cluster purity. High values of m will typically group subunits into four general
categories: concave up, concave down, convex up, and convex down. As m is reduced,
large clusters become subdivided into smaller, more self-similar groupings. A modu-
larity-based clustering algorithm was used here because it is widely used and easily
implemented using an existing code base. However, other clustering algorithms
including hierarchical clustering (Bron and Kerbosch 1973), and clique-identification
methods (Johnson 1967) could be used.
Reliability is critical if this method is to be used for comparison and classification

of vocalizations. Our analyses demonstrate that this clustering approach is reasonably
consistent in its categorizations across changes in training data as evidenced by the
NMI metrics. These metrics provide a sense of the repeatability of the clustering
results, rather than a measure of cluster quality. Both NMI metrics (NMIP and
NMIS) have merit. Restricting the number of common whistle subunits n to those
that were clustered in both partitions (NMIP) gives a good interpretation of consis-
tency amongst clustered whistle subunits, but does not tell the story of subunits that
remain unclustered. Alternatively, penalizing whistle subunits that were not clus-
tered (NMIS) could be interpreted as providing a better indication of the algorithm’s
performance in general, although it should be recognized that some unclustered whis-
tle subunits may simply be outliers with respect to the random sample and cannot
reasonably expect to be clustered.
The classification results indicate that subunit shapes are useful for classifying tonal

calls to species. No clear trend in classification performance occurred with respect to
the resolution coefficient (m). In contrast, high values of the pruning coefficient (p)
resulted in poorer classification performance. High values of the pruning coefficient
result in the exclusion of subunits with shapes that are dissimilar to the rest of the
training data, and it is possible that the exclusion of outliers contributes to overtrain-
ing of the classifier.
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The trivial classifier implemented here looks only at relative occurrence of different
subunit types. Variability in classification success was high in part due to the limited
number of independent encounters in the data set. In some randomized folds, the
encounters selected as the training set contained very few whistles, therefore classifica-
tion success suffered. As several known parameters known to help distinguish whis-
tles (e.g., frequency; Oswald et al. 2003) are not part of the clustering process, it is
likely that classification performance could be improved by incorporating these fea-
tures into the classifier system. An alternative classification method in which each
species’ subunits were clustered independently was explored, however results were
biased by relative training set sizes for each species, as well as cluster numbers and
sizes, therefore further exploration normalization techniques for such alternative clas-
sification methods is needed.
Subunit clustering has the potential to inform several types of classification ques-

tions, ranging from species identification as shown here to other types of analyses
such as social cooperation, behavioral state, etc. that may examine the sequences of
subunits. Consequently, we see a variety of questions that could be addressed using
subunit clustering as part of a broader methodology.

Conclusion

Subunits were identified within recorded whistles of the three delphinid species
using automated methods. Network analysis was then used to cluster subunits
according to their shape. Normalization and dynamic time warping of the whistle
subunits allowed for categorization of distinct contour shapes rather than categoriza-
tion based on time and frequency. Cluster composition remained similar across exper-
iments despite variation in the training data, indicating that the clusters formed were
nonrandom. Using the clustered subunits, a preliminary species classification scheme
was implemented based on rates of subunit occurrence in vocal repertoires. This work
suggests that segmentation of whistles into subunits may facilitate shape-based whis-
tle categorization and comparison efforts.
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Figure S1. Visualization of node clusters from the spinner dolphin corpus obtained

using two different clustering parameter pairs. Upper: p = 0.3, m = 1.5; Lower: p =
0.8, m = 0.5.
Figure S2. Visualization of node clusters from the bottlenose dolphin corpus

obtained using two different clustering parameter pairs. Upper: p = 0.3, m = 1.5;
Lower: p = 0.8, m = 0.5.
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