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Abstract

At least ten species of beaked whales inhabit the North Pacific, but little is known about their abundance, ecology, and
behavior, as they are elusive and difficult to distinguish visually at sea. Six of these species produce known species-specific
frequency modulated (FM) echolocation pulses: Baird’s, Blainville’s, Cuvier’s, Deraniyagala’s, Longman’s, and Stejneger’s
beaked whales. Additionally, one described FM pulse (BWC) from Cross Seamount, Hawai’i, and three unknown FM pulse
types (BW40, BW43, BW70) have been identified from almost 11 cumulative years of autonomous recordings at 24 sites
throughout the North Pacific. Most sites had a dominant FM pulse type with other types being either absent or limited.
There was not a strong seasonal influence on the occurrence of these signals at any site, but longer time series may reveal
smaller, consistent fluctuations. Only the species producing BWC signals, detected throughout the Pacific Islands region,
consistently showed a diel cycle with nocturnal foraging. By comparing stranding and sighting information with acoustic
findings, we hypothesize that BWC signals are produced by ginkgo-toothed beaked whales. BW43 signal encounters were
restricted to Southern California and may be produced by Perrin’s beaked whale, known only from Californian waters. BW70
signals were detected in the southern Gulf of California, which is prime habitat for Pygmy beaked whales. Hubb’s beaked
whale may have produced the BW40 signals encountered off central and southern California; however, these signals were
also recorded off Pearl and Hermes Reef and Wake Atoll, which are well south of their known range.
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Introduction

The North Pacific is inhabited by at least ten species of beaked

whales. These are: Baird’s (Berardius bairdii, Bb), Cuvier’s (Ziphius

cavirostris, Zc), Longman’s (Indopacetus pacificus, Ip), Blainville’s

(Mesoplodon densirostris, Md), Stejneger’s (M. stejnegeri, Ms), Hubb’s

(M. carlhubbsi, Mc), Perrin’s (M. perrini, Mpe), Ginkgo-toothed (M.

ginkgodens, Mg) and Pygmy beaked whale (M. peruvianus, Mpu) [1].

The tenth species is the Deraniyagala’s beaked whale, M. hotaula

(Mh) [2], which recently has been resurrected as a separate species

from the morphologically similar M. ginkgodens [3]. Information on

the abundance, distribution, and community structure of all these

species is limited because of their highly elusive behavior and the

small numbers of strandings and visual sightings. They are all

deep-diving odontocetes that undergo long foraging dives with

short surface intervals [4].

In recent years, advances have been made in acoustically

identifying beaked whales by their echolocation signals. These

signals are mostly frequency-modulated (FM) upsweep pulses,

which appear to be species-specific and distinguishable by their

spectral and temporal features [5] (Figure 1). From the North

Pacific, we are able to identify, based on recordings obtained with

concurrent visual observations, four FM pulses made by Baird’s,

Blainville’s, Cuvier’s, and Longman’s beaked whale [6–12]. The

species visually and acoustically observed at Palmyra Atoll is likely

Deraniyagala’s beaked whale [13]. Baumann-Pickering et al. [14]

associated FM pulses recorded in the Aleutian Islands with

autonomous passive acoustic recorders as belonging to Stejneger’s

beaked whales. This association was based on two factors. Two of

the three FM signal types occurring in the region, albeit

infrequently, correspond well to descriptions of Baird’s and

Cuvier’s beaked whales [8,11]. Stejneger’s is the only other

beaked whale known to inhabit this area suggesting that it is also

the source of the most commonly detected FM pulse near the

Aleutian Islands.

One distinct FM pulse of unknown origin was described for a

yearlong recording on top of Cross Seamount (BWC), southwest of
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the Island of Hawai’i, likely produced by a beaked whale [15].

Additionally, three FM pulse types (BW40, BW43, BW70, named

by their peak frequency), similar to those being produced by

beaked whales, have been identified on autonomous acoustic

recordings throughout the North Pacific [5]. These signals have

distinct spectral and temporal features used for discrimination

(Figure 1).

Passive acoustics have been used to distinguish stocks as well as

describe their geographic ranges for a number of marine mammal

species such as killer (Orcinus orca), blue (Balaenoptera musculus), and

fin (Balaenoptera physalus) whales [16–18]. In this work, we examine

the geospatial characteristics of North Pacific beaked whale

species. We consider the distribution of unknown FM pulse types

along with the well-described ones in the context of known

distributions for beaked whales from stranding and sighting data.

We describe the spatio-temporal distribution and relative abun-

dance of North Pacific beaked whales based on the acoustic

detections of FM pulses on long-term autonomous acoustic

recorders from 24 sites over the years 2005 to 2012.

Materials and Methods

Ethics Statement
High-frequency Acoustic Recording Packages were deployed

near Palmyra Atoll under U.S. Fish & Wildlife Service Special Use

Permit 12533, at Pearl & Hermes Reef under Papahanaumokua-

kea Marine National Monument permit PMNM-2008-020, in the

Gulf of California under La Secretaria de Relaciones Exteriores

permit DAN-01342 and DAN-00415, and off the coast of

Washington, U.S., under Olympic Coast National Marine

Sanctuary permit OCNMS-2006-003 and OCNMS-2010-010.

All other deployment sites did not need permitting and fieldwork

did not involve endangered or protected species since the

recordings were made passively.

Data Collection
Acoustic recordings were collected with autonomous High-

frequency Acoustic Recording Packages (HARPs) [19] from 24

sites in the North Pacific mainly along the west coast of North

America and the Pacific Islands region (Table 1 Table 1, Figure 2).

Within the eastern North Pacific, recording effort occurred at

several sites along the west coast of the United States including one

site in the Gulf of Alaska, two sites off the coast of Washington, one

site offshore of central California, several sites throughout the

Southern California Bight and offshore on Hoke Seamount (west

of San Diego, California), and one site near the tip of the Baja

California Peninsula in the Gulf of California. The Southern

California Bight had the highest effort with seven sites at various

bathymetric features within the Bight. Within the central North

Pacific, recording effort occurred at two sites in the Aleutian

Islands, and at several more tropical sites within the Main and

Northwestern Hawaiian Islands (Hawai’i, Kaua’i, Cross Sea-

mount, and Pearl and Hermes Reef), in the Northern Line Islands

(Palmyra Atoll and Kingman Reef), and Wake Atoll. A single site

has been monitored within the western North Pacific near Saipan

in the Northern Mariana Islands. HARPs at the different sites had

Figure 1. Overview of frequency-modulated (FM) upsweep pulses from known (I–IV, VII, IX) and unknown sources (V, VI, VIII, X,).
Each FM pulse type is shown with an example pulse time series (top) and spectrogram (middle, Hann-windowed 2 ms, 40-point DFT, 97% overlap), as
well as a mean spectra (bottom, solid line) over all FM pulses from several acoustic encounters and mean noise (dotted line) extracted before each
pulse. Inter-pulse interval (IPI) is specified in ms (value in time series plot).
doi:10.1371/journal.pone.0086072.g001
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a variety of recording durations from several weeks to over one

year and recording schedules ranging from continuous to 5

minutes of recording every 40 minutes. Sites were often

maintained over several deployment missions resulting in a total

of 19 years of analyzed deployment time (approximately 11 years

of actual recording time, accounting for recording schedule when

HARP was deployed but not continuously recording) over the

period 2005 to 2012. All recorders were deployed to seafloor

depths between 700 and 1400 m, except one at 100 m. HARPs

were bottom-mounted, either in a seafloor-packaged configuration

or as a mooring with the hydrophone at about 10 to 30 m,

respectively, above the seafloor. All HARPs were set to a sampling

frequency of 200 kHz with 16-bit quantization. The recorders

were equipped with an omni-directional sensor (ITC-1042,

International Transducer Corporation, Santa Barbara, CA),

which had an approximately flat (62 dB) hydrophone sensitivity

from 10 Hz to 100 kHz of –200 dB re V/mPa. The sensor was

connected to a custom-built preamplifier board and bandpass

filter. The preamplifiers were designed to flatten the frequency

response of the ambient ocean noise, which provided greater gain

at higher frequencies where ambient noise levels are lower and

sound attenuation is higher [19]. The calibrated system response

was corrected for during analysis.

Signal Detection and Classification
Signal processing was performed using the MATLAB (Math-

works, Natick, MA) based custom software program Triton [19]

and other MATLAB custom routines. Trained analysts (SBP,

AES, ASB, MAM) manually identified beaked whale-like frequen-

cy-modulated (FM) echolocation pulses in the HARP data.

Datasets were divided between analysts and missed detections

due to possible differences in analyst performance were not

quantified. These signals had, in comparison to known delphinid

clicks, longer durations, a stable inter-pulse interval (IPI), and an

upswept frequency. Long-term spectral averages (LTSAs) were

calculated for visual analysis of the long-term recordings. LTSAs

are long-term spectrograms with each time segment consisting of

an average of 500 spectra, which were created using the Welch

algorithm [20]. The averages were formed from the power spectral

densities of non-overlapped 10 ms Hann-windowed frames. The

resulting long-term spectrograms have a resolution of 100 Hz in

frequency and 5 seconds in time. When echolocation signals were

notable in the LTSA, the sequence was inspected more closely. A

number of parameters were used to evaluate each signal’s

characteristics. Time series of 5 s lengths showed IPI, time series

of 3 ms lengths was used to display the shape of the waveform, and

spectrograms of Hann-windowed 3 ms segments (60-points DFT,

98% overlap) revealed the presence of FM pulses. Start and end

times of acoustic encounters were noted if beaked whale like FM

pulses were identified. Analysts initially labeled these acoustic

encounters as (1) having been produced by one of the species

whose echolocation signals are well known, (2) one of the groups of

echolocation signal categories whose origin has not yet been

determined, or (3) as unidentifiable with beaked whale echoloca-

tion signal characteristics.

All presumed beaked whale acoustic encounters were reviewed

in several additional analysis steps. Individual echolocation signals

were automatically detected using a two-step approach computer

algorithm during time periods when FM pulses were manually

detected [21]. The individual FM pulse detections were digitally

filtered with a 10-pole Butterworth band-pass filter with a pass-

band between 5 kHz and 95 kHz. Filtering was done on 800

sample points centered on the echolocation signal. Spectra of each

detected signal were calculated using 2.56 ms (512 samples) of

Hann-windowed data centered on the signal. Peak frequency was

determined as the spectral frequency with the highest amplitude.

FM pulse duration was derived from the detector output and IPIs

were calculated from the start of an FM pulse to the start of the

previous one. All detected echolocation signals, independent of

distance and orientation of the recorded animal with respect to the

recorder, were included in the analysis. A software tool displayed

for each acoustic encounter histograms of peak frequency and IPI,

mean spectra with mean noise preceding each click, and

concatenated spectra [5]. This signal discrimination tool overlaid

the mean spectra of the acoustic detection against spectral

templates of all beaked whale FM pulse types. The analyst

optionally browsed through plots of individual time series and

spectrograms (2 ms Hann-windowed data, 40-point DFT, 97%

overlap) of echolocation signals detected within the acoustic

encounter, sorted by peak-to-peak received level displaying high

quality signals first. This led to a final judgment about the label for

each acoustic encounter and the analyst submitted a decision. In

case the acoustic encounter was not grouped to one of the ten FM

pulse types, based on low quality of the acoustic encounter, very

few FM pulse detections, or based on spectral and temporal

characteristics that were atypical of our observed FM pulse types,

the acoustic encounter was labeled as a probable unidentified

beaked whale’’ (UBW), being an inhomogeneous group, likely

comprised of a variety of FM pulse types and were not used in the

analysis. The analyst’s decisions for the rare signal types and a

subset of frequent types were reviewed by SBP to assure

consistency with decisions.

Statistical Analysis
Analysis of the spatial distribution of each FM pulse type and

the relative occurrence of FM pulse types occurring at each site

provides insight into the geographic range of each FM pulse type

and relative probability of encounters for a given area. For

acoustic encounters of beaked whale species with known signal

types this may refine the spatio-temporal knowledge of these

species. For species whose signal types are currently unknown but

whose geographic range is identified, a geographic overlap with

unassociated signal types might provide information leading to

which species produces which signal type.

Relative occurrence of beaked whale echolocation signals was

analyzed with respect to the proportions of FM pulse types at

specific sites and to FM pulse type distribution across sites. Both

analyses examined presence/absence of FM pulse types on a daily

basis. The decision to use daily presence was based upon varying

duty cycles that affect the probability of detection for any given

site. Examination of a longer period increases the probability that

a whale utilizing the habitat is detected and reduces compositional

biases that might occur due to differences in dive and echolocation

behavior. Further normalization would require an estimate of the

probability of detection.

Per site analysis highlights the relative presence of FM pulse

types. The number of days with detections for each species was

summed, and the percentage of days attributed to each pulse type

is reported. An overall relative presence is also computed to assess

how often the habitat within the site’s detection area is used. This

was defined as the percentage of recording days for which there

was a detection of any FM pulse type. A relative detection effort

was defined as the proportion of the effort [0,1] relative to the site

with the greatest deployment duration in days.

Geographic analysis of FM pulse types required normalization

for the effort at each site. The number of daily encounters for a

specific pulse type was divided by the number of physical days

Spatio-Temporal Patterns of Beaked Whales
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(ignoring duty cycle as discussed earlier) that instruments were

deployed and the relative distribution across sites is reported.

For seasonal analysis, the sum of acoustic encounter durations

was used as a measure. This allows detecting smaller fluctuations

in abundance, which may remain unnoticed looking at daily

presence/absence data. Encounter durations were adjusted for

recording effort on a per site, per species basis to permit pooling of

data across deployments with different duty cycles. Monthly

acoustic encounter durations were scaled [0,1] to the greatest sum

per site, to permit comparison of presence between sites. For diel

patterns, hourly presence and absence counts were computed by

FM pulse type over all sites and on a per site basis.

Results

Relative Presence
The highest relative daily presence for beaked whale signals

occurred at Kingman Reef (Table 2, relative presence) followed

closely by Perl & Hermes Reef, Wake Atoll and Southern

California site E. High relative presence (60%–80%) was detected

at: Southern California G2 and H as well as Gulf of Alaska CB.

Moderate relative presence (40%–60%) was found at: Southern

California sites C and N, the North shore (NS) of Palmyra Atoll,

and Cross Seamount off the Hawaiian Islands. Lower relative

presence (20–40%) occurred at: Hoke Seamount, Point Sur

offshore of Central California, sites M and SN offshore of

Southern California, Saipan, Quinault Canyon offshore of

Washington, Aleutian Islands Kiska, and the Hawaiian sites of

Hawai’i and Kaua’i. Finally, beaked whale signals were encoun-

tered on less than 10% of the days at: Aleutian Islands Buldir, Gulf

of California Punta Pescadero, the Western terrace (WT) of

Palmyra Atoll, and Cape Elizabeth offshore of Washington.

A site-specific analysis, looking at the presence of encounters

over a 24-hour period per species and site, revealed that up to four

pulse types occurred at each site (mean = 2.6, SD = 1.0). Each site

Table 1. HARP deployment details with recording start and end dates spanning multiple deployments, geographic locations and
depths.

Project Site
Recording
Start

Recording
End Longitude Latitude

Depth
(m)

Recording
Schedule

#
Deploy

Recording
Days

North East Pacific

Aleutian Islands Kiska 03-Jun-10 20-Jul-10 178u 31.24099 E 52u 19.00799 N 1100 cont. 1 48

Aleutian Islands Buldir 27-Aug-10 26-May-11 175u 37.99099 E 52u 38.00099 N 800 cont. 1 272

Gulf of Alaska CB 13-Jul-11 19-Feb-12 148u 04.12999 W 58u 38.74199 N 1000 cont. 1 221

Washington Cape Elizabeth 17-Jun-08 06-Nov-11 124u 43.25699 W 47u 21.11799 N 100 1/7 or cont. 2 527

Washington Quinault Canyon 27-Jan-11 07-Oct-11 125u 21.20399 W 47u 30.00399 N 1400 cont. 1 253

Point Sur Point Sur 03-Oct-06 16-Jan-07 122u 23.62899 W 36u 17.94699 N 1392 1/3 1 105

Hoke Seamount Hoke 15-Sep-08 06-Jun-09 126u 54.58099 W 32u 06.37099 N 770 1/7 1 265

Gulf of California Punta Pescadero 27-Nov-05 05-Jun-07 109u37.66899 W 23u 49.64599 N 750 1/5 or cont. 3 401

Southern California (SOCAL)

SOCAL C 12-Mar-09 05-May-09 120u 48.36799 W 34u 18.88599 N 800 cont. 1 54

SOCAL E 03-Sep-06 12-Jul-09 119u 28.38999 W 32u 39.37999 N 1300 cont. 6 322

SOCAL G2 13-Jan-09 04-Mar-09 118u 52.81599 W 33u 08.40799 N 1150 cont. 1 51

SOCAL H 05-Jun-08 03-Jan-09 119u 10.62499 W 32u 50.82399 N 1000 cont. 6 278

SOCAL M 13-Jan-09 02-Oct-11 119u 14.87599 W 33u 30.88799 N 950 cont. 10 804

SOCAL N 14-Jan-09 23-Sep-11 118u 33.80399 W 32u 22.18999 N 1300 cont. 8 597

SOCAL SN 19-May-09 02-Jun-10 120u 22.54499 W 32u 54.91399 N 1100 1/7 1 379

Pacific Islands

Main Hawaiian Islands Hawai’i 23-Apr-09 16-Jun-10 156u 00.93099 W 19u 34.88999 N 600 1/3, 1/5, 3/7
or cont.

4 294

Main Hawaiian Islands Kaua’i 08-Oct-09 20-Aug-10 159u 53.38399 W 21u 57.22499 N 700 1/4 or cont. 2 294

Cross Seamount Cross 20-Nov-05 11-May-06 158u 15.22199 W 18u 43.34399 N 396/398 1/5 1 172

NW Hawaiian Islands Pearl & Hermes Reef 20-Oct-09 17-Sep-10 175u 37.94699 W 27u 43.62099 N 750 1/4 or cont. 2 325

Northern Line Islands Palmyra Atoll WT 19-Oct-06 02-Apr-09 162u 09.38599 W 05u 51.77799 N 600 1/4 4 595

Northern Line Islands Palmyra Atoll NS 02-Jun-09 25-Aug-10 162u 02.22499 W 05u 53.69099 N 700/1100 1/4 or cont. 3 230

Northern Line Islands Kingman Reef 20-Oct-11 11-Mar-12 162u 17.53999 W 06u 21.90899 N 850 cont. 1 144

Pacific Islands Wake Atoll 31-Jan-10 04-May-10 166u 41.00099 E 19u 13.00099 N 800 1/2 1 94

Northern Mariana Islands Saipan 05-Mar-10 25-Aug-10 145u 27.54299 E 15u 18.99899 N 700 1/8 1 174

Total 19 years

Depth values indicate approximate depth of recorder and hydrophone near the seafloor, value in parentheses indicates seafloor depth when the hydrophone was
positioned much shallower than the seafloor, multiple values indicate different depths over different deployments near the same site. Recording schedule was either
continuous (cont.) or on a fractional schedule with the number of 5 minute recording periods over the total number of 5 minute periods per cycle. Recording days are
the sum of recorded days of all deployments, not accounting for recording schedule.
doi:10.1371/journal.pone.0086072.t001

Spatio-Temporal Patterns of Beaked Whales

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e86072



had one highly dominant FM pulse type. The dominant type

accounted for a mean of 88% (SD = 13%) of the days with

detections for each FM pulse type across all sites (Table 2). Zc type

signals dominated all of the SOCAL sites except SOCAL C, which

had highest acoustic encounter rates for Bb signals. Zc signals were

also dominant at Point Sur, Hoke Seamount, and Wake Atoll. Md

signals were the prevailing ones at Hawai’i, Kaua’i, Pearl and

Hermes Reef, and Saipan. Ms FM pulses were most often

encountered on recordings of the Aleutian Islands sites, Gulf of

Alaska, and the deep Washington site Quinault Canyon. Mh

signals were dominant at Kingman Reef and both Palmyra Atoll

sites. BWC signals were the only FM pulse type acoustically

encountered at Cross Seamount (southwest of the Island of

Hawai’i). BW70 signals were the only FM pulse type at the Gulf of

California site (Figure 3, Table 2). The BW40 and BW43 signal

types were less frequently observed, with neither call type playing a

dominant role at any of the sites. The Ip signal type was

encountered only a few times, likely with a larger number of

missed detections, precluding it from being used in this study.

For a signal-specific analysis, the same daily presence counts

were reorganized to show the distribution of each FM pulse type

by site after accounting for the number of days of recording effort

(Table 3). This representation highlights the geographic range of

detections of each call type. Zc FM pulses were the signal type with

the broadest distribution over all areas of the monitored North

Pacific, with frequent encounters at SOCAL E, G2, H, N, Pearl

and Hermes Reef, and Wake Atoll (9 to 15% of daily FM pulse

detections for each site, Table 3), to a lesser degree at the Aleutian

Islands site Kiska, in the Gulf of Alaska, central and offshore

California, SOCAL M, N, Hawai’i, Northern Line Islands, and

Figure 2. Locations of HARP recording sites (circles) across the North Pacific (top) and within the Southern California Bight
(bottom).
doi:10.1371/journal.pone.0086072.g002
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Saipan (,1–7%, Table 3). Acoustic encounters of Md signals were

frequently found, but were restricted to the Pacific Islands region

with the exception of one encounter offshore of Washington State.

Mh signals were only recorded at Northern Line Islands sites of

Palmyra Atoll and Kingman Reef. Different Mh encounter rates at

the two Palmyra sites (north shore 32% and western terrace 3%)

may be indicative of preferential habitat usage. BWC signals were

encountered acoustically in all sites in the Pacific Islands except

Palmyra WT, with the most relative presence during 59% of effort

days at Cross Seamount, followed by 13% at Saipan. Ms and Bb

FM pulse types were more common at the cooler, northern sites,

such as the Aleutian Islands, Gulf of Alaska, and Washington, as

well as various SOCAL sites. Ms signals were more frequently

encountered near the Aleutians, Gulf of Alaska, and offshore of

Washington. Bb signal type acoustic encounters were highest at

SOCAL C (46%). The BW70 FM pulse was only found on the

Gulf of California recordings. The BW43 FM pulse was most often

detected at Hoke Seamount, comprising 42% of its encountered

days, as well as at the sites closer to the shelf break at SOCAL E,

N, and SN. FM pulse type BW40 was encountered at Wake Atoll

and Pearl and Hermes Reef, as well as off the coast of central and

southern California.

Seasonality
Good yearly coverage was available for SOCAL, particularly

sites M and N with 3 years of nearly continuous data, Palmyra

Atoll, and the Gulf of California (Table 1). Multi-year coverage

was also achieved by looking at regional rather than site-by-site

scale. The paucity of acoustic encounters severely hampered the

ability to make seasonal inferences for most FM pulse types.

Amongst the signal types that occurred infrequently, BW43 and

BW70 occurred at a number of SOCAL sites and at a Gulf of

California site, respectively, in various months throughout the

year. Bb and Mh signals were recorded in the North-Eastern

Pacific and the Northern Line Islands sites, respectively, through-

out the recording period without seasonal pattern.

However, one seasonal pattern and some shorter-term varia-

tions were noteworthy (Figure 4). Zc signals showed a higher

occurrence at SOCAL M and N during the summer in three

consecutive monitoring years, except at site M in 2009 when

winter months had the highest acoustic encounter rates. In a little

over one year of recording at the Hawai’i site, Zc signals were

relatively rare (Table 3), with higher numbers of encounters in fall

of 2009 (Figure 4, top panel).

Table 2. Relative distribution of daily presence of acoustic encounters for all FM pulse types by site, normalized for days of effort.

Project Site
Relative
presence % Bb Md Mh Ms Zc BW40 BW43 BW70 BWC

North East Pacific

Aleutian Islands Kiska 31 93 7

Aleutian Islands Buldir 6 6 94

Gulf of Alaska CB 67 35 64 2

Washington Cape Elizabeth * 100

Washington Quinault Canyon 34 26 1 73

Point Sur Point Sur 36 95 5

Hoke Seamount Hoke 38 97 3

Gulf of California Punta Pescadero 2 100

Southern California (SOCAL)

SOCAL C 46 96 4

SOCAL E 81 5 93 1 1

SOCAL G2 74 100

SOCAL H 70 99 1

SOCAL M 23 6 2 91 1

SOCAL N 55 5 93 1 1

SOCAL SN 35 4 92 3 1

Pacific Islands

Main Hawaiian Islands Hawai’i 22 90 6 4

Main Hawaiian Islands Kaua’i 20 68 32

Cross Seamount Cross 47 100

NW Hawaiian Islands Pearl and Hermes Reef 88 59 38 1 3

Northern Line Islands Kingman Reef 100 6 78 15 2

Northern Line Islands Palmyra Atoll NS 49 99 1

Northern Line Islands Palmyra Atoll WT 5 3 90 6

Pacific Islands Wake Atoll 88 87 5 7

Northern Mariana Islands Saipan 34 63 9 28

Relative presence is reported by the percentage of recording days with detections. Star (*) indicates a value with less than 1%. Grey shaded area shows no encounters of
a type at a site.
doi:10.1371/journal.pone.0086072.t002
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Figure 3. Relative daily occurrence of FM pulse types by site (pie chart, see Table 2). For each pie chart, the relative detection effort
(number of days recorded) is displayed on the left, and the relative presence on the right. Site M in the Southern California Bight had the highest
effort (relative effort of 1) and Kingman Reef had the highest percentage of days with acoustic encounters (relative presence of 1). A dark line through
the relative effort is indicative of duty cycle and reflects the amount of continuous effort.
doi:10.1371/journal.pone.0086072.g003
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Ms signals were very rare in SOCAL, but appeared at site M

only in July and September of 2010 over the three year monitoring

period. Also, two days with Ms acoustic encounters occurred over

a one week monitoring period at a site off the shelf of Southern

California (33u28.49N, 122u31.49W, CCE1, Figure 2) in late spring

of 2009, but these were discarded from the comparative analysis

due to brief effort. During 2010 at the Aleutian Island site Buldir,

Ms signals were detected prior to November and after December.

There were a high number of Ms signal encounters offshore of the

Washington coast in the first six months of 2011, with a sudden

drop in July and no further encounters throughout October of

2011. Acoustic encounters of Ms type in the Gulf of Alaska

occurred with a peak in August 2011 and a gradual decrease until

February 2012 (Figure 4, middle panel).

Acoustic encounters of Md signals occurred mainly around the

Pacific Islands sites. Noteworthy were the higher numbers of

acoustic encounters over the late spring and early summer months

at the island of Hawai’i with few or no detections over late fall and

winter between November and March. From one year of

recordings from Kaua’i, there were many Md acoustic encounters

observed in the fall of 2009 followed by lower encounter rates

throughout the rest of the recording year (Figure 4, bottom panel).

Diel Pattern
The BWC FM pulse type was the only signal that was recorded

during only one portion of the day, with most acoustic activity at

night across all sites (Figure 5, top left). The Mh signals, dominated

by large number of detections at Kingman Reef, had a diel pattern

with higher acoustic encounter rates during the day. When sites

with encounters of Zc signals were pooled, this FM pulse type

displayed a trend of higher acoustic activity between midnight and

midday and lower activity in the afternoon and first half of the

night (Figure 5, top 2nd from right). This pattern was particularly

pronounced at Pearl and Hermes Reef, and SOCAL H (Figure 5,

bottom middle and right), but also at SOCAL G2, and N. SOCAL

M had an opposing pattern with highest activity in the afternoon.

Most other sites did not have enough data with Zc signals or did

not display a diel pattern. Md signals pooled across all sites did not

show a diel pattern (Figure 5, top center). However, at Hawai’i

(Figure 5, bottom left), and to a lesser extent at Kaua’i, the diel

pattern for Md signals was similar to what was observed for Zc

signals with highest acoustic activity in the early morning hours to

midday.

Discussion

Acoustic Analysis
Manual detection of FM pulse type acoustic encounters typically

provides a low number of missed or false detections. The method

of screening long-term data with LTSAs offers a fast overview for

long periods of time (usually 1 h) and allows for efficient data

analysis. Despite the compressed view, the analyst is capable of

detecting periods with very few (,2) echolocation signals.

Figure 4. Seasonality of Z. cavirostris (Zc, top panel) at sites SOCAL M, N and Hawai’i, of M. stejnegeri (Ms, middle panel) at sites
Aleutian Islands Buldir, Gulf of Alaska CB, Washington Quinault Canyon, and SOCAL M, and of M. densirostris (Md, bottom panel) at
sites Hawai’i and Kaua’i. A point indicates partial monthly recording effort and data in that month was adjusted for reduced effort. Grey shaded
areas show no monthly effort.
doi:10.1371/journal.pone.0086072.g004
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However, we have found that results can vary even between

experienced analysts, particularly in data sets with many different

species emitting echolocation signals simultaneously. Therefore,

while the number of missed detections is relatively low, precise

characterization remains elusive. A multi-step labeling process

minimized the number of false classifications and we are confident

that these labels and categories are valid.

Beaked whale FM pulses have been proven to be species-specific

for a number of described species with one FM pulse type per

species [8–10,13,14,22]. Besides FM pulses, some beaked whales

also produce dolphin-like echolocation clicks and dolphin-like

buzz clicks [9–12]. It cannot be ruled out that a beaked whale

species may produce multiple FM pulse types, possibly with

geographic variation; however, such behavior has not been

reported from acoustic recordings with visual confirmation. Also,

while there may be geographic variation, which has yet to be

quantified, FM pulse characteristics seem to be stable enough

across ocean basins to reliably categorize FM pulse types to known

species (SBP unpublished data) in well-known species like Zc.

Echolocation signals of odontocetes are known to vary largely in

their frequency content based on the orientation of the animal in

relation to the recording hydrophone due to its highly directional

echolocation beam [23]. Additionally, higher frequencies attenu-

ate more over distance than lower frequencies such that distance of

the animal to the hydrophone will impact the frequency content of

the received signal. However, in a situation where similar issues

are expected, Soldevilla et al. [21] have shown consistent spectral

patterns on long-term acoustic recorders for two dolphin species.

While there is considerable variability within each species, the

overall shape of the spectra from the onset of the broadband

energy up to the peak frequency and possible smaller spectral

peaks and notches below the main energy appear to be consistently

recurring patterns. Frequencies beyond the peak are highly

variable, likely depending on the angle to and distance between

the animal and the hydrophone.

Besides the FM pulse types of known species, we describe the

spatio-temporal distribution of four FM pulse types (BWC, BW40,

BW43, BW70), for which visual identification of the species

producing these signals do not yet exist [5,15] (Figure 1).

The categories were manually identified based on spectral and

temporal grouping. It has yet to be shown if these signals are

indeed species-specific and produced by beaked whales. The

BW40 signal type is very similar to Zc signals, but mostly occurred

with dolphin-like echolocation clicks in a continuous sequence,

whereas Zc is not known to make dolphin-like clicks aside from

buzz sequences. It is possible that, based on the similarity to Zc

signals and the high relative presence of Zc signals in the region,

this signal type was more frequent and misclassified as Zc, or that

Zc produces other signal types under some conditions. However,

while the main frequency content of the BW40 FM pulse is highly

similar to the Zc signal, the two spectral peaks at 17 and 23 kHz

common in Zc signals were not present in the BW40 encounters.

Additionally, while not all BW40 pulses show a long duration, the

signal duration of most BW40 FM pulses were distinctly longer

than what is usually found for Zc signals (Figure 1).

Manual detection of the Ip pulse type has proven difficult and

conclusive long-term and spatial results have yet to be obtained for

this signal type. While we did have few Ip signal encounters, at

Palmyra Atoll and at Pearl and Hermes Reef, we are likely to have

missed a number of acoustic encounters. Ip has three types of

echolocation signals, an FM pulse with 25 kHz peak frequency,

and two dolphin-like echolocation clicks with 15 and 25 kHz peak

frequency [10]. Current knowledge suggests that only about one

third of Ip signals are FM pulses and the time spent during manual

analysis, browsing signals in each sequence for FM pulses, may not

be sufficient to classify these few encounters as Ip, with an analyst

instead labeling these signals as belonging to other odontocetes.

Figure 5. Diel cycle of Cross beaked whale (BWC), M. densirostris (Md), Z. cavirostris (Zc), and M. hotaula (Mh) pooled over all sites and
geographic regions (top panel), as well as for Md and Zc at select sites. Dark shaded areas indicate nighttime. BWC displayed a clear
nocturnal activity over all sites, Mh had a diel pattern with higher acoustic activity during the day, Zc had a slight diel pattern with higher activity
from after midnight to mid-day over all sites, particularly pronounced at Pearl and Hermes Reef and SOCAL H. Md did not have a diel pattern, except
at Hawai’i, where the pattern was similar to Zc.
doi:10.1371/journal.pone.0086072.g005
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Relative Presence
Relative site presence might be seasonally dependent, such that

our results may be biased for those sites where there was only a

partial year of data. An example of this is the Aleutian Islands

Kiska (KS) site, which had only 48 days of data recorded during

the late spring and early summer of 2010. While 25% of the Ms

signals were detected at Kiska, Aleutian Islands site Buldir (BD)

reports only 5% of the detections. However, the BD deployment

covers 272 days and Ms signals were not detected in the months of

November and December, lowering the contribution. While there

are many sites with multi-season and even multi-year effort, there

are enough sites with shorter monitoring periods that caution

should be used to not over-interpret the results.

Relative site presence also should not be directly related to

abundance. Based on observed source levels for Zc and Md, the

expected detection range is no more than several km [24].

Detection range will vary with species source level, echolocation

beam pattern, and hydrophone placement. In addition, Blainville’s

and Cuvier’s beaked whales exhibit some degree of spatial niche

separation around Hawai’i [25]. Consequently, variations in

relative site presence may be expected with these species and

possibly others when recording at a nearby site.

Another source of variation in the relative occurrence of FM

signals among sites is shown from the results at the two very closely

located Palmyra Atoll sites and over the larger SOCAL region.

While both sites at Palmyra Atoll were in similar water depths and

there were no apparent reasons why one site should be favorable

to the other, there was a higher site presence at the northern shore

(NS) site compared to the southern (WT) site. Prey aggregation

based on oceanographic factors favoring the north shore of the

atoll may have caused this difference. Assessment of relative

occurrence in a particular region may be strongly impacted by the

choice of monitoring location, such that inferences on the presence

or absence of a species based on a single site recording should

consider the potential for local oceanographic or other habitat

variables, which may influence the ability to detect a species.

Comparison of FM signal encounters across the entirety of the

Southern California Bight, based on several recording sites, likely

provides a good assessment of overall beaked whale occurrence

and how habitat preferences influence relative distribution. The

lack of acoustic encounters of FM pulse types on three additional

southern California sites that were omitted from analysis (SOCAL

A, B, and G) is likely related to their shallow deployment depths

between 300 and 600 m, shallower than is expected for beaked

whale habitat [26]. Also, the Washington Cape Elizabeth site with

a water depth of 100 m was an unlikely site for beaked whales but

it had a few encounters of Bb FM pulse types. SOCAL C was

dominated by Bb FM pulse encounters with only few acoustic

encounters of BW40 signals. SOCAL C is located at 800 m depth

(Table 1) on a slowly down sloping area on the shelf at the

entrance to the Santa Barbara Basin. It would be interesting to

investigate whether Bb preferred this type of bathymetric and

topographic feature over the steep slopes that Zc favor [26].

Seasonal and Diel Pattern
Seasonal patterns of beaked whale presence throughout the

study area were small, inconsistent, or lacking in data. Ms signals

were detected prior to November and after December at the

Aleutian Islands site Buldir (BD). Fewer winter acoustic encounters

indicate that the species producing this signal, likely M. stejnegeri

[14], may not completely leave the area for the entire winter

season. Conversely, at the Gulf of Alaska and Washington

Quinault Canyon (QC) sites, Ms signals occurred throughout the

entire winter with a sudden disappearance of acoustic encounters

at QC in the summer from July to the end of the recording period,

October of 2011 (Figure 4, middle panel). This might suggest

seasonal latitudinal movement with the use of more northerly sites

during summer months.

It is tempting to infer seasonal movement of Md between

Hawai’i and Kaua’i based on the pattern of occurrence within

those datasets; however, large gaps in each dataset and analysis of

only a single year from each site suggest additional data are needed

before such an assertion can be supported. The movement

patterns of many insular Hawaiian odontocetes [27,28] are

characterized by periods of short-term residency within a relatively

small area, followed by long-distance movements to other

locations. These patterns are likely driven by corresponding

changes in the distribution of their prey.

A strong diel pattern was only observed for BWC FM pulses.

Since beaked whales emit FM pulses predominantly during

foraging dives [6,7], the diel pattern of echolocating indicates a

foraging strategy different to that of other beaked whale species

and is possibly related to the behavior of the preferred prey

species. Blainville’s and Cuvier’s beaked whales are known to

echolocate at depths between 200 and 1900 m, but most

echolocation activity occurs below 450 m for both species [4,6].

The recording site at Cross Seamount was located at less than

400 m water depth on the top of the seamount. Assuming for this

species a similar dive and echolocation behavior as Blainville’s and

Cuvier’s beaked whales, as well as considering the highly

directional beam pattern common to all currently known

echolocating odontocetes, Johnston et al. [29] hypothesized that

the BWC diel pattern occurred not due to primarily nocturnal

foraging but due to vertical prey movement in the water column,

which allowed foraging at depth during the day, beyond the

detection range of the recorder, and in shallower water near the

recorder during the night. The HARPs at Kaua’i, Pearl and

Hermes Reef, and Wake Atoll, all at depths of 700–800 m,

recorded the same diel pattern for BWC FM pulses. Therefore it is

plausible that the observed diel pattern is due to nocturnal

foraging rather than an artifact of the hydrophone depth.

The variability of diel patterns, or the lack thereof depending on

location, for Mh, Zc and Md signals shows a very different

foraging strategy than the species producing BWC signals. The

regional differences likely represent the type of prey sources

particular to the site, or differing foraging strategies among

regional populations. A comparison of stable isotope ratios from

biopsy samples on a regional scale might shed light on these

differences.

Geographic Distribution of Beaked Whale Species and
FM Pulse Type

Beaked whale stranding or sighting records have been

summarized by MacLeod et al. [30]. In the following discussion

we report the first record of each beaked whale species in the

vicinity of our acoustic recorder locations. This gives the

opportunity to confirm the distribution of species with known

FM pulse types and to link the unknown FM pulse types based on

their geographic distribution with potential beaked whale species

in that area.

Berardius bairdii – produces Bb FM pulse. Baird’s

beaked whale is found in cold-temperate waters of the North

Pacific, like M. stejnegeri and M. carlhubbsi, but based on

strandings and sightings it has a larger range than either of the

other two species and is more abundant [31]. In the eastern part of

their range, strandings are not common, but they are known from

various locations in Alaska and south to British Columbia,

Washington, California [32,33], and Baja California, Mexico

Spatio-Temporal Patterns of Beaked Whales
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[30]. Near the southernmost part of Baja California, Mexico, in

the Gulf of California, Baird’s beaked whales are known from

three mass strandings, two near La Paz in July 1986 and one from

Isla San Jose in July 2006 [34]. In the western North Pacific,

Baird’s beaked whale strandings are known from Commander

Islands, Russia; Kamchatka, Russia; and Japan [35]. The

southernmost record in the western Pacific is from China in the

East China Sea approximately 30uN; no records exist from

Taiwan [36]. This species is not known nor expected from the

regions around any of our tropical recording sites (Northern Line

Islands, Hawai’i, Kaua’i, Pearl and Hermes Reef, Wake Atoll, and

Saipan).

Acoustic recordings confirmed the distribution of Baird’s beaked

whales in cold-temperate waters with acoustic encounters around

the Aleutian Islands, Gulf of Alaska, Washington, and Southern

California (Table 4, Figure 6). Baird’s beaked whale was the

second most frequently acoustically encountered species in these

regions after Ms or Zc, respectively.

Mesoplodon densirostris – produces Md FM

pulse. Blainville’s beaked whale has the most wide-spread and

varied distribution of any Mesoplodon species. It is found in

tropical and warm-temperate waters, including offshore, deep

waters, around tropical oceanic archipelagos, and on continental

or insular coasts of these areas. M. densirostris is rarely sighted,

and field identification is difficult. Its distribution has been inferred

mainly from stranding records.

In the eastern North Pacific, sightings of Md are rare off

California [37] to waters offshore of Costa Rica [38] and

southward. In the central North Pacific, sightings and strandings

occur from the Hawaiian Islands (Oahu, Hawai’i, Molokai,

Kaua’i, and Laysan), the Society Islands, the Line Islands, and

Midway Atoll. Strandings have occurred in the western North

Pacific in Japan (Ryukyu Islands, Kyushu, and Honshu), the

Philippines, and Taiwan [39,40].

Strandings or sightings of M. densirostris at or near our recording

sites include the following: Point Sur (Pescadero Beach, CA) [41];

Palmyra Atoll [42]; Hawai’i (sightings) [43]; Pearl and Hermes

Reef (from Laysan) [44]. There have been no strandings or

sightings of this species from the Aleutian Island chain, Alaska or

British Columbia, Canada Washington, or from the cold-

temperate region of the western North Pacific [35], nor are they

expected from these regions.

Md FM pulse type encounters have higher encounter rates in

subtropical to tropical regions, with Pearl and Hermes Reef,

Saipan and Hawai’i having the greatest percentage of days with

detections, confirming what is known about M. densirostris preferred

range (Table 4, Figure 6). All Pacific Islands sites except Cross

Seamount and Wake Atoll had Md FM pulse type encounters.

The only other site with a single Md signal encounter, outside the

Pacific Islands region, was off the coast of Washington.

Ziphius cavirostris – produces Zc FM pulse. Cuvier’s

beaked whales occur in deep waters worldwide, both nearshore

around oceanic islands and in the open ocean, and ranging from

equatorial tropical to cold-temperate waters. However, they are

not reported from high latitude polar waters [45,46].

Cuvier’s beaked whales are perhaps the most common of all

beaked whales, with more reports of sightings and strandings than

any other ziphiid species [46]. Where steep slopes occur close to

shore, such as around the Hawaiian Islands and San Clemente

Island, offshore of southern California, their regular appearance

allows for photo-identification and tagging studies [43,47]. As for

other beaked whale island populations, they appear to be at least

seasonal residents. Around Hawai’i, the re-sightings of identifiable

individual Cuvier’s beaked whales span over 15 years and suggest

they are resident with long-term site fidelity [43].

Cuvier’s beaked whales are the most common beaked whales to

strand throughout the North Pacific rim and on islands. As a

comprehensive list, starting in Alaska and moving clockwise

around the North Pacific, Zc strandings are known from the

Aleutian Islands (Samalga Island), USA [48]; Bella Bella, British

Columbia, Canada [49,50]; North Ocean Lake, Washington

[49,51]; Del Mar, California [49,52,53]; San Ramon, Baja

California Norte, Mexico [49,54]; and Gulf of California, Mexico

[49,55]. In the western North Pacific counterclockwise from

Alaska, Zc strandings are known from Bering Island, Commander

Islands, Russia [56]; off Korean Peninsula (bycatch) [57]; Miura

City, Japan (RO-079, ICR); Lukang, Taiwan [58]; China [36];

Philippines (sighting) [59]. On the offshore and oceanic islands, Zc

strandings are known from Guam (RLB unpublished record),

Wake Island [41]; Sydney Island, Phoenix Islands, Kiribati [60];

Table 4. Presence (+) or absence (2) of beaked whales based on strandings (S), visual sightings (V), and acoustic FM pulse
encounter (A). HI: Hawaiian Islands.

Bb Md Zc Ms Mh Mg BWC Mpu BW70 Mpe BW43 Mc BW40

Project Area S V A S V A S V A S V A S V A S V A S V A S V A S V A

Aleutians + 2 + 2 2 2 + + + + + + 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Gulf of Alaska 2 2 + 2 2 2 + 2 + 2 2 + 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Washington + + + 2 2 + + 2 2 + 2 + 2 2 2 2 2 2 2 2 2 2 2 2 + 2 2

Point Sur + + 2 2 2 2 + + + + 2 2 2 2 2 2 2 2 + 2 2 2 2 2 + 2 +

SOCAL 2 + + + 2 2 + + + + 2 + 2 2 2 + 2 2 + 2 2 + 2 + + 2 +

Gulf of California + 2 2 2 2 2 + + 2 2 2 2 2 2 2 2 2 2 + + + 2 2 2 2 2 2

Main HI 2 2 2 + + + + + + 2 2 2 2 2 2 2 2 + 2 2 2 2 2 2 2 2 2

NW HI 2 2 2 + 2 + + + + 2 2 2 2 2 2 2 2 + 2 2 2 2 2 2 2 2 +

Northern Line Islands 2 2 2 + 2 + + + + 2 2 2 + + + 2 2 + 2 2 2 2 2 2 2 2 2

Wake Atoll 2 2 2 2 2 + + 2 + 2 2 2 2 2 2 2 2 + 2 2 2 2 2 2 2 2 +

Saipan 2 2 2 2 2 + + 2 + 2 2 2 2 2 2 2 2 + 2 2 2 2 2 2 2 2 2

doi:10.1371/journal.pone.0086072.t004
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Figure 6. Distribution maps (light blue shaded area; adapted from [102]) of all known beaked whale species in the North Pacific
(except Ip). Acoustic encounter locations of title species (red circles) of known FM pulse types (Bb, Md, Zc, Ms, Mh) or potential FM pulse matches
(Mg/BWC, Mpu/BW70, Mpe/BW43, Mc/BW40). Location of HARPs with no acoustic encounter of title species (black circles).
doi:10.1371/journal.pone.0086072.g006
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Pohnpei, Caroline Islands [60]; Midway Atoll [61]; Kalae,

Hawai’i [62]; Johnston Island [63]; and Palmyra Atoll [60].

Comparing sighting and stranding data to their acoustic

encounters, confirms that Zc signals are the most commonly

heard FM pulse type and with the broadest geographic range

(Table 4, Figure 6). The only large regions in the North Pacific

where no Zc signals were encountered were off the coast of

Washington, and the Gulf of California. However, Barlow et al.

[31] reported that the highest density of Zc in the Pacific is in the

southwest Gulf of California. This discrepancy can likely be

explained by an undersampling of the Gulf of California, the

choice of recorder location covering only a very small portion of

suitable habitat, and the pattern of a species dominating each site

described within this paper.

Mesoplodon stejnegeri – likely produces Ms FM

pulse. Stejneger’s beaked whale was first described in 1885

from a skull collected on Bering Island, Commander Islands,

Russia [64]. This species has not been reported from any central

Pacific islands. By the late 1980s, there are 48 records of this

species from the North Pacific [41]. Four mass strandings of this

species have been reported from Kuluk Bay, Adak, Alaska

between 1975 and 1989 [65]. Other Bering Sea stranding

locations include: Shemya Island, Amchitka Island, Adak Island,

Saint Paul Island, and Tanaga Island. There are numerous

additional stranding records for this species in the cold-temperate

waters of northern Japan [66]. The southernmost stranding from

the California Current was at southern Cardiff-by-the-Sea,

California [66]. The southernmost stranding of this species was

near the southern front of the Japanese cold water Oyashio

Current at Tsuyazaki, Fukuoka south of Tokyo [66]. Therefore,

the southern limit is about the same latitude on both sides of the

Pacific. In the Sea of Japan, a single specimen was reported in

market samples of cetacean products from Korean ‘‘whale meat’’

markets [57] and a few strandings are known from the Korean

Peninsula [67].

Strandings of M. stejnegeri at or near our recording sites include

the following: Aleutian Islands (mass stranding events of this

species are known from Adak, Tanaga, Shemya, and Unalaska

Islands) [14]; Washington (Leadbetter Point, Waatch River, and

Twin Harbors State Park) [41]. Stejneger’s beaked whales are

known as cold-temperate species. They are not known from the

regions around any of our subtropical or tropical recording sites

(Gulf of California, Palmyra Atoll, Hawai’i, Kaua’i, Pearl and

Hermes Reef, Wake Atoll, and Saipan).

Acoustic encounters of the Ms FM pulse type dominate Aleutian

sites, Gulf of Alaska, and the offshore Washington site, strength-

ening the hypothesis that this signal type is produced by M.

stejnegeri. Also, this signal type was on rare occasions found on some

of the SOCAL recordings confirming the species’ range known

from sightings and strandings (Table 4, Figure 6).

Mesoplodon hotaula – produces Mh FM

pulse. Deraniyagala’s beaked whale is known from only seven

confirmed specimens [3]. These are: (1) the holotype, from

Ratmalana, Sri Lanka, (2) Tabiteuea Atoll, Kiribati, (3–5) Palmyra

Atoll, Northern Line Islands; (6) Hulhudhuffaaru, Raa Atoll,

Maldives; and (7) Desroches Island, Seychelles. These beaked

whales are best known from Palmyra Atoll, Northern Line Islands

(05u509N, 162u069W) where three specimens have stranded and

where live animals have been observed around the atoll [13].

No Deraniyagala’s beaked whale type signals were recorded

from any site other than the Northern Line Islands. Because this

species appears to be restricted to tropical waters, it would not be

expected near the Aleutian Islands or in the temperate eastern

Pacific. To date, no specimen or sighting of M. hotaula is known

east of the Line Islands. There are also no specimens or possible

sightings from any of the Hawaiian Islands. The Mh FM pulse

type was only found at Palmyra Atoll and Kingman Reef and was

the most common beaked whale species at both locations (Table 4,

Figure 6). Kingman Reef had the highest relative presence (100%)

for beaked whales of all sites, and 78% of the encounters were with

Mh. Within the regions that were acoustically monitored, the only

sites outside the Northern Line Islands where the Mh signal type

might be expected would be near Saipan and Wake Atoll, however

none have been identified to date at those sites.

Indopacetus pacificus – produces Ip FM

pulse. Longman’s beaked whale is another poorly known

monotypic beaked whale occurring in the southern part of the

North Pacific and into the warm-temperate and tropical waters of

the South Pacific, and westward into the tropical northern and

central Indian Ocean. The first stranding was collected in

northern Australia at Mackay, Queensland in 1882 [68]. The

next specimen was collected near Danane, Somalia in 1956 [69].

Dalebout et al. [70] reported on four new specimens from the

western and central Indian Ocean. Over the past ten years only

eight more specimens have been identified and these were found in

the Maldives, Myanmar, Philippines, Taiwan, and Japan [71].

There were also sightings of these whales in the Eastern Tropical

Pacific [30].

The only known stranding from the Central North Pacific is a

recent specimen from Hawai‘i [72]. As Longman’s beaked whale is

only known from tropical waters in the Indian and Pacific Oceans,

they are not known from strandings or sightings from the regions

around any of our cold-temperate water recording sites (Aleutian

Islands, Washington, Pt. Sur, and Southern California).

There were too few acoustic encounters of Ip FM pulse types to

be included in the quantitative analysis. The few positively

identified acoustic encounters were from Palmyra Atoll and Pearl

and Hermes Reef, which fall into the expected distribution for this

species (Table 4, Figure 6).

Mesoplodon ginkgodens – possibly produces BWC FM

pulse. Ginkgo-toothed beaked whales are found in warm-

temperate and tropical waters of the Pacific and westward into

the Indian Ocean to at least the Maldives [73]. This species was

first described from Japan, based on a specimen from Oiso Beach,

Sagami Bay, Japan [74]. Based on strandings or capture records,

this species is most common around Japan and also reported

around Taiwan [75]. Specimens are also known from Liaoning

Province, China [76]; Del Mar, California [77]; a specimen

previously identified as M. ginkgodens from Baja California,

Mexico [78–80] has recently been reidentified as M. peruvianus

[81]; Galapagos Islands [82]; Strait of Malacca, Indonesia [41]. In

the Southern Hemisphere, individuals have stranded in southeast-

ern New South Wales, Australia [83] (reported as M. bowdoini),

[84], and Bay of Plenty, New Zealand [85]. The specimen of M.

ginkgodens from Chatham Islands [86] has been reidentified as M.

grayi [85]. However, the identification of some of these specimens

is in question [3]. Strandings of M. ginkgodens are not common

anywhere, but the largest number of records are from Japan;

however, there are no confirmed strandings of this species at or

near any of our recording sites. A specimen taken near Pohnpei

(06u509N, 158u159E) was mistakenly first reported from Guam

[29] is the closest confirmed M. ginkgodens record to Palmyra

Atoll. The range of M. ginkgodens in the central Pacific is poorly

known and may or may not overlap with M. hotaula, but

specimens of both species have not been reported from near-by

areas, but BWC FM pulse types recorded off Kingman Reef and

Palmya Atoll support the idea that these two species are

occasionally sympatric in the central Pacific.

Spatio-Temporal Patterns of Beaked Whales
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The properties of echolocation signals produced by M. ginkgodens

are unknown. However, its distribution overlaps with the

occurrence of the BWC FM pulse type (Table 4, Figure 6). The

BWC signal was encountered on all Pacific Islands sites,

dominating Cross Seamount detections and contributing to a

large part of Saipan detections. They were not heard in any of the

other regions.

Mesoplodon peruvianus – possibly produces BW70 FM

pulse. Stranding and sighting records suggest that pygmy

beaked whales are primarily found in tropical and warm-

temperate waters of the eastern Pacific [81]. The northernmost

record of this species was a specimen that stranded alive in Moss

Landing, California, in January 2001. Another, specimen stranded

at Newport Beach, California, in February 1998. The northern-

most sighting of this species at-sea was from 26u 109N 110u 489W

on 11 August 2006, in the central Gulf of California, Mexico

(NOAA Southwest Fisheries Science Center unpublished data).

The southernmost record in the eastern Pacific was a stranded

specimen from northern Chile (Punta de Choros), collected in

May 1995 [87]. The only record of this species away from the

eastern Pacific was a stranding of a 327 cm male from Oaro,

Kaikoura, South Island, New Zealand in 1991 [85]. Whether this

specimen is indicative of a wider distribution for this species, or

just an errant individual is unknown, but it seems unlikely this

species would normally occur in the cooler waters around New

Zealand. In addition, New Zealand has the oldest stranding

program in the Pacific (from the 1860s) but only the 1991

specimen has been identified as M. peruvianus.

Based on 24 at-sea sightings (of Mesoplodon sp. A) presented by

Pitman et al. [88] and 85 different sightings by Hamilton et al.

[89], M. peruvianus appears to be endemic to the eastern tropical

Pacific Ocean. Most at-sea sightings have been concentrated in the

warmest waters of the ETP, the ‘‘Eastern Pacific Warm Pool’’, an

area with sea surface temperatures .27.5uC [90]. Comparing the

plots in Fig. 27 (M. peruvianus) with Fig. 28 (Mesoplodon sp.) in

Hamilton et al. [89] it seems likely that this species may be

particularly abundant in the southern Gulf of California (see also

[91]). Also based on all records, it seems unlikely that this species

would have been recorded from our other recording sites in the

Central and Western Pacific if they were truly endemic to the

warmest waters of the ETP.

While no acoustic recordings have been collected in the

presence of Mpu beaked whales, the most likely FM pulse type

to fit the distribution of this species would be the BW70 signal,

recorded only in the Gulf of California (Table 4, Figure 6) at the

core of the species9 habitat, and with Z. cavirostris expected to be

the only other beaked whale species found there.

Mesoplodon perrini – possibly produces BW43 FM

pulse. Perrin9s beaked whale is known only from five strandings

along the coast of southern California [92]. The species is

apparently rare, as there have been no confirmed sightings during

cetacean abundance surveys conducted by NOAA in Californian

waters. Based on the limited region of known strandings, this

species appears to have the most restricted range of any species of

Mesoplodon, occurring in the warm-temperate waters off southern

California (this region is the border between the cold-temperate

waters to the north and the warm-temperate waters to the south)

and likely at least offshore of northern Baja California, Mexico, as

well [93].

Echolocation signal properties for M. perrini are unknown. Given

its restricted range, the BW43 FM pulse type seems to fit this

distribution very well (Table 4, Figure 6). BW43 signals were

detected at deep sites (1100–1300 m, Table 1) at the southwestern

edge of the Southern California Bight (sites E and N), at the shelf

break (site SN), and offshore at Hoke Seamount west of San Diego,

California.

Mesoplodon carlhubbsi – possibly produces BW40 FM

pulse. Hubb9s beaked whale is one of two Mesoplodon species,

the other being M. stejnegeri, endemic to the cold-temperate

waters of the North Pacific. However, Hubb’s beaked whales

found in the cold water of the Oyashio Current off northern Japan

were believed to be disjunct from those living in the cold-water

California Current [35,94]. The southernmost stranding in Japan

is from Numazu, Suruga Bay [95] and the northernmost record is

from Ayukawa [96]. There are no records from Korea as

strandings or bycatch from the Sea of Japan [57,97]. There are

no strandings of this species from the Aleutian Chain, Alaska, or

the Hawaiian Islands [35,94]. In the eastern North Pacific, the

northernmost stranding is from Prince Rupert, British Columbia

[98,99] and the southernmost stranding is from San Diego,

California [53,94]. MacLeod et al. [30] speculated that the two

North Pacific populations might be continuous across the North

Pacific around 30uN and 45uN. This idea is supported by a

specimen of Mc collected by an observer from the middle of the

North Pacific [100] while on board a fishing vessel operating in the

High Seas Driftnet fisheries (conducted by Japan, Korea, and

Taiwan) in the central North Pacific.

Strandings of M. carlhubbsi at or near our recording sites include

the following: Washington [100]; Pt. Sur (Cypress Point and San

Simeon Bay) [94]; central California and San Clemente Island

[100]; Hubb’s beaked whales are a well-known cold-temperate

species and they are not known from the regions around any of

our tropical recording sites (Gulf of California, Palmyra Atoll,

Hawai’i, Kaua’i, Pearl and Hermes Reef, Wake Atoll, and

Saipan). Based on the known distribution of this species it is also

not expected to occur around the Aleutian Islands.

Hubb’s beaked whale echolocation signals have been recorded

and described from two young, possibly neonate, and stranded

animals under emergency care in captivity [101,102]. The

described signals were either recorded with a sampling rate lower

than necessary to likely describe the full bandwidth of the

echolocation signal of beaked whales [102], or presented in a

way that the typical beaked whale FM pulse properties – sweep

and inter-pulse interval – were not clearly identifiable and signal

parameters were not comparable to this study.

Hubb’s beaked whale may produce the BW40 FM pulse type.

Acoustic encounters of BW40 at central and southern California

sites correspond well with the expected range (Table 4, Figure 6).

Lack of detections in the northern range and positive detections at

Pacific Islands sites are unexpected and weaken the assumption

that the BW40 type is indeed linked with Hubb’s beaked whale

echolocation signals.

Conclusions

Passive acoustic monitoring of elusive beaked whales has proven

to be a feasible technique to study the distribution and relative

presence of these species throughout the North Pacific. Compar-

ison with sighting and stranding data, passive acoustic monitoring

has provided a good indication for probable species producing

previously undescribed beaked whale-like signals. Relatively low

numbers of acoustic encounters with rare signal types, the lack of

multi-year data for many sites, variability within a region, and low

density of recording instruments reduced the value for interpreting

seasonal movement and diel foraging patterns. However, with

continuing data collection this caveat can be reduced. Further-

more, knowledge gained about behavioral and distributional

patterns of rarely observed species may help with planning

Spatio-Temporal Patterns of Beaked Whales
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fieldwork for concurrent acoustic and visual species identification.

Future research should investigate how habitat preference and

local oceanographic features rather than large-scale seasonal

aspects may control prey abundance and in return beaked whale

presence, particularly at temperate and tropical sites.
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