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The probability of detecting echolocating delphinids on a near-seafloor sensor was estimated using

two Monte Carlo simulation methods. One method estimated the probability of detecting a single

click (cue counting); the other estimated the probability of detecting a group of delphinids (group

counting). Echolocation click beam pattern and source level assumptions strongly influenced

detectability predictions by the cue counting model. Group detectability was also influenced by

assumptions about group behaviors. Model results were compared to in situ recordings of encoun-

ters with Risso’s dolphin (Grampus griseus) and presumed pantropical spotted dolphin (Stenella
attenuata) from a near-seafloor four-channel tracking sensor deployed in the Gulf of Mexico

(25.537�N 84.632�W, depth 1220 m). Horizontal detection range, received level and estimated

source level distributions from localized encounters were compared with the model predictions.

Agreement between in situ results and model predictions suggests that simulations can be used to

estimate detection probabilities when direct distance estimation is not available.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4962279]

[WWA] Pages: 1918–1930

I. INTRODUCTION

One common goal of marine mammal studies is to esti-

mate population densities to aid stock assessments and man-

agement. An increasingly common approach to density

estimation is to employ passive acoustic monitoring (PAM)

to provide long-term recordings of marine mammal sounds.

The most broadly used density estimation method, distance

sampling, requires the distance between detections (source, a

vocalizing animal) and a hydrophone sensor (receiver) to be

reliably estimated (Marques et al., 2009; Thomas et al.,
2010; Marques et al., 2013). In these cases, the probability

of detecting an acoustic signal (cue) can be estimated using

distance sampling methods (Buckland et al., 2001), and den-

sity estimates are derived from knowledge of cue production

rates and cue counts (Buckland et al., 2006). However, it is

difficult to estimate source-receiver distances to echolocat-

ing delphinids because of click characteristics such as signal

directionality, high-frequency composition which is easily

attenuated with distance, and short duration. Also, their

clicking behavior often results in interference between

simultaneously vocalizing animals, especially since delphi-

nids tend to travel and forage in large groups, producing

large numbers of high-frequency, directional echolocation

clicks with variable frequency content and source levels.

Because of these confounding factors, the range of a vocaliz-

ing dolphin to a sensor cannot be estimated solely from

received click characteristics.

Estimating the detection probability via the simulation of

the detection process itself, provides an alternative to distance

sampling, in cases where distances cannot be reliably esti-

mated. Monte Carlo simulation methods (Metropolis and

Ulam, 1949) have been used to estimate detection probabili-

ties for beaked, blue, and humpback whale cues (K€usel et al.,
2011; Harris, 2012; Helble et al., 2013b; Hildebrand et al.,
2015). Using this approach, sources are placed at randomly

selected locations around a receiver. The decision whether or

not a cue would be detected is based on signal characteristics,

acoustic propagation models, receiver characteristics and

detector performance. The simulation is repeated over many

iterations to generate a range-dependent map of detection

probabilities in the vicinity of the sensor. By iterating the

model in this way, model parameter estimates can be repeat-

edly drawn from parameter ranges reported in the literature,

to incorporate variability and uncertainty into detection proba-

bility estimates.

Knowledge of a signal detector’s ability to identify the

animals’ sound is needed. Previous studies have embedded

simulated calls in noise (Helble et al., 2013a), used signals

with known source levels recorded at known distances

(Ward et al., 2011) or used logistic regression to model prob-

ability of detection as a function of signal to noise ratio
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(SNR) (K€usel et al., 2011) to empirically determine a detec-

tor’s performance. An alternate approach for echolocating

animals is to implement a simplified click detector, which

functions predictably based on a constant amplitude thresh-

old. If this threshold is an absolute measure of sound pres-

sure amplitude (peak-to-peak dB re 1lPa) from calibrated

hydrophones, the performance of the detector can be esti-

mated within a simulation framework. False positive rates

can be computed by systematically reviewing a subset of

detections (e.g., every Nth detection).

Click characteristics, including frequency content,

beam-width, and source level vary between delphinid spe-

cies (e.g., Fish and Turl, 1976; Au et al., 1986; Au et al.,
1995; Au and Herzing, 2003; Madsen et al., 2004), and the

distributions of these parameters influence detection proba-

bilities (Hildebrand et al., 2015). Species-dependent behav-

iors including depth distributions, group size, and dive

synchrony (e.g., Baird et al., 2001; Heide-Jørgensen et al.,
2002; Scott and Chivers, 2009; Wells et al., 2009) are also

expected to affect detectability. Another challenge is that

delphinid echolocation click models are not yet able to pre-

dict signal characteristics, such as energy output, duration

and frequency content, as a function of animal orientation.

Likewise, animal-attached acoustic tag recordings from del-

phinids are sparse, and are of limited utility because they

typically lack coverage for a range of orientations of the

tagged animal and the recordings may not be representative

of the far-field signal because of tag placement on the

animal.

Two primary density estimation strategies exist for

marine mammals using stationary passive acoustic sensors:

cue counting and group counting (Buckland et al., 2001;

Buckland et al., 2006). Cue counting methods use individual

cues as the basic unit for density estimation. The number of

cues detected over a period of time is converted into an esti-

mate of animal density. Group counting methods for fixed

instruments use a small window of time, or snapshot, as the

basic unit for density estimation (e.g., Hildebrand et al.,
2015). A window is considered positive if animals are

detected during that time period and negative otherwise. The

number of positive windows is converted into an estimate of

animal density, by assuming that a positive window equates

to presence of an animal group. Mean group sizes can be

used to convert group-counts into estimated numbers of indi-

vidual animals.

Both cue and group counting simulation methods require

knowledge of cue properties, animal distributions in space,

and local oceanographic conditions. Cue counting has the

advantage of relying on only two behavioral parameters that

affect the probability of detecting a click: animal depth and

vertical orientation (pitch) in the water column (assuming that

animal azimuthal orientation, or yaw, is random relative to

the sensor). Disadvantages of cue counting appear in later

steps of the density estimation. These include sensitivity to

concentrated bouts of false positives, risk of detector satura-

tion, and that cue production rates may vary with animal den-

sity (e.g., G€otz et al., 2006). In contrast, group counting

methods are relatively insensitive to detector saturation, cue

rate variation and occasional bouts of false positives.

However, simulation of group detectability requires a group

behavior model to incorporate vocalization probability (e.g.,

Marques et al., 2013) and group orientation.

Beginning in 2010, single-sensor PAM devices, High-

frequency Acoustic Recording Packages (HARPS), have

been deployed in the Gulf of Mexico (GOM), to monitor

effects of the Deepwater Horizon oil spill on marine mam-

mal populations. In this paper, a framework is developed for

estimating delphinid echolocation click detection probabili-

ties, as a preliminary step toward delphinid density estima-

tion using single-sensor recordings.

Two simulations, one estimating cue detection probabil-

ities, and the other estimating group detection probabilities,

are developed and discussed. Both models are designed to

simulate the performance of a simple echolocation click

detector governed by a waveform peak-to-peak amplitude

threshold. Detection probabilities are compared for two gen-

eral categories of pelagic delphinids: deep and shallow

divers.

Model results were compared with in situ data collected

at a site off of the southwestern coast of Florida. In situ
detection ranges and click parameters were obtained from a

short-term deployment of a multi-sensor PAM device with

localization capabilities. Model distributions of received lev-

els (RL), detection ranges, and source levels (SL) are com-

pared with in situ data from Risso’s dolphin (Grampus
griseus) and presumed pantropical spotted dolphin (Stenella
attenuata).

II. METHODS

The detectability simulation algorithm consisted of two

nested loops (hereafter termed outer and inner) in a Monte

Carlo framework designed after K€usel et al. (2011). A boot-

strapping procedure was used to vary parameters across model

iterations: Within each iteration, N, of the outer loop, each

input parameter (P) was defined by a mean (lPN) and standard

deviation (rPN) drawn from uniform distributions, where the

limits were obtained from the literature (Table I). Input

parameters were related to acoustic characteristics of the sig-

nal and to animal behavior. In the inner loop, each source was

assigned parameter values drawn from probability distribu-

tions (normal, log-normal, or uniform) defined by lPN and

rPN (Table I). Five hundred iterations of the outer loop, each

initiating 104 iterations (n) of the inner loop, were run for

each detection probability scenario. Each iteration N of the

outer loop was considered a single simulation. To illustrate

this procedure, consider a hypothetical parameter X which is

expected to be normally distributed, with a mean (lX)

between 3 and 5 with a standard deviation (rX) between 0.5

and 1, based on a literature review. For the Nth iteration of the

outer loop, lNX¼unifrand([3,5]) and rNX¼unifrand([0.5,1]),

where unifrand() is a uniform random number generator

which accepts minimum and maximum values as inputs.

Within the Nth simulation, 104 values for X are sampled from

a normal distribution as Xn¼ normrand(lNX, rNX), where

normrand() generates normally distributed random numbers

given a mean and standard deviation. This approach allows
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uncertainty in the true value of the parameters to propagate

into model predictions.

A. Cue counting method

The cue-based detection probability simulation was

designed to estimate the probability of the sensor detecting

individual clicks. The simulated sensor was assumed to be

located at the same location and depth as the sensor

deployed for the in situ experiment (25.537�N, 84.632�W,

depth 1220 m). Within a single iteration of the model, 104

source positions in the horizontal plane were randomly

selected around the sensor in a circular area with a 5 km

radius. Transmission loss calculations (see Sec. II E, below)

indicated that echolocation clicks would not be detectable

outside of this area.

Each source was assigned a depth, drawn from a log-

normal probability distribution with parameters generated

from the outer loop bootstrapping procedure, values for

which were based on species-specific dive behavior found in

the literature (Table I; Scott and Chivers, 2009; Wells et al.,
2009). Sources were then assigned a body angle in the

vertical plane (pitch), and an orientation in the horizontal

plane (yaw). Yaw was chosen from a uniform distribution in

which all orientations relative to the sensor were equally

likely (0� to 359�). Pitch angle was drawn from a left-

truncated normal distribution with a mean of 0� (body paral-

lel to the seafloor) and a standard deviation selected from a

uniform distribution between 2� and 20� upon each iteration

of the model. If available in the future for delphinids, pitch

angle distributions could be derived from tags. Because pitch

was undocumented in the literature, these standard deviation

limits were chosen to cover a broad range of possible orien-

tation behaviors.

Sources were assigned on-axis source levels and beam

directivities drawn from distributions defined by values

reported in the literature (Fish and Turl, 1976; Rasmussen

et al., 2002; Au and Herzing, 2003; Rasmussen et al., 2004;

Au et al., 2012a; Smith et al., 2016). Beam directivity was

drawn from a uniform distribution and held constant in each

simulation, but varied between simulations. Directivities

were used to calculate three-dimensional beam patterns

based on a piston model (Au, 1993; Zimmer et al., 2005) in

terms of transmission loss. The pitch and yaw of each

TABLE I. Literature-based acoustic and behavior parameters used in Monte Carlo simulations of Da and Sb diving delphinid detectability. Parameters unique

to the click and group-based methods are listed separately, while some parameters are common to both methods. For each outer loop of the simulation, a mean

and standard deviation for each parameter were drawn from a random uniform distribution between the listed ranges associated with that parameter. A second

random distribution of the type listed under “Distribution” was then generated for each parameter for each inner loop iteration using the selected mean and

standard deviation. For log-normal variables (depth), mean and standard deviation are of the variable’s natural logarithm.

Parameter Dive Category Mean (l) Standard Deviation (r) Distribution References

Click Model Dive depth (m) D 2–3.5 1–1.5 Log-normal, right

truncated at 500 m

1c

S 1.5–3 0.5–1 Log-normal, right

truncated at 250 m

Orientation: Elevation D,S 6 0� 2–20� Normal, Left

truncated at 0�
Parameter currently

undocumented in the

literature

Orientation: Azimuth D,S 6 0�–359� n/a Uniform Simulation assumption

90� off-axis TL (dB)d D,S 28–30 n/a Uniform 2e

180� off-axis TL (dB) D,S 30–32 n/a Uniform 2

Directivity (dB) D 25–29 n/a Uniform 2

S 20–22

Group Model Max dive depth (m) D 2.5–3.5 1–1.5 Log-normal, Right

truncated at 500 m

1

S 2–3 0.5–1 Log-normal, Right

truncated at 250 m

Min off-axis TL (dB) D,S 23–27 2–5 Normal 2

Rotation in Elevation D,S 6 10�–30� 5�–15� Normal Parameter currently

undocumented in the literature

Rotation in Azimuth D,S 6 90�–135� 10�–20� Normal Parameter currently

undocumented in the literature

Both Models Peak Frequency (kHz) D 32 n/a none This dataset

S 36

Source level (dBpp) D 220–230 3–5 Normal 2

S 210–220

aDeep (D).
bShallow (S).
cScott and Chivers, 2009; Wells et al., 2009.
dTransmission loss (TL).
eFish and Turl, 1976; Rasmussen et al., 2002; Au and Herzing, 2003; Rasmussen et al., 2004; Au et al., 2012a.
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source’s beam axis relative to the receiver were used to iden-

tify the amount of orientation-dependent transmission loss,

and this was subtracted from the on-axis source level. The

piston model is an approximation, and does not realistically

predict amplitudes at large off-axis angles. To compensate

for this, mean values for beam amplitudes at 90� and 180�

off-axis angles were drawn from a uniform distribution

based on beam patterns in the literature (Au and Moore,

1986; Au et al., 2012b). The off-axis beam shape was com-

pleted by interpolating between the 90� and 180� amplitude

values. Predicted received levels at the sensor were com-

puted for a click produced at each modeled source position,

using the parameters assigned to each source, and model-

based transmission loss estimates at the click peak frequency

(see Sec. II E, below). Clicks with RLs greater than 115 dBpp

re: 1 lPa were considered detectable, mimicking the behav-

ior of an amplitude-based click detector. This threshold

choice was based on a manual review of the detection data

to determine an RL level at which the detector’s false nega-

tive rate was negligible false negatives occur when clicks

which exceed the minimum RL threshold are missed. The

detection probability (Pdet) associated with each simulation

was computed as the ratio of clicks detected to the total num-

ber of simulated clicks.

B. Group counting method

The group-based detection probability model estimated

the probability of detecting a group of echolocating clicking

animals during a 5 min window. This approach, sometimes

referred to as a snapshot method (Kyhn et al., 2012), requires

the assumption that animals do not move in-to or out-of the

detection area during a short time window, and therefore

source locations were held stationary in the simulation

(Buckland et al., 2006). The 5 min window was chosen as an

interval over which animals could be assumed to be station-

ary given average delphinid swim speeds between 4 and

10 km/h (e.g., Scott and Chivers, 2009; Kruse et al., 1999;

see Sec. IV for implications of the stationarity assumption).

Groups were simulated as a single point. Behavioral changes

were simulated by assigning an initial azimuthal orientation

drawn from a uniform random distribution between 0� and

360� to each source (Table I), and allowing vertical and hori-

zontal rotation about that azimuth. Sources were also

assigned a maximum depth from a literature-based distribu-

tion (Hastie et al., 2006; Wells et al., 2009), and were

allowed to occupy depths between the maximum and sea

surface. For group detection purposes, only the most detect-

able cue in a time window matters; therefore, only the maxi-

mum possible received level for each source, given the

allowed rotation and depth distribution, was retained.

C. Other model parameters

Detection probabilities were estimated for pantropical

spotted dolphin as an example of a shallow-diving pelagic

delphinid species, and Risso’s dolphin as an example of a

deep-diving delphinid species. Pantropical spotted dolphins

reach 1.6 to 2.5 m in length at maturity, dive to an average

depth of approximately 20 m, with maximum dive depths

near 200 m and on-axis click source levels of �210 dBpp re

1 lPa @ 1 m (Perrin and Hohn, 1994; Baird et al., 2001;

Perrin, 2001; Au and Herzing, 2003; Scott and Chivers,

2009). Risso’s dolphins are larger, with body lengths up to

3.8 m, average dive depths less than 50 m, and maximum

dive depths near 500 m (Wells et al., 2009, though the study

involved a single rehabilitated animal released into the wild,

and hence these data may not reflect the true dive depth dis-

tribution of the species). On-axis source levels for Risso’s

dolphins are expected to be higher than for shallow-divers,

around 220 dBpp re 1 lPa @ 1 m (Fish and Turl, 1976;

Madsen et al., 2004; Smith et al., 2016). Both species exe-

cute dives approximately 5 to 10 min long, and spend more

time near the sea surface than deeper diving odontocetes, for

instance sperm whales and beaked whales (Scott and

Chivers, 2009; Wells et al., 2009; Hildebrand et al., 2015).

Log-normal distributions were used to model the depth dis-

tributions of both species to capture the skew of depth distri-

butions reported in the literature including both dives and

surface intervals. Note that the mean of a log-normal distri-

bution is the mean of the natural logarithm of the distribution

(Table I). For example, a log-normal mean of 3 m translates

into a mean depth of e3 or 20.1 m.

Signal peak frequency, which is affected by sound

absorption at these high frequencies (>30 kHz), was esti-

mated as the mean of the peak frequencies of the detected

clicks for each species from the HARP recordings. Because

echolocation click frequency as a function of off-axis angle

is unknown, a single frequency value was used to approxi-

mate transmission loss, although a more accurate representa-

tion of attenuation is a goal for future efforts (Ainslie, 2013).

For modeling purposes (both cue- and group-based), the crit-

ical value is the mean peak frequency of received clicks.

This frequency was identified for each species based on an

analyst review of the empirical detection data.

D. Parameter influence on detection probability

The influence of each model parameter, X, on detection

probability was evaluated through 500 model iterations in

which X was allowed to vary, while all other variables were

held constant at the midpoint of the range considered. After

each parameter-specific run, the effect of varying X on detec-

tion probability (P) was described by the slope S of a regres-

sion line fitting P as a function of X in terms of detection

probability (%) per parameter unit (all relationships were

approximately linear over the tested parameter ranges).

To facilitate between-parameter comparisons a Z-score

normalization of X (ZX) was computed as

ZX ¼ XlX=rX; (1)

where lX and rX are the mean and standard deviation of X,

respectively. The slope Sz of the regression line fitting P as a

function of ZX provides a unitless estimate of each parame-

ter’s effect across the tested range. R2 values were computed

for each parameter to measure goodness of fit and the

strength of the relationship between each parameter and

detectability.
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E. Acoustic propagation modeling

Transmission loss (TL) associated with propagation of the

signals in the environment included geometric spreading and

frequency-dependent absorption. TL was simulated as a func-

tion of horizontal distance and elevation relative to the sensor

using the ray-tracing algorithm Bellhop (Porter and Bucker,

1987), with site-specific environmental and physical parameters

drawn from the Oceanographic and Atmospheric Master

Library (OAML). TL was simulated for a sensor using the same

location and depth of the sensor used in the in situ experiment.

Using the theorem of acoustic reciprocity (Rayleigh, 1945),

incoherent TL in a gridded volume around the sensor was simu-

lated by defining the sensor as an omnidirectional sound source

for computational efficiency (e.g., Helble et al., 2013a).

TL at each frequency was computed along 64 equally

spaced radials around the sensor. Each radial calculation

resulted in a grid covering the full depth of the water col-

umn, and extending 10 km horizontally from the sensor.

Three thousand rays were projected from the sensor position

along each radial at launch angles ranging from 0� to 90�,
where 90� is directly above the instrument. Grid resolution

was 1 m in the vertical plane and 10 m in the horizontal. In
situ detection SLs were estimated using the sonar equation

with modeled TL and in situ RL as

SL ¼ RLþ TL; (2)

where SL is the effective source level, including any effects

of beam orientation. The distributions of in situ source levels

were compared with the model-predicted source level distri-

butions, which combined on-axis source levels with beam-

related transmission loss (see Sec. II A).

Environmental and physical parameters for the measure-

ment site were extracted from OAML using ESME

Workbench (Mountain et al., 2013). Bottom bathymetry was

obtained from the global Digital Bathymetry Database

(DBDB, version 5.4, 10 resolution) available from OAML.

Bottom composition was clay according to OAML’s Bottom

Sediment Type database (BST, version 2.0, 20 resolution).

The bottom boundary was modeled as an acousto-elastic half-

space (Porter, 1991). A mean monthly sound speed profile for

the month of November was drawn from OAML’s

Generalized Digital Environment Model (GDEM, version 3.0,

150 resolution). The sound speed profile was based on aver-

ages for the month and did not reflect particular hydrographic

events. This approach aligns with the aim of the model to pro-

vide an average probability of detection over a large number

of encounters and a variety of conditions. No sound speed

profile was available for the exact location and day of the

experiment. However the effect of sound speed profile selec-

tion was tested by comparing detection probability predictions

calculated using mean profiles from January and July (Frasier,

2015). This analysis did not indicate any significant seasonal

differences in detection probabilities for deep or shallow

divers, using cue counting or group counting methods.

F. Comparison with in situ recordings

In situ recordings were made with a tracking HARP

using four calibrated hydrophones (Channel Technologies

Group, ITC-1042), positioned in a tetrahedral array with a

1.1 m maximum aperture (Wiggins and Hildebrand, 2007).

The array was suspended �20 m above the seafloor on a

mooring, so it was possible the array’s azimuthal heading,

and to a lesser extent its tilt, changed over long periods,

depending on near-seafloor currents. Each hydrophone was

recorded with a 100 kHz sampling rate over a total deploy-

ment duration of 25.5 h. Instrument position and array orien-

tation after settling on the seafloor were estimated by

circumnavigating the tracking HARP with the deployment

ship while sending 11 kHz interrogation pings from a towed

transducer with known global positioning system (GPS)

locations (Wiggins et al., 2012).

During the tracking HARP deployment, one 60-min

Risso’s dolphin encounter and four consecutive presumed

pantropical spotted dolphin encounters over a 3-h period

were recorded and tracked. Because the array sensor spacing

was about 1 m, a click’s acoustic travel time between sensors

was less than 1 ms and could be identified on all four hydro-

phones without confusion with the next or preceding consec-

utive click (i.e., dolphin inter-click interval >50 ms). Using

this configuration, three-dimensional source angles were

estimated by finding the least-squares best-fit between the in
situ signal time difference of arrivals (TDOAs) between

hydrophone pairs and a set of modeled TDOAs precomputed

across a grid of source angles defined by azimuth and eleva-

tion angle pairs (Wiggins et al., 2012). Elevation angles

ranged from 0� to 90� (directly above the instrument) and

azimuthal angles ranged from 0� to 359� in 1� increments.

Absolute position of the source could not be determined

because source depth was unknown; however, for sources

near the sea surface, horizontal position was estimated by

intersecting the three-dimensional angle ray from the source

with the sea surface. For Risso’s dolphin (deep divers), a sec-

ond set of positions were estimated assuming that sources

were located at a depth of 100 m. The localization algorithm

was verified by acoustically tracking the ship’s transducer

pings and comparing the acoustically based position estimates

to the vessel’s GPS coordinates (Wiggins et al., 2012).

Transducer ping times were identified by filtering the record-

ings using a second-order infinite impulse response resonator

(IIR) filter with peak frequency of 11 kHz and a 250 Hz band-

width (MATLAB DSP Systems Toolbox, Version R2012b). The

arrival time of a ping was defined as the moment the filtered

signal rose above 110 dBpp re 1 lPa. TDOAs of the same

ping across hydrophone pairs were used to track the vessel.

III. RESULTS

A. Model predictions

1. Cue-counting model

Cue-counting model predictions estimated that an aver-

age of 3.8% [coefficient of variation (CV)¼ 0.42] of shallow

diver clicks produced within 5 km of the sensor would be

detected, while an average of 12.3% (CV¼ 0.27) of deep

diver clicks would be detected (Table II). In the shallow

diver case, an average of 93% (CV¼ 0.07) of clicks pro-

duced within 200 m of the sensor were detectable, and
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detectability decreased monotonically with range [Fig.

1(A)]. Detectability fell steeply for shallow diver clicks at

ranges between 0.5 and 1.5 km. Less than 2% of the shallow

diver clicks produced more than 2 km from the sensor were

detectable [Fig. 1(A)].

On average, 100% (CV¼ 0.00) of simulated deep diver

clicks produced within 200 m (horizontal range) of the sen-

sor, and over 97% of clicks produced within 1 km of the sen-

sor, were detectable [Fig. 1(B)]. Deep diver click detection

probabilities dropped off rapidly between 1.5 and 2 km from

the instrument. Less than 3% of deep diver clicks produced

more than 3 km from the sensor were detectable.

Detection probabilities predicted by the cue counting

model were most heavily influenced by the parameter choice

of mean source level (Table III). A 1 dBpp re 1 lPa @ 1 m

increase in mean source level for shallow divers increased

mean detection probability by 0.54%, for example, mean

detectability rose to 3.8%þ 0.54%¼ 4.3% (R2¼ 0.97). Pitch

angle was also predicted to influence mean detection proba-

bilities. A 1� increase in the standard deviation of pitch led

to a 0.05% increase in mean detectability (R2¼ 0.65). Beam

directivity and off-axis amplitude were inversely related to

detectability. A 1 dB increase in mean directivity for shallow

divers decreased mean predicted detectability by 0.25%

(R2¼ 0.67), while a 1 dB increase in off-axis transmission

loss at 90� decreased detectability by 0.21% (R2¼ 0.30).

Dive depth and transmission loss at 180� (i.e., sound trans-

mission from the tail-end of the animal) were only weakly

correlated with mean detection probability (R2¼ 0.02 and

0.11, respectively). Z-score normalized slopes indicated SL

had the highest impact on click detectability (Sz¼ 1.53%).

Directivity and pitch were also influential (Sz¼ –0.29% and

Sz¼ 0.27%, respectively).

TABLE II. Mean predicted detection rates (%) and standard deviations (r)

predicted by each model within a 5 km radius circular area around the

HARP site. Estimates are based on 500 model iterations for deep and shal-

low divers, respectively.

Model Shallow Deep

Click 3.8 6 1.6 r 12.3 6 3.3 r
Group 14.0 6 5.1 r 44.1 6 9.0 r

FIG. 1. Modeled detection probability

as a function of range. Each bar repre-

sents detection probability in a 200 m

range bin. Error bars indicate 1 stan-

dard deviation from the mean. (A)

Cue-based model probability of detect-

ing a shallow diver click. (B) Cue-

based model probability of detecting a

deep diver click. (C) Group-based

model probability of detecting a click-

ing group of shallow divers during a 5-

min interval. (D) Group-based model

probability of detecting a clicking

group of deep divers during a 5-min

interval.

TABLE III. Influence of model input parameters on click detection proba-

bility. For each input parameter in the model a set of 500 model iterations

were run holding all other variables constant, and allowing only the variable

of interest to change. The effect of the variable of interest on detection prob-

ability is reported in two ways: (1) as a slope (S) in percent per unit increase

in the each parameter, and (2) as a slope SZ in percent per Z-score normal-

ized unit increase in each parameter. R2 values indicate how well each

regression line fits the data, with values near one indicating a close fit.

Parameter

Shallow Deep

S (%) SZ (%) R2 S (%) SZ (%) R2

Cue-Counting Model

Mean Source Level 0.54 /dB 1.53 0.97 1.15 /dB 3.24 0.98

Directivity �0.25 /dB �0.29 0.67 �0.46 /dB �0.54 0.70

Pitch Standard

Deviation

0.05 /deg 0.27 0.65 0.07 /deg 0.36 0.52

Dive Depth 0.07 /m 0.03 0.02 0.16 /m 0.07 0.04

Mean 90� TL �0.21 /dB �0.12 0.30 �0.49 /dB �0.28 0.35

Mean 180� TL �0.12 /dB �0.07 0.11 �0.28 /dB �0.16 0.16

Group-Counting

Model

Mean Source Level 1.72 /dB 4.94 0.99 2.85 /dB 7.86 0.99

Yaw: Mean Rotation 0.09 /deg 1.23 0.91 0.30 /deg 3.98 0.98

Maximum Dive Depth 0.25 /m 0.07 0.03 1.11 /m 0.31 0.22

Pitch: Mean Rotation 0.91 /deg 5.17 0.95 0.63 /deg 3.69 0.71

Minimum Off-Axis TL �0.57 /dB �0.67 0.73 �0.55 /dB �0.63 0.54
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The deep diver cue-based model predictions responded

similarly to parameter variations, but the percent changes

relative to mean detection probability were larger (Table

III). For instance, a 1 dB increase in detectability in average

deep diver source level led to a 1.15% increase in mean

detectability, while a 1 dB increase in directivity led to a

0.46% decrease.

2. Group-counting model

The group-counting model estimated that shallow div-

ing groups within 5 km of the sensor would be detected in an

average of 14.0% (CV¼ 0.36) of 5-min windows, while

deep diving groups would be detected in 44.1% (CV¼ 0.20)

of windows (Table II). Simulated shallow diver groups were

detectable in over 63% of time windows on average when

located within 1 km horizontal range of the sensor. Detection

probabilities fell below 2% beyond 3.5 km [Fig. 1(C)].

Detection probabilities dipped to an average of 28% at a hor-

izontal range of 1.5 km and then increased slightly at 2.5 km.

Deep diver groups were detectable in over 98% of time win-

dows on average when located within 1 km of the sensor.

Detection probabilities were around 50% between 2 and

4 km, and decreased steadily thereafter for the deep diver

groups [Fig. 1(D)].

The group model detection probabilities were most

heavily influenced by mean source level (Table III). For

shallow and deep divers, a 1 dB increase in mean source

level led to 1.72% and 2.85% increases in mean detection

probability, respectively (R2¼ 0.99 for both). Mean group

rotation in the vertical plane also had an effect on detection

probabilities with a 1� increase in pitch angle rotation

increased detection probabilities by 0.91% and 0.63% for

shallow and deep divers, respectively (R2¼ 0.95 and 0.71).

The effect of horizontal rotation was smaller, at 0.09% and

0.30%, respectively (R2¼ 0.91 and 0.98). Off-axis transmis-

sion loss was inversely correlated with detectability, while

all other input variables were positively correlated with

detectability. Maximum dive depth was only weakly corre-

lated with detectability for shallow and deep diving groups

(R2¼ 0.03 and 0.22, respectively). Z-score normalized

slopes indicated that SL had the highest impact on click

detectability for both shallow and deep divers (Sz¼ 4.94%

and 7.86%, respectively). Rotation in both the vertical and

horizontal planes were also influential.

B. In situ encounters compared to models

1. Vessel tracking

Vessel position estimates calculated using the TDOA

minimization scheme agreed with the vessel’s GPS coordi-

nates (Fig. 2). Azimuthal estimates deviated from expected

values based on GPS vessel position during the first part of

the circumnavigation period, but matched closely for the

second half of that period. This may be attributed to rotations

of the tetrahedral sensor frame during the first part of the

tracking period since the array is non-stationary and attached

to a mooring line. Localization-based horizontal distances

between the HARP and ship were comparable with expected

ranges based on ship GPS positions.

2. Risso’s dolphin encounter

A total of 3866 Risso’s dolphin echolocation clicks

were localized using the tracking HARP recording, during a

1-h encounter (Fig. 3). Most of the detections were obtained

during the first two-thirds of this period, prior to the closest

point of approach (CPA) at 06:50 Greenwich Mean Time

(GMT), when the animals were moving from east to west

over the instrument [Figs. 3, 4(A), and 4(B)]. Sound pressure

received levels increased as the animals approached the

instrument [Fig. 4(C)], but estimated maximum sound

FIG. 2. (Color online) Ship position estimates (circles) from localizations

using time difference of arrivals (TDOAs) of transducer pings from the ship

at known GPS locations recorded on a four-sensor tracking HARP (black tri-

angle at 0,0). Colored line indicates true ship position based on GPS loca-

tions. Color indicates the time associated with each position, in GMT, with

red indicating the beginning of the vessel tracking period, and blue indicat-

ing the end of the tracking period. Local time is GMT - 05:00.

FIG. 3. (Color online) Map view of echolocation click localizations of

Risso’s dolphins. The black triangle represents the tracking HARP location

at (0,0). Each colored dot indicates the location of a single click, assuming

the click was produced near the sea surface, with color indicating the time at

which the click was detected in GMT (local time is GMT - 05:00).
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pressure source levels did not [Fig. 4(D)]. Clicks with lower

estimated SLs became detectable as the animals approached

the instrument.

The Risso’s dolphin encounter consisted of a small

group of animals with a non-uniform distribution in space.

Fewer clicks were detected between 25� and 45� elevation

angle than expected if animals were uniformly distributed

around the sensor [Fig. 5(A)].

Clicks were localized at a maximum horizontal range of

3.4 km (Table IV). The maximum detection range predicted

by the cue-counting model was 4.1 km (CV¼ 0.13). Mean

detection range in situ (1.3 km) was slightly lower than that

predicted by the cue-counting model (1.4 km); however,

CVs were large for both values (0.52 and 0.12, respectively;

Table IV). In situ received levels reached a maximum of 143

dBpp re 1 lPa with most received clicks much lower in

amplitude [Table IV, Fig. 4(C)]. The modeled maximum RL

was only slightly higher, at 144 dBpp re 1 lPa (CV¼ 0.03).

Mean in situ and cue-counting model RLs were also similar

at 121 and 123 dBpp re 1 lPa, respectively (CVs¼ 0.04 and

0.01).

The in situ source level distribution was broader than the

distribution predicted by the cue-counting model [Fig. 6(C)];

however, the model predicted more extreme maximum and

minimum SLs. The maximum in situ SL estimate was 217

dBpp re 1 lPa @ 1 m, considerably lower than the theoretical

maximum of 230 dBpp re 1 lPa @ 1 m (CV¼ 0.03) predicted

by the cue-counting model (Table IV). The minimum in situ
source level estimate and model prediction were similar at

186 and 185 dBpp re 1 lPa @ 1 m (CV¼ 0.02), respectively.

Mean SL in situ was 198 dBpp re 1 lPa @ 1 m (CV¼ 0.03)

compared to a model predicted mean of 200 dBpp re 1 lPa @

1 m (CV¼ 0.02) [Table IV, Fig. 6(C)]. Assuming that animals

were located at a depth of 100 m rather than at the sea surface

reduced the mean in situ horizontal detection range to 1.1 km

(CV¼ 0.52). Mean SL also decreased to 196 dBpp re 1 lPa @

1 m (CV¼ 0.03).

3. Pantropical spotted dolphin encounters

Four successive encounters with presumed pantropical

spotted dolphins were tracked over a 4-h period [Figs.

4(E)–4(H), 7], with a total of 62 955 clicks localized. The

first, second, and fourth encounters appear to be relatively

small groups of animals, while the third pass consisted of

many overlapping tracks and presumably a larger number

of animals (Figs. 4 and 7). RLs reached the highest levels

during the third pass, between 08:30 and 09:00 GMT when

the animals were at the CPA [Fig. 4(E) and 4(G)].

Estimated source levels were highest at the beginning of

each pass, as the animals approached the instrument from a

distance [Fig. 4(H)].

FIG. 4. Time series of localized delphinid encounters (left: Risso’s dolphin; right: Pantropical spotted dolphin). Each black dot represents one localized echo-

location click. [(A) and (E)] Elevation angle of localized echolocation clicks relative to the HARP, where 90� is directly overhead. [(B) and (F)] Azimuthal

angle of localized clicks relative to the HARP. [(C) and (G)] Received level of localized echolocation clicks. [(D) and (H)] Estimated source level of localized

echolocation clicks.
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Pantropical spotted dolphin clicks were localized in situ
at a maximum horizontal range of 3.2 km, while the cue-

counting model predicted a maximum detection range of

2.7 km (CV¼ 0.22; Table IV). Over 95% of in situ localiza-

tions fell within 2 km of the sensor [Fig. 6(G)]. Mean hori-

zontal detection range in situ was 0.6 km (CV¼ 0.67) while

the cue counting model predicted a slightly higher mean of

0.8 km (CV¼ 0.17). Mean RL was similar between the

model and in situ localizations 119 and 120 dBpp re 1 lPa,

respectively [Fig. 6(H)], with a maximum RL of 133 dBpp re

1 lPa in both cases. The SL distribution from the in situ data

was skewed higher and had fewer extreme values than pre-

dicted by the model results [Fig. 6(I)]. The mean SLs were

the same in situ and in model predictions: 192 dBpp, re 1 lPa

@ 1 m with CVs of 0.01 and 0.02, respectively. Modeled

minimum and maximum SLs were 179 dBpp re 1 lPa @ 1 m

(CV¼ 0.01) and 216 dBpp re 1 lPa @ 1 m (CV¼ 0.04),

respectively, while the in situ minimum and maximum were

less extreme, at 185 and 213 dBpp, re 1 lPa @ 1 m.

The distribution of elevation angles of localized clicks

during the pantropical spotted dolphin encounter differs

from that predicted for a uniform randomly distributed set of

FIG. 5. Comparison of elevation angles at which echolocation clicks were localized in situ (gray bars) and from model predictions (black lines) assuming that

animals have a uniform random distribution in the horizontal plane around the hydrophone. Solid black line indicates model-predicted mean; dotted lines rep-

resent 61 standard deviation from the mean. In (A), Risso’s dolphin clicks are localized in situ at approximately the elevation angles predicted by the model,

with slightly fewer detections than expected between 20� and 45�, and more detections than expected at larger elevation angles. In (B) pantropical spotted dol-

phin echolocation clicks are localized at larger elevation angles than predicted by the model mean, with fewer animals at angles less than 35�. Mismatches sug-

gest that clicking animals were not uniformly distributed.

TABLE IV. Comparison of modeled and in situ parameter distributions for

cue-based model. The model distributions for RL, SL, and HR are based on

500 model iterations. Subscripts indicate HARP data assuming animals are

located at the surface (H0), HARP data assuming animals are at 100 m

(H100), and cue-based model values (M). In situ RL distributions do not

depend on depth; therefore, the subscript H is used. CVs are reported in

parentheses. RL amplitudes are in dBpp re: 1 lPa and SL amplitudes are in

dBpp re: 1 lPa @ 1 m.

Parameter

Deep diver (Risso’s) Shallow diver (Pantropical)

Mean Max Min Mean Max Min

RLH (dB) 121

(0.04)

143 115 119

(0.03)

133 115

RLM (dB) 123

(0.01)

143

(0.03)

115

(0.00)

120

(0.01)

133

(0.03)

115

(0.00)

SLH0 (dB) 198

(0.03)

217 186 192 (0.02) 213 185

SLH100 (dB) 196

(0.03)

215 184 — — —

SLM (dB) 200

(0.02)

228

(0.03)

185

(0.02)

192

(0.01)

216

(0.04)

179

(0.01)

HRH0 (km) 1.2

(0.52)

3.4 0.0 0.6

(0.67)

3.2 0.0

HRH100 (km) 1.1

(0.52)

3.1 0.0 — — —

HRM (km) 1.3

(0.13)

4.1

(0.16)

0.1

(0.52)

0.8

(0.17)

2.7

(0.22)

0.0

(0.50)

FIG. 6. Comparison of in situ data (gray bars) with cue-counting model pre-

dicted output (black lines). Solid black lines represent mean model predic-

tion, with dotted lines representing 61 standard deviation from the mean.

Top [(A)–(C)]: Risso’s dolphin encounter assuming animals at the surface;

Center [(D)–(F)]: Risso’s dolphin encounter assuming animals at 100 m

depth; Bottom [(G)–(I)]: Pantropical spotted dolphin encounter assuming

animals at surface. Plots from left to right show horizontal range, received

level (RL), and source level (SL). Models are designed to predict averages

over many encounters; therefore, perfect agreement with in situ data is not

expected given the small number of encounters. More precise input parame-

ter estimates describing click characteristics and animal behavior would

decrease uncertainty in the model predictions.
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sources [Fig. 5(B)], although the two distributions have simi-

lar overall shapes. The majority of in situ localizations

occurred at an elevation of 50� or greater, where 90� indi-

cates that the click was produced directly above the sensor.

Fewer clicks than expected were localized at elevations

below 50�, although the shape of the in situ distribution fits

within 1 standard deviation from the mean distribution pre-

dicted by the model. The in situ distribution has a tail of

localizations with elevation angles extending to approxi-

mately 30�. The cue-counting model predicted elevation

angles as low as 20�, however these were not seen in situ.

IV. DISCUSSION

A. Model predictions

Received sound pressure received level was used as the

metric of detectability in this model, but this is an oversimpli-

fication of how most click detectors work. Echolocation click

detectability is also influenced by frequency content and

energy distribution in the sound pressure time-series, both of

which can vary as a function of beam angle. Methods for

modeling the effects of beam angle on received click spectral-

temporal structure are currently unavailable. For this reason,

an alternative approach was used in which click detection was

simplified to rely as much as possible on received level, which

can be modeled using existing techniques. Unless a click

detector has been developed specifically with density estima-

tion in mind, its behavior likely would be too complex to pre-

dict using this simplified algorithm. Future work may seek to

improve echolocation click simulation to allow for more

sophisticated detection methods and more refined estimates of

click detectability.

For simulation purposes, animals were assumed to be

uniformly distributed in the horizontal plane in the monitored

area, on average, across a large number of encounters. At this

site, no bathymetric or other persistent features within detec-

tion range were expected to influence animal distributions,

which were expected to be uniform over the area. However,

non-uniform animal distributions could be incorporated into

the simulation framework if a more complex spatial distribu-

tion was supported by additional studies.

B. Click detection probabilities

The cue-based detection probability model aims to esti-

mate the likelihood of detecting a single delphinid click pro-

duced within a defined area around the sensor. Detection

probabilities were high in the small region immediately

around the sensor, but were outweighed by low detection

probabilities at large ranges, resulting in a low overall detec-

tion probability within a 5 km radius. Since the area moni-

tored increases with the square of distance, the overall

probability of detection is low (Table IV).

Cue-based models are sensitive to assumptions about

click characteristics. Source level, off-axis amplitude at 90�,
and beam directivity strongly affected detectability predic-

tions. Small changes in these input parameters had large

effects on overall detectability predictions. The vast majority

of detected clicks were predicted to be received off-axis, and

the similarities between predicted and in situ RLs and distri-

butions suggest that this was true in the recordings. A more

detailed understanding of off-axis RLs in free-ranging del-

phinids, and RL variability is critical for improving the accu-

racy of the model predictions.

FIG. 7. (Color online) Map view of

echolocation click localizations during

four consecutive presumed pantropical

spotted dolphin encounters. The black

triangle represents the tracking HARP

location at (0,0). Each colored dot indi-

cates the location of a single click,

assuming the click was produced near

the sea surface, with color indicating

the time at which the click was

detected in GMT (Local time is GMT -

05:00). Note that the temporal scales

differ between plots.
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Animal body orientation in the vertical plane also

affected detectability predictions. If animals rarely click at a

steep declination angle, then clicks produced directly above

a sensor would be primarily off-axis, and therefore, less

detectable, while clicks produced at a distance from the sen-

sor would be on-axis more often, and therefore, more detect-

able. This may partially explain the pantropical spotted

dolphin encounters, where SL was highest when the animals

were distant and approaching [Fig. 4(H)]. This effect of dis-

tance on SL was not observed in the Risso’s dolphin case

[Fig. 4(D)], perhaps because their deeper dives led to a

higher probability of downward clicking.

Dive depth had only a small effect on predicted detect-

ability; however, the effect would likely increase in cases

where dive depths are large relative to the sensor depth.

Many parameters including body orientation, dive

depth, and directivity likely vary depending on behavioral

state (Jensen et al., 2015). For instance, greater body inclina-

tion and dive depth may occur during foraging behaviors

compared to traveling behaviors. Development of a multi-

state model (e.g., Hildebrand et al., 2015, for beaked whales)

might account for the effects of behavior on detectability

and increase the accuracy of detectability predictions.

C. Group detection probabilities

The group-based detection probability model estimates

the probability of detecting a group of animals during a speci-

fied time window. Integration over the time window is pre-

dicted to increase detection probabilities relative to cue

counting methods if the window is sufficiently long. The group

model estimated the probability of detecting a delphinid group

in a 5-min window to be over three times higher than the prob-

ability of detecting a single click from that group.

Because it integrates detectability across a time window,

the group model predicts larger maximum detection ranges

than the click model, given the same conditions. This is

because an on-axis click is theoretically detectable at relatively

large ranges, but the probability of an individual click being

on-axis is very low. In the group model, the probability of a

click being on-axis was much higher because the duration of

the window and the presence of multiple animals make it more

likely that at least one animal in the group was oriented toward

the sensor at least once during the time window. While this

was probably the case in the recordings, in the model, the dis-

tribution of rotational angles and depths expected of an aver-

age group was poorly constrained. This is a considerable

weakness in the group model because group rotation assump-

tions have a large effect on detectability predictions.

Increased detection probabilities at larger horizontal

ranges may make group model predictions more sensitive to

seasonal changes in sound-speed profiles than cue-based

model predictions. A small increase in detectability at large

ranges will result in a relatively large increase in detection

probability, because the area monitored increases with the

square of the detection range (Thomas et al., 2010).

Modeling group behavior over a time window requires

assumptions about how a group’s orientation changes over

time. On the basis of a manual review of these encounters

and encounters from other sites in the GOM (e.g., Frasier,

2015), the period during which a group of animals appears to

be approaching the sensor (RLs steadily increasing over

time) is generally much longer than the period during which

the group appears to be leaving it (RLs steadily decreasing).

This suggests that the animals in a group are more likely to

be clicking in their direction of travel, and may not turn back

180� to click on-axis after CPA. In the case where the ani-

mals are foraging, a full 360� rotation in the time window

may be more likely than in a traveling mode. These different

behavioral modes are not currently captured by the group

model, but their incorporation, along with additional data,

could improve the accuracy of the group-based approach.

Group spread in the horizontal plane was not incorpo-

rated into the model, because little is known about its rela-

tion to group size and behavior. The effect of modeling a

group as a single point is shown for short ranges in Fig.

1(C), where a dip in detectability is seen at approximately

1.5 km. Incorporating spread could smooth out dips in

detectability as a function of range. Average predicted group

detectability over the detection area is not expected to

change if group spread is incorporated, because the groups

are already assumed to be uniform and randomly distributed

on average. As a result, increasing group spread is not

expected to change the distribution of distances to the most

detectable animal in a group. However, if the distribution

assumption is incorrect at this site, then spread could signifi-

cantly influence group detection probabilities. Group move-

ment within the snapshot period is another possible (though

non-trivial) extension to the simulation. Animal movement

can cause bias in detection probability estimates and this is

an active area of research (e.g., Glennie et al., 2015).

In practice, the probability of detecting a group is

expected to increase as a function of the number of clicks

produced per time window. However, the cue rate and group

size information needed to test the effect of clicks produced

on probability of detection is currently lacking.

D. Propagation model

The modeled sound propagation environment used in

these models was generalized based on average monthly

conditions at the site, and did not account for the effects of

extreme oceanographic events on detectability. In general,

the smaller the predicted detection range of the cue, the

smaller the impact of sound speed profiles on detectability.

Preliminary model exploration indicated no significant effect

of annual sound speed profile changes on click detectability.

There are a number of caveats to consider when inter-

preting the results of the ray-tracing propagation model.

First, the ray tracing used did not take phase into account;

therefore, it does not predict interference or refraction.

Bellhop also has known problems with modeling sea surface

boundaries (Porter and Liu, 1994). Although sea surface

roughness was included in the propagation model, this cap-

tures only small scale features, not the constantly changing

swell and surf. In general, indirect delphinid click arrivals

were not expected to be detectable at deep sites, and multiple

arrivals of the same click are rarely observed. However,
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multiple arrivals are common at shallower sites, therefore

poor handling of the surface boundary may have a larger

effect at shallow sites.

E. Ground truth

Localized animals were assumed to be at the surface; how-

ever, a subset of clicks may have been produced at depth.

Depth estimation would require additional clock-synchronized

acoustic recorders, potentially near the sea surface. Clicks pro-

duced at depth would be closer to the sensor than those esti-

mated assuming a surface location, reducing some of the

estimated horizontal ranges for these encounters. At this site,

the effect of assuming that Risso’s dolphin were vocalizing at

100 m rather than at the sea surface was small because sensor

depth was large relative to dive depth. At shallower sites, or for

deeper divers such as beaked and sperm whales, dive depth is

expected to have a larger effect (e.g., Hildebrand et al., 2015).

The method used for estimating source positions

assumes that the sound travels from source to receiver along

a linear path. In reality, the arrival path is slightly bent by

interaction with the thermocline (i.e., refraction; Urick,

1967). At horizontal ranges less than or close to the water

depth, the effect of this bending on position estimates was

small, as can be seen in the ship localization case. When the

ship was close to the sensor, errors were small. As the hori-

zontal distance increased, the error resulting from the linear

path assumption also increased. Low elevation angles associ-

ated with large horizontal ranges can be problematic as

cosine-based range estimates respond non-linearly to small

errors in angle estimates. In the case of dolphin detection,

ranges are relatively short, and errors due to signal path cur-

vature are estimated to be less than 10 m.

SL estimates from the in situ recordings were below the

model-predicted maximum SLs for both species (Table IV).

This is likely linked to the low probability of receiving an on-

axis click. It is possible that none of the received clicks from the

Risso’s dolphin encounter were on-axis given the small sample

size. As predicted by the model, in situ SLs increased slightly

with increasing range, particularly when the animals were

approaching the instrument. Further refining SL estimates will

likely require an array of multi-sensor recorders capable of

resolving source depth, and concurrent tagged, clicking animals.

Both cue and group-based models were designed to simu-

late average detectability over a large number of encounters

and a variety of conditions. A longer in situ time series would

be necessary to ground truth the group-based model, and would

also increase the strength the of cue-based model to in situ data

comparison. Nonetheless, localizations from the in situ data

were consistent with the model predictions and support the use

of models to estimate detection probabilities for delphinid den-

sity estimation. The model framework described can be

updated as more refined parameter estimates become available.

The next step in this work will be to refine estimates of

key variables including click production rate and group size

which are needed to convert detection counts into density

estimates using modeled detection probabilities. The follow-

ing example is provided for illustrative purposes only: In

this experiment, 3866 Risso’s dolphin clicks were detected

over a 1 h period. Assuming a click detection probability of

14.1% (this study), we estimate that 27 418 clicks were actu-

ally produced within a 4 km radius of the sensor during that

period. A preliminary active click rate (click rate per animal

when actively vocalizing) estimate for Risso’s dolphin in the

GOM is 6.35 clicks/s (CV¼ 0.05), with a probability of

vocalization near 13% (Frasier, 2015). Using these values,

we would estimate that a single Risso’s dolphin produces

2972 clicks per hour on average. Dividing the 27 418 total

clicks by expected clicks per dolphin per hour, we would

estimate that nine animals were present in the monitored

area during the 1 h encounter period. This is similar to aver-

age Risso’s group size estimates in the GOM (7 animals/

group, CV¼ 0.14; Mullin and Fulling, 2004).

V. CONCLUSION

A Monte Carlo simulation framework was used to esti-

mate the probability of detecting delphinids using cue and

group counting methods. Simulations predict that groups are

approximately three times more detectable than individual

clicks, depending on the behavior and echolocation signals

of the species of interest. Large, deep-diving delphinids

including Risso’s dolphin are expected to be detectable at

greater ranges than smaller, shallow-diving species such as

pantropical spotted dolphins. Agreement with in situ local-

izations suggests that modeling provides a reliable first-order

estimate of click detectability. More detailed descriptions

delphinid of echolocation click parameters as well as indi-

vidual and group behaviors are needed to improve model

accuracy. Parameter inputs to the model framework

described here can be updated to increase model accuracy as

more refined parameter estimates become available.
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